|
1
|
Alrashdan MS, Cirillo N and McCullough M:
Oral lichen planus: A literature review and update. Arch Dermatol
Rese. 308:539–551. 2016. View Article : Google Scholar
|
|
2
|
Sanketh DS, Patil S and Swetha B: Oral
lichen planus and epithelial dysplasia with lichenoid features: A
review and discussion with special reference to diagnosis. J
Investig Clin Dent. 8:e122332017. View Article : Google Scholar
|
|
3
|
Gonzalez-Moles MA, Scully C and
Gil-Montoya JA: Oral lichen planus: Controversies surrounding
malignant transformation. Oral Dis. 14:229–243. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kurago ZB: Etiology and pathogenesis of
oral lichen planus: An overview. Oral Surg Oral Med Oral Pathol
Oral Radiol. 122:72–80. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Roopashree MR, Gondhalekar RV, Shashikanth
MC, George J, Thippeswamy SH and Shukla A: Pathogenesis of oral
lichen planus-a review. J Oral Pathol Med. 39:729–734. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Arão TC, Guimarães AL, de Paula AM, Gomes
CC and Gomez RS: Increased miRNA-146a and miRNA-155 expressions in
oral lichen planus. Arch Dermatol Res. 304:371–375. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bartel DP: MicroRNAs: Genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ebert MS and Sharp PA: Roles for microRNAs
in conferring robustness to biological processes. Cell.
149:515–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ma H, Wu Y, Yang H, Liu J, Dan H, Zeng X,
Zhou Y, Jiang L and Chen Q: MicroRNAs in oral lichen planus and
potential miRNA-mRNA pathogenesis with essential cytokines: A
review. Oral Surg Oral Med Oral Pathol Oral Radiol. 122:164–173.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Gassling V, Hampe J, Açil Y, Braesen JH,
Wiltfang J and Häsler R: Disease-associated miRNA-mRNA networks in
oral lichen planus. PLoS One. 8:e630152013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu F, Wu J and Ye F: Expression of
miRNA-155 and miRNA-146a in peripheral blood mononuclear cells and
plasma of oral lichen planus patients. Zhonghua Kou Qiang Yi Xue Za
Zhi. 50:23–27. 2015.(In Chinese). PubMed/NCBI
|
|
12
|
Moffett HF and Novina CD: A small RNA
makes a Bic difference. Genome Biol. 8:2212007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Sagari S, Sanadhya S, Doddamani M and
Rajput R: Molecular markers in oral lichen planus: A systematic
review. J Oral Maxillofac Pathol. 20:115–121. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Eisen D: The clinical features, malignant
potential, and systemic associations of oral lichen planus: A study
of 723 patients. J Am Acad Dermatol. 46:207–214. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Aghbari SMH, Abushouk AI, Attia A,
Elmaraezy A, Menshawy A, Ahmed MS, Elsaadany BA and Ahmed EM:
Malignant transformation of oral lichen planus and oral lichenoid
lesions: A meta-analysis of 20095 patient data. Oral Oncol.
68:92–102. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Eisen D, Carrozzo M, Bagan Sebastian JV
and Thongprasom K: Number V Oral lichen planus: Clinical features
and management. Oral Dis. 11:338–349. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu
Y, Sun Z and Chen Q: Role of distinct CD4(+) T helper subset in
pathogenesis of oral lichen planus. J Oral Pathol Med. 45:385–393.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tan YQ, Li Q, Zhang J, Du GF, Lu R and
Zhou G: Increased circulating CXCR5+ CD4+ T
follicular helper-like cells in oral lichen planus. J Oral Pathol
Med. 46:803–809. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zamore PD and Haley B: Ribo-gnome: The big
world of small RNAs. Science. 309:1519–1524. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Raisch J, Darfeuille-Michaud A and Nguyen
HT: Role of microRNAs in the immune system, inflammation and
cancer. World J Gastroenterol. 19:2985–2996. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Contreras J and Rao DS: MicroRNAs in
inflammation and immune responses. Leukemia. 26:404–413. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cremer TJ, Ravneberg DH, Clay CD,
Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti
TD, Schlesinger LS, et al: MiR-155 induction by F. novicida but not
the virulent F. tularensis results in SHIP down-regulation and
enhanced pro-inflammatory cytokine response. PLoS One. 4:e85082009.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tili E, Michaille JJ and Croce CM:
MicroRNAs play a central role in molecular dysfunctions linking
inflammation with cancer. Immunol Rev. 253:167–184. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Faraoni I, Antonetti FR, Cardone J and
Bonmassar E: miR-155 gene: A typical multifunctional microRNA.
Biochim Biophys Acta. 1792:497–505. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hu JY, Zhang J, Ma JZ, Liang XY, Chen GY,
Lu R, Du GF and Zhou G: MicroRNA-155-IFN-γ feedback loop in CD4(+)T
cells of erosive type oral lichen planus. Sci Rep. 5:169352015.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Rasmussen SB, Reinert LS and Paludan SR:
Innate recognition of intracellular pathogens: Detection and
activation of the first line of defense. APMIS. 117:323–337. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Vigorito E, Kohlhaas S, Lu D and Leyland
R: miR-155: An ancient regulator of the immune system. Immunol Rev.
253:146–157. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Mills CD, Kincaid K, Alt JM, Heilman MJ
and Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J
Immunol. 164:6166–6173. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Mantovani A, Biswas SK, Galdiero MR, Sica
A and Locati M: Macrophage plasticity and polarization in tissue
repair and remodelling. J Pathol. 229:176–185. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ma F, Liu F, Ding L, You M, Yue H, Zhou Y
and Hou Y: Anti-inflammatory effects of curcumin are associated
with down regulating microRNA-155 in LPS-treated macrophages and
mice. Pharm Biol. 55:1263–1273. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
O'Connell RM, Taganov KD, Boldin MP, Cheng
G and Baltimore D: MicroRNA-155 is induced during the macrophage
inflammatory response. Proc Natl Acad Sci USA. 104:1604–1609. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Martinez-Nunez RT, Louafi F and
Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human
macrophages is modulated by microRNA-155 via direct targeting of
interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem.
286:1786–1794. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Louafi F, Martinez-Nunez RT and
Sanchez-Elsner T: MicroRNA-155 targets SMAD2 and modulates the
response of macrophages to transforming growth factor-{beta}. J
Biol Chem. 285:41328–41336. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wilson HM: SOCS proteins in macrophage
polarization and function. Front Immunol. 5:3572014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fuss IJ and Strober W: The role of IL-13
and NK T cells in experimental and human ulcerative colitis.
Mucosal Immunol. 1 Suppl 1:S31–S33. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Massagué J: TGFβ signalling in context.
Nat Rev Mol Cell Biol. 13:616–630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Shi Y and Massagué J: Mechanisms of
TGF-beta signaling from cell membrane to the nucleus. Cell.
113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Turner ML, Schnorfeil FM and Brocker T:
MicroRNAs regulate dendritic cell differentiation and function. J
Immunol. 187:3911–3917. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Iwasaki A and Medzhitov R: Regulation of
adaptive immunity by the innate immune system. Science.
327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ceppi M, Pereira PM, Dunand-Sauthier I,
Barras E, Reith W, Santos MA and Pierre P: MicroRNA-155 modulates
the interleukin-1 signaling pathway in activated human
monocyte-derived dendritic cells. Proc Natl Acad Sci USA.
106:2735–2740. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Martinez-Nunez RT, Louafi F, Friedmann PS
and Sanchez-Elsner T: MicroRNA-155 modulates the pathogen binding
ability of dendritic cells (DCs) by down-regulation of DC-specific
intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).
J Biol Chem. 284:16334–16342. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Dunand-Sauthier I, Irla M, Carnesecchi S,
Seguín-Estévez Q, Vejnar CE, Zdobnov EM, Santiago-Raber ML and
Reith W: Repression of arginase-2 expression in dendritic cells by
microRNA-155 is critical for promoting T cell proliferation. J
Immunol. 193:1690–1700. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ma YL, Ma ZJ, Wang M, Liao MY, Yao R and
Liao YH: MicroRNA-155 induces differentiation of RAW264.7 cells
into dendritic-like cells. Int J Clin Exp Pathol. 8:14050–14062.
2015.PubMed/NCBI
|
|
45
|
Caparrós E, Munoz P, Sierra-Filardi E,
Serrano-Gómez D, Puig-Kröger A, Rodríguez-Fernández JL, Mellado M,
Sancho J, Zubiaur M and Corbí AL: DC-SIGN ligation on dendritic
cells results in ERK and PI3K activation and modulates cytokine
production. Blood. 107:3950–3958. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lind EF, Millar DG, Dissanayake D, Savage
JC, Grimshaw NK, Kerr WG and Ohashi PS: miR-155 upregulation in
dendritic cells is sufficient to break tolerance in vivo by
negatively regulating SHIP1. J Immunol. 195:4632–4640. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Costinean S, Sandhu SK, Pedersen IM, Tili
E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J,
Kauffman LR, et al: Src homology 2 domain-containing
inositol-5-phosphatase and CCAAT enhancer-binding protein beta are
targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice.
Blood. 114:1374–1382. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Evel-Kabler K, Song XT, Aldrich M, Huang
XF and Chen SY: SOCS1 restricts dendritic cells' ability to break
self tolerance and induce antitumor immunity by regulating IL-12
production and signaling. J Clin Invest. 116:90–100. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yoshida R, Suzuki M, Sakaguchi R, Hasegawa
E, Kimura A, Shichita T, Sekiya T, Shiraishi H, Shimoda K and
Yoshimura A: Forced expression of stabilized c-Fos in dendritic
cells reduces cytokine production and immune responses in vivo.
Biochem Biophys Res Commun. 423:247–252. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Dunand-Sauthier I, Santiago-Raber ML,
Capponi L, Vejnar CE, Schaad O, Irla M, Seguín-Estévez Q, Descombes
P, Zdobnov EM, Acha-Orbea H and Reith W: Silencing of c-Fos
expression by microRNA-155 is critical for dendritic cell
maturation and function. Blood. 117:4490–4500. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sullivan RP, Fogel LA, Leong JW, Schneider
SE, Wong R, Romee R, Thai TH, Sexl V, Matkovich SJ, Dorn GW II, et
al: MicroRNA-155 tunes both the threshold and extent of NK cell
activation via targeting of multiple signaling pathways. J Immunol.
191:5904–5913. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Trotta R, Chen L, Costinean S, Josyula S,
Mundy-Bosse BL, Ciarlariello D, Mao C, Briercheck EL, McConnell KK,
Mishra A, et al: Overexpression of miR-155 causes expansion, arrest
in terminal differentiation and functional activation of mouse
natural killer cells. Blood. 121:3126–3134. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Trotta R, Parihar R, Yu J, Becknell B,
Allard J II, Wen J, Ding W, Mao H, Tridandapani S, Carson WE and
Caligiuri MA: Differential expression of SHIP1 in CD56bright and
CD56dim NK cells provides a molecular basis for distinct functional
responses to monokine costimulation. Blood. 105:3011–3018. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Trotta R, Chen L, Ciarlariello D, Josyula
S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM
and Caligiuri MA: miR-155 regulates IFN-γ production in natural
killer cells. Blood. 119:3478–3485. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zawislak CL, Beaulieu AM, Loeb GB, Karo J,
Canner D, Bezman NA, Lanier LL, Rudensky AY and Sun JC:
Stage-specific regulation of natural killer cell homeostasis and
response against viral infection by microRNA-155. Proc Natl Acad
Sci USA. 110:6967–6972. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ikeda J, Tian T, Wang Y, Hori Y, Honma K,
Wada N and Morii E: Expression of FoxO3a in clinical cases of
malignant lymphoma. Pathol Res Pract. 209:716–720. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ji WG, Zhang XD, Sun XD, Wang XQ, Chang BP
and Zhang MZ: miRNA-155 modulates the malignant biological
characteristics of NK/T-cell lymphoma cells by targeting FOXO3a
gene. J Huazhong Univ Sci Technolog Med Sci. 34:882–888. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rodriguez A, Vigorito E, Clare S, Warren
MV, Couttet P, Soond DR, van Dongen S, Grocock RJ, Das PP, Miska
EA, et al: Requirement of bic/microRNA-155 for normal immune
function. Science. 316:608–611. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
de Yebenes VG, Bartolome-Izquierdo N and
Ramiro AR: Regulation of B-cell development and function by
microRNAs. Immunol Rev. 253:25–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sandhu SK, Volinia S, Costinean S, Galasso
M, Neinast R, Santhanam R, Parthun MR, Perrotti D, Marcucci G,
Garzon R and Croce CM: miR-155 targets histone deacetylase 4
(HDAC4) and impairs transcriptional activity of B-cell lymphoma 6
(BCL6) in the Emu-miR-155 transgenic mouse model. Proc Natl Acad
Sci USA. 109:20047–20052. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Clare S, John V, Walker AW, Hill JL,
Abreu-Goodger C, Hale C, Goulding D, Lawley TD, Mastroeni P,
Frankel G, et al: Enhanced susceptibility to Citrobacter rodentium
infection in microRNA-155-deficient mice. Infect Immun. 81:723–732.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Thai TH, Calado DP, Casola S, Ansel KM,
Xiao C, Xue Y, Murphy A, Frendewey D, Valenzuela D, Kutok JL, et
al: Regulation of the germinal center response by microRNA-155.
Science. 316:604–608. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Vigorito E, Perks KL, Abreu-Goodger C,
Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A,
Bradley A, et al: microRNA-155 regulates the generation of
immunoglobulin class-switched plasma cells. Immunity. 27:847–859.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bolisetty MT, Dy G, Tam W and Beemon KL:
Reticuloendotheliosis virus strain T induces miR-155, which targets
JARID2 and promotes cell survival. J Virol. 83:12009–12017. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nakagawa R, Leyland R, Meyer-Hermann M, Lu
D, Turner M, Arbore G, Phan TG, Brink R and Vigorito E:
MicroRNA-155 controls affinity-based selection by protecting c-MYC+
B cells from apoptosis. J Clin Invest. 126:377–388. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Busslinger M: Transcriptional control of
early B cell development. Annu Rev Immunol. 22:55–79. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Bouamar H, Jiang D, Wang L, Lin AP, Ortega
M and Aguiar RC: MicroRNA 155 control of p53 activity is context
dependent and mediated by Aicda and Socs1. Mol Cell Biol.
35:1329–1340. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jiang D and Aguiar RC: MicroRNA-155
controls RB phosphorylation in normal and malignant B lymphocytes
via the noncanonical TGF-beta1/SMAD5 signaling module. Blood.
123:86–93. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rai D, Kim SW, McKeller MR, Dahia PL and
Aguiar RC: Targeting of SMAD5 links microRNA-155 to the TGF-beta
pathway and lymphomagenesis. Proc Natl Acad Sci USA. 107:3111–3116.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zhang N and Bevan MJ: CD8(+) T cells: Foot
soldiers of the immune system. Immunity. 35:161–168. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Sanchez-Diaz R, Blanco-Dominguez R,
Lasarte S, Tsilingiri K, Martín-Gayo E, Linillos-Pradillo B, de la
Fuente H, Sánchez-Madrid F, Nakagawa R, Toribio ML and Martín P:
Thymus-derived regulatory T cell development is regulated by C-Type
lectin-mediated BIC/MicroRNA 155 expression. Mol Cell Boil.
37:e003042017.
|
|
72
|
Hwang ES, White IA and Ho IC: An
IL-4-independent and CD25-mediated function of c-maf in promoting
the production of Th2 cytokines. Proc Natl Acad Sci USA.
99:13026–13030. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
O'Garra A and Vieira P: Regulatory T cells
and mechanisms of immune system control. Nat Med. 10:801–805. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bettelli E, Korn T, Oukka M and Kuchroo
VK: Induction and effector functions of T(H)17 cells. Nature.
453:1051–1057. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X
and Liao YH: MicroRNA-155 modulates treg and Th17 cells
differentiation and Th17 cell function by targeting SOCS1. PLoS
One. 7:e460822012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Lu LF, Thai TH, Calado DP, Chaudhry A,
Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K and
Rudensky AY: Foxp3-dependent microRNA155 confers competitive
fitness to regulatory T cells by targeting SOCS1 protein. Immunity.
30:80–91. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Harada M, Nakashima K, Hirota T, Shimizu
M, Doi S, Fujita K, Shirakawa T, Enomoto T, Yoshikawa M, Moriyama
H, et al: Functional polymorphism in the suppressor of cytokine
signaling 1 gene associated with adult asthma. Am J Respir Cell Mol
Biol. 36:491–496. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Dudda JC, Salaun B, Ji Y, Palmer DC,
Monnot GC, Merck E, Boudousquie C, Utzschneider DT, Escobar TM,
Perret R, et al: MicroRNA-155 is required for effector CD8+ T cell
responses to virus infection and cancer. Immunity. 38:742–753.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huffaker TB and O'Connell RM:
miR-155-SOCS1 as a functional axis: Satisfying the burden of proof.
Immunity. 43:3–4. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Weniger MA, Melzner I, Menz CK, Wegener S,
Bucur AJ, Dorsch K, Mattfeldt T, Barth TF and Möller P: Mutations
of the tumor suppressor gene SOCS-1 in classical hodgkin lymphoma
are frequent and associated with nuclear phospho-STAT5
accumulation. Oncogene. 25:2679–2684. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Pomerantz JL and Baltimore D: Two pathways
to NF-kappaB. Mol Cell. 10:693–695. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Musikacharoen T, Matsuguchi T, Kikuchi T
and Yoshikai Y: NF-kappa B and STAT5 play important roles in the
regulation of mouse Toll-like receptor 2 gene expression. J
Immunol. 166:4516–4524. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Strebovsky J, Walker P and Dalpke AH:
Suppressor of cytokine signaling proteins as regulators of innate
immune signaling. Front Biosci (Landmark Ed). 17:1627–1639. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li J, Liu Z, Jiang S, Cortesini R,
Lederman S and Suciu-Foca N: T suppressor lymphocytes inhibit
NF-kappa B-mediated transcription of CD86 gene in APC. J Immunol.
163:6386–6392. 1999.PubMed/NCBI
|
|
85
|
Baetz A, Frey M, Heeg K and Dalpke AH:
Suppressor of cytokine signaling (SOCS) proteins indirectly
regulate toll-like receptor signaling in innate immune cells. J
Boil Chem. 279:54708–54715. 2004. View Article : Google Scholar
|
|
86
|
Ryo A, Suizu F, Yoshida Y, Perrem K, Liou
YC, Wulf G, Rottapel R, Yamaoka S and Lu KP: Regulation of
NF-kappaB signaling by Pin1-dependent prolyl isomerization and
ubiquitin-mediated proteolysis of p65/RelA. Mol Cell. 12:1413–1426.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ceskova P, Chichger H, Wallace M, Vojtesek
B and Hupp TR: On the mechanism of sequence-specific DNA-dependent
acetylation of p53: The acetylation motif is exposed upon DNA
binding. J Mol Boil. 357:442–456. 2006. View Article : Google Scholar
|
|
88
|
Guikema JE, Linehan EK, Esa N, Tsuchimoto
D, Nakabeppu Y, Woodland RT and Schrader CE: Apurinic/apyrimidinic
endonuclease 2 regulates the expansion of germinal centers by
protecting against activation-induced cytidine
deaminase-independent DNA damage in B cells. J Immunol.
193:931–939. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Hirota J, Osaki T and Tatemoto Y:
Immunohistochemical staining of infiltrates in oral lichen planus.
Pathol Res Pract. 186:625–632. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Payeras MR, Cherubini K, Figueiredo MA and
Salum FG: Oral lichen planus: Focus on etiopathogenesis. Arch Oral
Boil. 58:1057–1069. 2013. View Article : Google Scholar
|
|
91
|
Mignogna MD, Fedele S, Lo Russo L, Lo
Muzio L and Bucci E: Immune activation and chronic inflammation as
the cause of malignancy in oral lichen planus: Is there any
evidence ? Oral Oncol. 40:120–130. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Santoro A, Majorana A, Roversi L, Gentili
F, Marrelli S, Vermi W, Bardellini E, Sapelli P and Facchetti F:
Recruitment of dendritic cells in oral lichen planus. J Pathol.
205:426–434. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Gueiros LA, Gondak R, Jorge Junior J,
Coletta RD, Carvalho Ade A, Leão JC, de Almeida OP and Vargas PA:
Increased number of Langerhans cells in oral lichen planus and oral
lichenoid lesions. Oral Surg Oral Med Oral Pathol Oral Radiol.
113:661–666. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Yamauchi M, Moriyama M, Hayashida JN,
Maehara T, Ishiguro N, Kubota K, Furukawa S, Ohta M, Sakamoto M,
Tanaka A and Nakamura S: Myeloid dendritic cells stimulated by
thymic stromal lymphopoietin promote Th2 immune responses and the
pathogenesis of oral lichen planus. PLoS One. 12:e01730172017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Trucci VM, Salum FG, Figueiredo MA and
Cherubini K: Interrelationship of dendritic cells, type 1
interferon system, regulatory T cells and toll-like receptors and
their role in lichen planus and lupus erythematosus-a literature
review. Arch Oral Biol. 58:1532–1540. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Skrzeczynska-Moncznik J, Stefanska A,
Zabel BA, Kapinska-Mrowiecka M, Butcher EC and Cichy J: Chemerin
and the recruitment of NK cells to diseased skin. Acta Biochim Pol.
56:355–360. 2009.PubMed/NCBI
|
|
97
|
Divya VC and Sathasivasubramanian S:
Estimation of serum and salivary immunoglobulin G and
immunoglobulin A in oral pre-cancer: A study in oral submucous
fibrosis and oral lichen planus. J Nat Sci Biol Med. 5:90–94. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Albanidou-Farmaki E, Kayavis I,
Sideropoulos I, Papanayiotou P and Polymenidis Z: Serum
immunoglobulins IgA, IgG and IgM, and oral lichen planus.
Stomatologia (Athenai). 47:114–120. 1990.(In Greek, Modern).
PubMed/NCBI
|
|
99
|
Sistig S, Vucicevic-Boras V, Lukac J and
Kusic Z: Salivary IgA and IgG subclasses in oral mucosal diseases.
Oral Dis. 8:282–286. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ghaleyani P, Sardari F and Akbari M:
Salivary IgA and IgG in oral lichen planus and oral lichenoid
reactions diseases. Adv Biomed Res. 1:732012.PubMed/NCBI
|
|
101
|
Zhou L, Cao T, Wang Y, Yao H, Du G, Chen
G, Niu X and Tang G: Frequently increased but functionally impaired
CD4+CD25+ regulatory T cells in patients with oral lichen planus.
Inflammation. 39:1205–1215. 2016.PubMed/NCBI
|
|
102
|
Zhou XJ, Sugerman PB, Savage NW, Walsh LJ
and Seymour GJ: Intra-epithelial CD8+ T cells and basement membrane
disruption in oral lichen planus. J Oral Pathol Med. 31:23–27.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Georgakopoulou EA, Achtari MD, Achtaris M,
Foukas PG and Kotsinas A: Oral lichen planus as a preneoplastic
inflammatory model. J Biomed Biotechnol. 2012:7596262012.
View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Ebrahimi M, Boldrup L, Coates PJ, Wahlin
YB, Bourdon JC and Nylander K: Expression of novel p53 isoforms in
oral lichen planus. Oral Oncol. 44:156–161. 2008. View Article : Google Scholar : PubMed/NCBI
|