Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2019 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2019 Volume 17 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma

  • Authors:
    • Yuehua Zhao
    • Hao Lin
    • Jingwei Jiang
    • Mengxi Ge
    • Xiaohua Liang
  • View Affiliations / Copyright

    Affiliations: Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 91-98
    |
    Published online on: November 12, 2018
       https://doi.org/10.3892/etm.2018.6955
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Transducin (β)‑like 1 X‑linked receptor 1 (TBL1XR1) has been demonstrated to serve a vital role in tumor progression. However, the biological role and molecular mechanisms of TBL1XR1 in lung squamous cell carcinoma (SCC) remain largely unknown. The purpose of the present study was to investigate the biological role of TBL1XR1 and its mechanism in lung SCC. TBL1XR1 was expressed in a human bronchial epithelial cell line and in lung SCC cell lines. The present study analyzed TBL1XR1‑induced proliferation, invasion and migration abilities in vitro using the cell counting kit‑8 assay, cell invasion assay and wound healing assay, respectively. This study examined the effects of TBL1XR1 on epithelial‑mesenchymal transition (EMT) in lung SCC cells and activation of the transforming growth factor (TGF)‑β/mothers against decapentaplegic homolog (Smad) signaling pathway by western blotting. The results indicated that TBL1XR1 was upregulated in lung SCC cells. Overexpression of TBL1XR1 increased the rate of cell proliferation compared with the control group. In vitro, overexpression of TBL1XR1 promoted cell invasion and migration ability compared with the control group. In addition, overexpression of TBL1XR1 produced a mesenchymal phenotype, while cells with downregulated TBL1XR1 produced an epithelial phenotype. Overexpression of TBL1XR1 significantly increased E‑cadherin protein expression whilst snail family transcriptional repressor 1 (SNAI1), zinc finger E‑box binding homebox 1 (ZEB1), p‑Smad2/3, Smad2 and Smad3 protein expression was significantly reduced, compared with the control group. Downregulation of TBL1XR1 produced the opposite results. The present study indicated that TBL1XR1 contributed to lung SCC development and progression, and therefore TBL1XR1 may be a potential therapeutic target. TBL1XR1 may induce EMT of lung SCC cells through activation of the TGF‑β/Smad signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Tanoue LT, Tanner NT, Gould MK and Silvestri GA: Lung cancer screening. Am J Respir Crit Care Med. 191:19–33. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

An Q, Pacyna-Gengelbach M, Schlüns K, Deutschmann N, Guo S, Gao Y, Zhang J, Cheng S and Petersen I: Identification of differentially expressed genes in immortalized human bronchial epithelial cell line as a model for in vitro study of lung carcinogenesis. Int J Cancer. 103:194–204. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Cheng TD, Cramb SM, Baade PD, Youlden DR, Nwogu C and Reid ME: The international epidemiology of lung cancer: Latest trends, disparities, and tumor characteristics. J Thorac Oncol. 11:1653–1671. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Liao BC, Shao YY, Chen HM, Shau WY, Lin ZZ, Kuo RN, Lai CL, Chen KH, Cheng AL, Yang JC and Lai MS: Comparative effectiveness of first-line platinum-based chemotherapy regimens for advanced lung squamous cell carcinoma. Clin Lung Cancer. 16:137–143. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Travis WD: Pathology of lung cancer. Clin Chest Med. 32:669–692. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Mizoguchi K, Nakamura Y, Sano K, Sato S, Ikegami Y, Motoshima K, Takemoto S, Ogawara D, Senju H, Sugasaki N, et al: Pharmacokinetic parameters of gefitinib predict efficacy and toxicity in patients with advanced non-small cell lung cancer harboring EGFR mutations. Cancer Chemother Pharmacol. 78:377–382. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Zhang X, Dormady SP and Basch RS: Identification of four human cDNAs that are differentially expressed by early hematopoietic progenitors. Exp Hematol. 28:1286–1296. 2000. View Article : Google Scholar : PubMed/NCBI

9 

Andersson S, Wallin KL, Hellström AC, Morrison LE, Hjerpe A, Auer G, Ried T, Larsson C and Heselmeyer-Haddad K: Frequent gain of the human telomerase gene TERC at 3q26 in cervical adenocarcinomas. Br J Cancer. 95:331–338. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Yang YC, Shyong WY, Chang MS, Chen YJ, Lin CH, Huang ZD, Wang, Hsu MT and Chen ML: Frequent gain of copy number on the long arm of chromosome 3 in human cervical adenocarcinoma. Cancer Genet Cytogenet. 131:48–53. 2001. View Article : Google Scholar : PubMed/NCBI

11 

Zhang J, Kalkum M, Chait BT and Roeder RG: The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol Cell. 9:611–623. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Perissi V, Aggarwal A, Glass CK, Rose DW and Rosenfeld MG: A corepressor/coactivator exchange complex required for transcriptional activation by nuclear receptors and other regulated transcription factors. Cell. 116:511–526. 2004. View Article : Google Scholar : PubMed/NCBI

13 

Choi HK, Choi KC, Yoo JY, Song M, Ko SJ, Kim CH, Ahn JH, Chun KH, Yook JI and Yoon HG: Reversible SUMOylation of TBL1-TBLR1 regulates β-catenin-mediated Wnt signaling. Mol Cell. 43:203–216. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Hoberg JE, Yeung F and Mayo MW: SMRT derepression by the IkappaB kinase alpha: A prerequisite to NF-kappaB transcription and survival. Mol Cell. 16:245–255. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Li J and Wang CY: TBL1-TBLR1 and beta-catenin recruit each other to Wnt target-gene promoter for transcription activation and oncogenesis. Nat Cell Biol. 10:160–169. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Wang J, Ou J, Guo Y, Dai T, Li X, Liu J, Xia M, Liu L and He M: TBLR1 is a novel prognostic marker and promotes epithelial-mesenchymal transition in cervical cancer. Br J Cancer. 111:112–124. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Li X, Liang W, Liu J, Lin C, Wu S, Song L and Yuan Z: Transducin (β)-like 1 X-linked receptor 1 promotes proliferation and tumorigenicity in human breast cancer via activation of beta-catenin signaling. Breast Cancer Res. 16:4652014. View Article : Google Scholar : PubMed/NCBI

18 

Chen SP, Yang Q, Wang CJ, Zhang LJ, Fang Y, Lei FY, Wu S, Song LB, Guo X and Guo L: Transducin β-like 1 X-linked receptor 1 suppresses cisplatin sensitivity in nasopharyngeal carcinoma via activation of NF-κB pathway. Mol Cancer. 13:1952014. View Article : Google Scholar : PubMed/NCBI

19 

Kuang X, Zhu J, Peng Z, Wang J and Chen Z: Transducin (Beta)-like 1 X-linked receptor 1 correlates with clinical prognosis and epithelial-mesenchymal transition in hepatocellular carcinoma. Dig Dis Sci. 61:489–500. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, Feng L, Lei W, Zhang Z, et al: Identification of genes differentially expressed in human primary lung squamous cell carcinoma. Lung Cancer. 56:307–317. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Yan J, Gumireddy K, Li A and Huang Q: Regulation of mesenchymal phenotype by MicroRNAs in cancer. Curr Cancer Drug Targets. 13:930–934. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Giannelli G, Bergamini C, Fransvea E, Sgarra C and Antonaci S: Laminin-5 with transforming growth factor-beta1 induces epithelial to mesenchymal transition in hepatocellular carcinoma. Gastroenterology. 129:1375–1383. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Li N, Xu H, Fan K, Liu X, Qi J, Zhao C, Yin P, Wang L, Li Z and Zha X: Altered beta1,6-GlcNAc branched N-glycans impair TGF-β-mediated epithelial-to-mesenchymal transition through Smad signalling pathway in human lung cancer. J Cell Mol Med. 18:1975–1991. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Yang G, Liang Y, Zheng T, Song R, Wang J, Shi H, Sun B, Xie C, Li Y, Han J, et al: FCN2 inhibits epithelial-mesenchymal transition-induced metastasis of hepatocellular carcinoma via TGF-β/Smad signaling. Cancer Lett. 378:80–86. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Ji Q, Liu X, Han Z, Zhou L, Sui H, Yan L, Jiang H, Ren J, Cai J and Li Q: Resveratrol suppresses epithelial-to-mesenchymal transition in colorectal cancer through TGF-β1/Smads signaling pathway mediated Snail/E-cadherin expression. BMC Cancer. 15:972015. View Article : Google Scholar : PubMed/NCBI

26 

Li C, Wan L, Liu Z, Xu G, Wang S, Su Z, Zhang Y, Zhang C, Liu X, Lei Z and Zhang HT: Long non-coding RNA XIST promotes TGF-β-induced epithelial-mesenchymal transition by regulating miR-367/141-ZEB2 axis in non-small-cell lung cancer. Cancer Lett. 418:185–195. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Daniels G, Li Y, Gellert LL, Zhou A, Melamed J, Wu X, Zhang X, Zhang D, Meruelo D, Logan SK, et al: TBLR1 as an androgen receptor (AR) coactivator selectively activates AR target genes to inhibit prostate cancer growth. Endocr Relat Cancer. 21:127–142. 2013. View Article : Google Scholar

28 

Liu F, He Y, Cao Q, Liu N and Zhang W: TBL1XR1 is highly expressed in gastric cancer and predicts poor prognosis. Dis Markers. 2016:24365182016. View Article : Google Scholar : PubMed/NCBI

29 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

30 

Lamouille S, Xu J and Derynck R: Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Bio. 15:178–196. 2014. View Article : Google Scholar

31 

Zhai B, Yan HX, Liu SQ, Chen L, Wu MC and Wang HY: Reduced expression of E-cadherin/catenin complex in hepatocellular carcinomas. World J Gastroentero. 14:5665–5673. 2008. View Article : Google Scholar

32 

Zhai X, Zhu H, Wang W, Zhang S, Zhang Y and Mao G: Abnormal expression of EMT-related proteins, S100A4, vimentin and E-cadherin, is correlated with clinicopathological features and prognosis in HCC. Med Oncol. 31:9702014. View Article : Google Scholar : PubMed/NCBI

33 

Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL and Fan ST: Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial-mesenchymal transition. Clin Cancer Res. 12:5369–5376. 2006. View Article : Google Scholar : PubMed/NCBI

34 

Guarino M: Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol. 39:2153–2160. 2007. View Article : Google Scholar : PubMed/NCBI

35 

Hu H, Wang M, Wang H, Liu Z, Guan X, Yang R, Huang R, Tang Q, Zou C, Wang G, et al: MEGF6 promotes the epithelial-to-mesenchymal transition via the TGFβ/SMAD signaling pathway in colorectal cancer metastasis. Cell Physiol Biochem. 46:1895–1906. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Jung B, Staudacher JJ and Beauchamp D: Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology. 152:36–52. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Tsang KJ, Tsang D, Brown TN and Crowe DL: A novel dominant negative Smad2 mutation in a TGFbeta resistant human carcinoma cell line. Anticancer Res. 22:13–19. 2002.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao Y, Lin H, Jiang J, Ge M and Liang X: TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma. Exp Ther Med 17: 91-98, 2019.
APA
Zhao, Y., Lin, H., Jiang, J., Ge, M., & Liang, X. (2019). TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma. Experimental and Therapeutic Medicine, 17, 91-98. https://doi.org/10.3892/etm.2018.6955
MLA
Zhao, Y., Lin, H., Jiang, J., Ge, M., Liang, X."TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma". Experimental and Therapeutic Medicine 17.1 (2019): 91-98.
Chicago
Zhao, Y., Lin, H., Jiang, J., Ge, M., Liang, X."TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma". Experimental and Therapeutic Medicine 17, no. 1 (2019): 91-98. https://doi.org/10.3892/etm.2018.6955
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao Y, Lin H, Jiang J, Ge M and Liang X: TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma. Exp Ther Med 17: 91-98, 2019.
APA
Zhao, Y., Lin, H., Jiang, J., Ge, M., & Liang, X. (2019). TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma. Experimental and Therapeutic Medicine, 17, 91-98. https://doi.org/10.3892/etm.2018.6955
MLA
Zhao, Y., Lin, H., Jiang, J., Ge, M., Liang, X."TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma". Experimental and Therapeutic Medicine 17.1 (2019): 91-98.
Chicago
Zhao, Y., Lin, H., Jiang, J., Ge, M., Liang, X."TBL1XR1 as a potential therapeutic target that promotes epithelial‑mesenchymal transition in lung squamous cell carcinoma". Experimental and Therapeutic Medicine 17, no. 1 (2019): 91-98. https://doi.org/10.3892/etm.2018.6955
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team