Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
April-2019 Volume 17 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2019 Volume 17 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells

  • Authors:
    • Ling Wu
    • Jianlin Du
    • Xiaodong Jing
    • Yuling Yan
    • Songbai Deng
    • Zhengtao Hao
    • Qiang She
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2648-2656
    |
    Published online on: February 4, 2019
       https://doi.org/10.3892/etm.2019.7243
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Clarifying the mechanisms via which pacemaker‑​like cells are generated is critical for identifying novel targets for arrhythmia‑associated disorders and constructing pacemakers with the ability to adapt to physiological requirements. T‑box 18 (Tbx18)+ epicardial progenitor cells (EPCs) have the potential to differentiate into pacemaker cells. Although bone morphogenetic protein 4 (Bmp4) is likely to contribute, its role and regulatory mechanisms in the differentiation of Tbx18+ EPCs into pacemaker‑like cells have remained to be fully elucidated. In the present study, the association between Bmp4, GATA binding protein 4 (Gata4) and hyperpolarization‑​activated cyclic nucleotide gated potassium channel 4 (Hcn4) to regulate NK2 homeobox 5 (Nkx2.5), which is known to be required for the differentiation of Tbx18+ EPCs into pacemaker‑like cells, was assessed. Tbx18+ EPCs were isolated from Tbx18:Cre/Rosa26Renhanced yellow fluorescence protein (EYFP) murine embryos at embryonic day 11.5 and divided into the following four treatment groups: Control, Bmp4, Bmp4+LDN193189 (a Bmp inhibitor) and LDN193189. In vitro Bmp4 promoted the expression of Hcn4 in Tbx18+ EPCs via lineage tracing of Tbx18:Cre/Rosa26REYFP mice, which was likely due to upregulation of Gata4 expression. Gata4 knockdown experiments were then performed using the following five treatment groups: Control, control small interfering RNA (siRNA), Bmp4, Bmp4+siRNA targeting Gata4 (siGata4) and siGata4 group. Knockdown of Gata4 caused a downregulation of Hcn4 and an upregulation of Nkx2.5, but had no effect on Bmp4 expression. In conclusion, it was indicated that in Tbx18+ EPCs, the expression of Nkx2.5 was regulated by Bmp4 via Gata4. Taken together, these results provide important information on regulatory networks of pacemaker cell differentiation and may serve as a basis for further studies.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Greulich F, Rudat C and Kispert A: Mechanisms of T-box gene function in the developing heart. Cardiovasc Res. 91:212–222. 2011. View Article : Google Scholar : PubMed/NCBI

2 

Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, et al: A myocardial lineage derives from Tbx18 epicardial cells. Nature. 454:104–108. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Wiese C, Grieskamp T, Airik R, Mommersteeg MT, Gardiwal A, de Gier-de Vries C, Schuster-Gossler K, Moorman AF, Kispert A and Christoffels VM: Formation of the sinus node head and differentiation of sinus node myocardium are independently regulated by Tbx18 and Tbx3. Circ Res. 104:388–397. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Christoffels VM, Grieskamp T, Norden J, Mommersteeg MT, Rudat C and Kispert A: Tbx18 and the fate of epicardial progenitors. Nature. 458:E8–E9; discussion E9-E10. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Grieskamp T, Rudat C, Lüdtke TH, Norden J and Kispert A: Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 108:813–823. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Jenkins SJ, Hutson DR and Kubalak SW: Analysis of the proepicardium-epicardium transition during the malformation of the RXRalpha-/- epicardium. Dev Dyn. 233:1091–1101. 2005. View Article : Google Scholar : PubMed/NCBI

7 

Witty AD, Mihic A, Tam RY, Fisher SA, Mikryukov A, Shoichet MS, Li RK, Kattman SJ and Keller G: Generation of the epicardial lineage from human pluripotent stem cells. Nat Biotechnol. 32:1026–1035. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM and Conlon FL: Tcf21 regulates the specification and maturation of proepicardial cells. Development. 140:2409–2021. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Jing X, Gao Y, Xiao S, Qin Q, Wei X, Yan Y, Wu L, Deng S, Du J, Liu Y and She Q: Hypoxia induced the differentiation of Tbx18-positive epicardial cells to CoSMCs. Sci Rep. 6:304682016. View Article : Google Scholar : PubMed/NCBI

10 

van Wijk B, van den Berg G, Abu-Issa R, Barnett P, van der Velden S, Schmidt M, Ruijter JM, Kirby ML, Moorman AF and van den Hoff MJ: Epicardium and myocardium separate from a common precursor pool by crosstalk between bone morphogenetic protein- and fibroblast growth factor-signaling pathways. Circ Res. 105:431–441. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Norden J, Greulich F, Rudat C, Taketo MM and Kispert A: Wnt/β-catenin signaling maintains the mesenchymal precursor pool for murine sinus horn formation. Circ Res. 109:e42–e50. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Winnier G, Blessing M, Labosky PA and Hogan BL: Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev. 9:2105–2116. 1995. View Article : Google Scholar : PubMed/NCBI

13 

Chen JN, van Eeden FJ, Warren KS, Chin A, Nüsslein-Volhard C, Haffter P and Fishman MC: Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development. 124:4373–4382. 1997.PubMed/NCBI

14 

McCulley DJ, Kang JO, Martin JF and Black BL: BMP4 is required in the anterior heart field and its derivatives for endocardial cushion remodeling, outflow tract septation, and semilunar valve development. Dev Dyn. 237:3200–3209. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K, Wang G, Chen J and Ding S: Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat Cell Biol. 13:215–222. 2011. View Article : Google Scholar : PubMed/NCBI

16 

Puskaric S, Schmitteckert S, Mori AD, Glaser A, Schneider KU, Bruneau BG, Blaschke RJ, Steinbeisser H and Rappold G: Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart. Hum Mol Genet. 19:4625–4633. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Qin Q, Wang J, Yan Y, Jing X, Du J, Deng S, Wu L, Liu Y and She Q: Angiotensin II induces the differentiation of mouse epicardial progenitor cells into vascular smooth muscle-like cells. Biochem Biophys Res Commun. 480:696–701. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Frank DU, Carter KL, Thomas KR, Burr RM, Bakker ML, Coetzee WA, Tristani-Firouzi M, Bamshad MJ, Christoffels VM and Moon AM: Lethal arrhythmias in Tbx3-deficient mice reveal extreme dosage sensitivity of cardiac conduction system function and homeostasis. Proc Natl Acad Sci USA. 109:E154–E163. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Hoogaars WM, Tessari A, Moorman AF, de Boer PA, Hagoort J, Soufan AT, Campione M and Christoffels VM: The transcriptional repressor Tbx3 delineates the developing central conduction system of the heart. Cardiovasc Res. 62:489–499. 2004. View Article : Google Scholar : PubMed/NCBI

21 

Bakker ML, Boukens BJ, Mommersteeg MT, Brons JF, Wakker V, Moorman AF and Christoffels VM: Transcription factor Tbx3 is required for the specification of the atrioventricular conduction system. Circ Res. 102:1340–1349. 2008. View Article : Google Scholar : PubMed/NCBI

22 

Boogerd CJ, Wong LY, van den Boogaard M, Bakker ML, Tessadori F, Bakkers J, 't Hoen PA, Moorman AF, Christoffels VM and Barnett P: Sox4 mediates Tbx3 transcriptional regulation of the gap junction protein Cx43. Cell Mol Life Sci. 68:3949–3961. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Hashem SI, Lam ML, Mihardja SS, White SM, Lee RJ and Claycomb WC: Shox2 regulates the pacemaker gene program in embryoid bodies. Stem Cells Dev. 22:2915–2926. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Sun C, Yu D, Ye W, Liu C, Gu S, Sinsheimer NR, Song Z, Li X, Chen C, Song Y, et al: The short stature homeobox 2 (Shox2)-bone morphogenetic protein (BMP) pathway regulates dorsal mesenchymal protrusion development and its temporary function as a pacemaker during cardiogenesis. J Biol Chem. 290:2007–2023. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Nemer G and Nemer M: Transcriptional activation of BMP-4 and regulation of mammalian organogenesis by GATA-4 and −6. Dev Biol. 254:131–148. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Espinoza-Lewis RA, Yu L, He F, Liu H, Tang R, Shi J, Sun X, Martin JF, Wang D, Yang J and Chen Y: Shox2 is essential for the differentiation of cardiac pacemaker cells by repressing Nkx2-5. Dev Biol. 327:376–385. 2009. View Article : Google Scholar : PubMed/NCBI

27 

Jay PY, Harris BS, Maguire CT, Buerger A, Wakimoto H, Tanaka M, Kupershmidt S, Roden DM, Schultheiss TM, O'Brien TX, et al: Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. J Clin Invest. 113:1130–1137. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Stieber J, Herrmann S, Feil S, Löster J, Feil R, Biel M, Hofmann F and Ludwig A: The hyperpolarization-activated channel HCN4 is required for the generation of pacemaker action potentials in the embryonic heart. Proc Natl Acad Sci USA. 100:15235–15240. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML, Hong DW, McManus PM, Katagiri T, Sachidanandan C, et al: BMP type I receptor inhibition reduces heterotopic ossification. Nat Med. 14:1363–1369. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Katakawa Y, Funaba M and Murakami M: Smad8/9 is regulated through the BMP pathway. J Cell Biochem. 117:1788–1796. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Miyazono K, Kusanagi K and Inoue H: Divergence and convergence of TGF-beta/BMP signaling. J Cell Physiol. 187:265–276. 2001. View Article : Google Scholar : PubMed/NCBI

32 

Verheijck EE, van Kempen MJ, Veereschild M, Lurvink J, Jongsma HJ and Bouman LN: Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res. 52:40–50. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Christoffels VM, Smits GJ, Kispert A and Moorman AF: Development of the pacemaker tissues of the heart. Circ Res. 106:240–254. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Yamamoto M, Dobrzynski H, Tellez J, Niwa R, Billeter R, Honjo H, Kodama I and Boyett MR: Extended atrial conduction system characterised by the expression of the HCN4 channel and connexin45. Cardiovasc Res. 72:271–281. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, Bakker ML, Clout DE, Wakker V, Barnett P, et al: Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. Genes Dev. 21:1098–1112. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Bakker ML, Boink GJ, Boukens BJ, Verkerk AO, van den Boogaard M, den Haan AD, Hoogaars WM, Buermans HP, de Bakker JM, Seppen J, et al: T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells. Cardiovasc Res. 94:439–449. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Ye W, Wang J, Song Y, Yu D, Sun C, Liu C, Chen F, Zhang Y, Wang F, Harvey RP, et al: A common Shox2-Nkx2-5 antagonistic mechanism primes the pacemaker cell fate in the pulmonary vein myocardium and sinoatrial node. Development. 142:2521–2532. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Blaschke RJ, Hahurij ND, Kuijper S, Just S, Wisse LJ, Deissler K, Maxelon T, Anastassiadis K, Spitzer J, Hardt SE, et al: Targeted mutation reveals essential functions of the homeodomain transcription factor Shox2 in sinoatrial and pacemaking development. Circulation. 115:1830–1838. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Christoffels VM, Mommersteeg MT, Trowe MO, Prall OW, de Gier-de Vries C, Soufan AT, Bussen M, Schuster-Gossler K, Harvey RP, Moorman AF and Kispert A: Formation of the venous pole of the heart from an Nkx2-5-negative precursor population requires Tbx18. Circ Res. 98:1555–1563. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Espinoza-Lewis RA, Liu H, Sun C, Chen C, Jiao K and Chen Y: Ectopic expression of Nkx2.5 suppresses the formation of the sinoatrial node in mice. Dev Biol. 356:359–369. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu L, Du J, Jing X, Yan Y, Deng S, Hao Z and She Q: Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells. Exp Ther Med 17: 2648-2656, 2019.
APA
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., & She, Q. (2019). Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells. Experimental and Therapeutic Medicine, 17, 2648-2656. https://doi.org/10.3892/etm.2019.7243
MLA
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., She, Q."Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells". Experimental and Therapeutic Medicine 17.4 (2019): 2648-2656.
Chicago
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., She, Q."Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells". Experimental and Therapeutic Medicine 17, no. 4 (2019): 2648-2656. https://doi.org/10.3892/etm.2019.7243
Copy and paste a formatted citation
x
Spandidos Publications style
Wu L, Du J, Jing X, Yan Y, Deng S, Hao Z and She Q: Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells. Exp Ther Med 17: 2648-2656, 2019.
APA
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., & She, Q. (2019). Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells. Experimental and Therapeutic Medicine, 17, 2648-2656. https://doi.org/10.3892/etm.2019.7243
MLA
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., She, Q."Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells". Experimental and Therapeutic Medicine 17.4 (2019): 2648-2656.
Chicago
Wu, L., Du, J., Jing, X., Yan, Y., Deng, S., Hao, Z., She, Q."Bone morphogenetic protein 4 promotes the differentiation of Tbx18‑positive epicardial progenitor cells to pacemaker‑like cells". Experimental and Therapeutic Medicine 17, no. 4 (2019): 2648-2656. https://doi.org/10.3892/etm.2019.7243
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team