|
1
|
Chouchani ET, Pell VR, Gaude E,
Aksentijević D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord
ENJ, Smith AC, et al: Ischaemic accumulation of succinate controls
reperfusion injury through mitochondrial ROS. Nature. 515:431–435.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Wu H, Tang C, Tai LW, Yao W, Guo P, Hong
J, Yang X, Li X, Jin Z, Ke J and Wang Y: Flurbiprofen axetil
attenuates cerebral ischemia reperfusion injury by reducing
inflammation in a rat model of transient global cerebral ischemia
reperfusion. Biosci Rep. 38:BSR201715622018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhou H, Wang J, Jiang J, Stavrovskaya IG,
Li M, Li W, Wu Q, Zhang X, Luo C, Zhou S, et al: N-acetyl-serotonin
offers neuroprotection through inhibiting mitochondrial death
pathways and autophagic activation in experimental models of
ischemic injury. J Neurosci. 34:2967–2978. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Coutinho JM, Liebeskind DS, Slater LA,
Nogueira RG, Clark W, Dávalos A, Bonafé A, Jahan R, Fischer U,
Gralla J, et al: Combined intravenous thrombolysis and thrombectomy
vs thrombectomy alone for acute ischemic stroke: A pooled analysis
of the SWIFT and STAR studies. JAMA Neurol. 74:268–274. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
El-Ghanem M, Al-Mufti F, Thulasi V, Singh
IP and Gandhi C: Expanding the treatment window for ischemic stroke
through the application of novel system-based technology. Neurosurg
Focus. 42:E72017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Oh HK, Choi YS, Yang YI, Kim JH, Leung PC
and Choi JH: Leptin receptor is induced in endometriosis and leptin
stimulates the growth of endometriotic epithelial cells through the
JAK2/STAT3 and ERK pathways. Mol Hum Reprod. 19:160–168. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Gairolla J, Kler R, Modi M and Khurana D:
Leptin and adiponectin: pathophysiological role and possible
therapeutic target of inflammation in ischemic stroke. Rev
Neurosci. 28:295–306. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nowzari Z, Masoumi M, Nazari-Robati M,
Akbari H, Shahrokhi N and Asadikaram G: Association of
polymorphisms of leptin, leptin receptor and apelin receptor genes
with susceptibility to coronary artery disease and hypertension.
Life Sci. 207:166–171. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Deng ZH, Liao J, Zhang JY, Liang C, Song
CH, Han M, Wang LH, Xue H, Zhang K, Zabeau L, et al: Inhibition of
the connexin 43 elevation may be involved in the neuroprotective
activity of leptin against brain ischemic injury. Cell Mol
Neurobiol. 34:871–879. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Porzionato A, Rucinski M, Macchi V, Stecco
C, Castagliuolo I, Malendowicz LK and De Caro R: Expression of
leptin and leptin receptor isoforms in the rat and human carotid
body. Brain Res. 1385:56–67. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhou Y and Rui L: Leptin signaling and
leptin resistance. Front Med. 7:207–222. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang JY, Yan GT, Liao J, Deng ZH, Xue H,
Wang LH and Zhang K: Leptin attenuates cerebral
ischemia/reperfusion injury partially by CGRP expression. Eur J
Pharmacol. 671:61–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang JY Jr, Si YL, Liao J, Yan GT, Deng
ZH, Xue H, Wang LH and Zhang K: Leptin administration alleviates
ischemic brain injury in mice by reducing oxidative stress and
subsequent neuronal apoptosis. J Trauma Acute Care Surg.
72:982–991. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tsuda K: Leptin and nitric oxide
production against ischemic neuronal injury. Stroke. 39:e3–e4.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Musman J, Pons S, Barau C, Caccia C, Leoni
V, Berdeaux A, Ghaleh B and Morin D: Regular treadmill exercise
inhibits mitochondrial accumulation of cholesterol and oxysterols
during myocardial ischemia-reperfusion in wild-type and ob/ob mice.
Free Radic Biol Med. 101:317–324. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Grabacka MM, Wilk A, Antonczyk A, Banks P,
Walczyk-Tytko E, Dean M, Pierzchalska M and Reiss K: Fenofibrate
induces ketone body production in melanoma and glioblastoma cells.
Front Endocrinol (Lausanne). 7:52016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ye R, Yang Q, Kong X, Li N, Zhang Y, Han
J, Xiong L, Liu X and Zhao G: Sevoflurane preconditioning improves
mitochondrial function and long-term neurologic sequelae after
transient cerebral ischemia: Role of mitochondrial permeability
transition. Crit Care Med. 40:2685–2693. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schwartz MW and Baskin DG: Leptin and the
brain: then and now. J Clin Investig. 123:2344–2345. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Maffei M, Fei H, Lee GH, Dani C, Leroy P,
Zhang Y, Proenca R, Negrel R, Ailhaud G and Friedman JM: Increased
expression in adipocytes of ob RNA in mice with lesions of the
hypothalamus and with mutations at the db locus. Proc Natl Acad Sci
USA. 92:6957–6960. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang Y, Proenca R, Maffei M, Barone M,
Leopold L and Friedman JM: Positional cloning of the mouse obese
gene and its human homologue. Nature. 372:425–432. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Halaas JL, Gajiwala KS, Maffei M, Cohen
SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK and Friedman JM:
Weight reducing effects of the plasma protein Encoded by the obese
gene. Science. 269:543–546. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Niklowitz P, Rothermel J, Lass N, Barth A
and Reinehr T: Bioactive leptin is stronger related to parameters
of fat mass and distribution than conventionally measured leptin:
Findings from a longitudinal study in obese children participating
in a lifestyle intervention. Clin Chim Acta. 480:225–229. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Munzberg H and Morrison CD: Structure,
production and signaling of leptin. Metabolism. 64:13–23. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Perez-Perez A, Vilarino-Garcia T,
Fernandez-Riejos P, Martin-Gonzalez J, Segura-Egea JJ and
Sanchez-Margalet V: Role of leptin as a link between metabolism and
the immune system. Cytokine Growth Factor Rev. 35:71–84. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kastin AJ and Pan WH: Dynamic regulation
of leptin entry into brain by the blood-brain barrier. Regul Pept.
92:37–43. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Witte AV, Kobe T, Graunke A, Schuchardt
JP, Hahn A, Tesky VA, Pantel J and Flöel A: Impact of leptin on
memory function and hippocampal structure in mild cognitive
impairment. Hum Brain Mapp. 37:4539–4549. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chowen JA, Argente-Arizon P,
Freire-Regatillo A, Frago LM, Horvath TL and Argente J: The role of
astrocytes in the hypothalamic response and adaptation to metabolic
signals. Prog Neurobiol. 144:68–87. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Escobar S, Rocha A, Felip A, Carrillo M,
Zanuy S, Kah O and Servili A: Leptin receptor gene in the European
sea bass (Dicentrarchus labrax): Cloning, phylogeny, tissue
distribution and neuroanatomical organization. Gen Comp Endocrinol.
229:100–111. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Engel O, Kolodziej S, Dirnagl U and Prinz
V: Modeling stroke in mice - middle cerebral artery occlusion with
the filament model. J Vis Exp. 6:24232011.
|
|
30
|
Thomas SA, Preston JE, Wilson MR, Farrell
CL and Segal MB: Leptin transport at the blood–cerebrospinal fluid
barrier using the perfused sheep choroid plexus model. Brain Res.
895:283–290. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kwon O, Kim KW and Kim MS: Leptin
signalling pathways in hypothalamic neurons. Cell Mol Life Sci.
73:1457–1477. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Deng ZH Jr, Yan GT, Wang LH, Zhang JY, Xue
H and Zhang K: Leptin relieves intestinal ischemia/reperfusion
injury by promoting ERK1/2 phosphorylation and the NO signaling
pathway. J Trauma Acute Care Surg. 72:143–149. 2012.PubMed/NCBI
|
|
33
|
Zhang J, Deng Z, Liao J, Song C, Liang C,
Xue H, Wang L, Zhang K and Yan G: Leptin attenuates cerebral
ischemia injury through the promotion of energy metabolism via the
PI3K/Akt pathway. J Cereb Blood Flow Metab. 33:567–574. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang F, Wang S, Signore AP and Chen J:
Neuroprotective effects of leptin against ischemic injury induced
by oxygen-glucose deprivation and transient cerebral ischemia.
Stroke. 38:2329–2336. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Amantea D, Tassorelli C, Russo R, Petrelli
F, Morrone LA, Bagetta G and Corasaniti MT: Neuroprotection by
leptin in a rat model of permanent cerebral ischemia: Effects on
STAT3 phosphorylation in discrete cells of the brain. Cell Death
Dis. 2:e2382011. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu Z, Gan L, Zhou Z, Jin W and Sun C:
SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3
signaling pathway in 3T3-L1 adipocyte. Immunobiology. 220:947–953.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wang W, Lu R, Feng DY and Zhang H:
Sevoflurane inhibits glutamate-aspartate transporter and glial
fibrillary acidic protein expression in hippocampal astrocytes of
neonatal rats through the janus kinase/signal transducer and
activator of transcription (JAK/STAT) pathway. Anesth Analg.
123:93–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lin G, Zhang H, Sun F, Lu Z,
Reed-Maldonado A, Lee YC, Wang G, Banie L and Lue TF: Brain-derived
neurotrophic factor promotes nerve regeneration by activating the
JAK/STAT pathway in Schwann cells. Transl Androl Urol. 5:167–175.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Lv J, Wang X, Liu SY, Liang PF, Feng M,
Zhang LL and Xu AP: Protective effect of Fenofibrate in renal
ischemia reperfusion injury: Involved in suppressing kinase 2
(JAK2)/transcription 3 (STAT3)/p53 signaling activation. Pathol
Biol (Paris). 63:236–242. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Garama DJ, White CL, Balic JJ and Gough
DJ: Mitochondrial STAT3: Powering up a potent factor. Cytokine.
87:20–25. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Gurzov EN, Stanley WJ, Pappas EG, Thomas
HE and Gough DJ: The JAK/STAT pathway in obesity and diabetes. FEBS
J. 283:3002–3015. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Meng HL, Li XX, Chen YT, Yu LJ, Zhang H,
Lao JM, Zhang X and Xu Y: Neuronal soluble fas ligand drives
M1-microglia polarization after cerebral ischemia. CNS Neurosci
Ther. 22:771–781. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Friedman J: The long road to leptin. J
Clin Invest. 126:4727–4734. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Moon HS, Dalamaga M, Kim SY, Polyzos SA,
Hamnvik OP, Magkos F, Paruthi J and Mantzoros CS: Leptin's role in
lipodystrophic and nonlipodystrophic insulin-resistant and diabetic
individuals. Endocr Rev. 34:377–412. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pan WW and Myers MG Jr: Leptin and the
maintenance of elevated body weight. Nat Rev Neurosci. 19:95–105.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Davis C, Mudd J and Hawkins M:
Neuroprotective effects of leptin in the context of obesity and
metabolic disorders. Neurobiol Dis. 72:61–71. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nuñez-Figueredo Y, Pardo-Andreu GL,
Ramírez-Sánchez J, Delgado-Hernández R, Ochoa-Rodríguez E,
Verdecia-Reyes Y, Naal Z, Muller AP, Portela LV and Souza DO:
Antioxidant effects of JM-20 on rat brain mitochondria and
synaptosomes: Mitoprotection against Ca2+-induced mitochondrial
impairment. Brain Res Bull. 109:68–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hana V, Silha JV, Justova V, Lacinova Z,
Stepan JJ and Murphy LJ: The effects of GH replacement in adult
GH-deficient patients: Changes in body composition without
concomitant changes in the adipokines and insulin resistance. Clin
Endocrinol (Oxf). 60:442–450. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cundrle I Jr, Somers VK, Singh P, Johnson
BD, Scott CG and Olson LJ: The relationship between leptin and
ventilatory control in heart failure. J Card Fail. 19:756–761.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang H, Zhang Z, Li ZK, Lin J and Fang DZ:
Association of leptin receptor gene polymorphisms with genetic
susceptibility to ischemic stroke. J Stroke Cerebrovasc Dis.
24:2128–2133. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Auer MK, Ebert T, Pietzner M, Defreyne J,
Fuss J, Stalla GK and T'Sjoen G: Effects of sex hormone treatment
on the metabolic syndrome in transgender individuals: Focus on
metabolic cytokines. J Clin Endocrinol Metab. 103:790–802. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Saber H, Himali JJ, Shoamanesh A, Beiser
A, Pikula A, Harris TB, Roubenoff R, Romero JR, Kase CS, Vasan RS
and Seshadri S: Serum leptin levels and the risk of stroke: The
framingham study. Stroke. 46:2881–2885. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Diaz M, Chacon MR, Lopez-Bermejo A,
Maymó-Masip E, Salvador C, Vendrell J, de Zegher F and Ibáñez L:
Ethinyl estradiol-cyproterone acetate versus low-dose
pioglitazone-flutamide-metformin for adolescent girls with androgen
excess: Divergent effects on CD163, TWEAK receptor, ANGPTL4, and
LEPTIN expression in subcutaneous adipose tissue. J Clin Endocrinol
Metab. 97:3630–3638. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Scott I, Webster BR, Chan CK, Okonkwo JU,
Han K and Sack MN: GCN5-like protein 1 (GCN5L1) controls
mitochondrial content through coordinated regulation of
mitochondrial biogenesis and mitophagy. J Biol Chem. 289:2864–2872.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Martinez-Abundis E, Rajapurohitam V,
Gertler A and Karmazyn M: Identification of functional leptin
receptors expressed in ventricular mitochondria. Mol Cell Biochem.
408:155–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Karadottir R, Cavelier P, Bergersen LH and
Attwell D: NMDA receptors are expressed in oligodendrocytes and
activated in ischaemia. Nature. 438:1162–1166. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hamilton NB, Kolodziejczyk K,
Kougioumtzidou E and Attwell D: Proton-gated Ca(2+)-permeable TRP
channels damage myelin in conditions mimicking ischaemia. Nature.
529:523–527. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Greco SJ, Hamzelou A, Johnston JM, Smith
MA, Ashford JW and Tezapsidis N: Leptin boosts cellular metabolism
by activating AMPK and the sirtuins to reduce tau phosphorylation
and β-amyloid in neurons. Biochem Biophys Res Commun. 414:170–174.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Busch HJ, Schirmer SH, Jost M, van Stijn
S, Peters SL, Piek JJ, Bode C, Buschmann IR and Mies G: Leptin
augments cerebral hemodynamic reserve after three-vessel occlusion:
Distinct effects on cerebrovascular tone and proliferation in a
nonlethal model of hypoperfused rat brain. J Cereb Blood Flow
Metab. 31:1085–1092. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gleitz HF, Kramann R and Schneider RK:
Understanding deregulated cellular and molecular dynamics in the
haematopoietic stem cell niche to develop novel therapeutics for
bone marrow fibrosis. J Pathol. 245:138–146. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ray A and Cleary MP: The potential role of
leptin in tumor invasion and metastasis. Cytokine Growth Factor
Rev. 38:80–97. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ni H, Sun Q, Tian T, Feng X and Sun BL:
Long-term expression of metabolism-associated genes in the rat
hippocampus following recurrent neonatal seizures and its
regulation by melatonin. Mol Med Rep. 12:2727–2734. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang XG, Zhao L, Zhang Y, Li YY, Wang H,
Duan GL, Xiao L, Li XR and Chen HP: Extracellular
Cl(−)-free-induced cardioprotection against hypoxia/reoxygenation
is associated with attenuation of mitochondrial permeability
transition pore. Biomed Pharmacother. 86:637–644. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Warne J, Pryce G, Hill JM, Shi X, Lennerås
F, Puentes F, Kip M, Hilditch L, Walker P, Simone MI, et al:
Selective inhibition of the mitochondrial permeability transition
pore protects against neurodegeneration in experimental multiple
sclerosis. J Biol Chem. 291:4356–4373. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ham PB 3rd and Raju R: Mitochondrial
function in hypoxic ischemic injury and influence of aging. Prog
Neurobiol. 157:92–116. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Holmstrom MH, Tom RZ, Bjornholm M,
Garcia-Roves PM and Zierath JR: Effect of leptin treatment on
mitochondrial function in obese leptin-deficient ob/ob mice.
Metabolism. 62:1258–1267. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hayakawa K, Esposito E, Wang X, Terasaki
Y, Liu Y, Xing C, Ji X and Lo EH: Transfer of mitochondria from
astrocytes to neurons after stroke. Nature. 535:551–555. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Antico Arciuch VG, Elguero ME, Poderoso JJ
and Carreras MC: Mitochondrial regulation of cell cycle and
proliferation. Antioxid Redox Signal. 16:1150–1180. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Valerio A, Bertolotti P, Delbarba A,
Perego C, Dossena M, Ragni M, Spano P, Carruba MO, De Simoni MG and
Nisoli E: Glycogen synthase kinase-3 inhibition reduces ischemic
cerebral damage, restores impaired mitochondrial biogenesis and
prevents ROS production. J Neurochem. 116:1148–1159. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Madathil RJ, Hira RS, Stoeckl M, Sterz F,
Elrod JB and Nichol G: Ischemia reperfusion injury as a modifiable
therapeutic target for cardioprotection or neuroprotection in
patients undergoing cardiopulmonary resuscitation. Resuscitation.
105:85–91. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vermeij JD, Westendorp WF, Dippel DW, van
de Beek D and Nederkoorn PJ: Antibiotic therapy for preventing
infections in people with acute stroke. Cochrane Database Syst Rev.
1:CD0085302018.PubMed/NCBI
|
|
72
|
Chung HK, Kim YK, Park JH, Ryu MJ, Chang
JY, Hwang JH, Lee CH, Kim SH, Kim HJ, Kweon GR, et al: The indole
derivative NecroX-7 improves nonalcoholic steatohepatitis in ob/ob
mice through suppression of mitochondrial ROS/RNS and inflammation.
Liver Int. 35:1341–1353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Rustenhoven J, Aalderink M, Scotter EL,
Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Curtis MA,
Park TI and Dragunow M: TGF-beta1 regulates human brain pericyte
inflammatory processes involved in neurovasculature function. J
Neuroinflammation. 13:372016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Agrawal S, Gollapudi S, Su H and Gupta S:
Leptin activates human B cells to secrete TNF-α, IL-6, and IL-10
via JAK2/STAT3 and p38MAPK/ERK1/2 signaling pathway. J Clin
Immunol. 31:472–478. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Xu H, Qin W, Hu X, Mu S, Zhu J, Lu W and
Luo Y: Lentivirus-mediated overexpression of OTULIN ameliorates
microglia activation and neuroinflammation by depressing the
activation of the NF-κB signaling pathway in cerebral
ischemia/reperfusion rats. J Neuroinflammation. 15:832018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rummel C: Inflammatory transcription
factors as activation markers and functional readouts in
immune-to-brain communication. Brain Behav Immun. 54:1–14. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Lopez-Rodriguez AB, Mela V, Acaz-Fonseca
E, Garcia-Segura LM and Viveros MP: CB2 cannabinoid receptor is
involved in the anti-inflammatory effects of leptin in a model of
traumatic brain injury. Exp Neurol. 279:274–282. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Flatow EA, Komegae EN, Fonseca MT, Brito
CF, Musteata FM, Antunes-Rodrigues J and Steiner AA: Elucidating
the role of leptin in systemic inflammation: A study targeting
physiological leptin levels in rats and their macrophages. Am J
Physiol Regul Integr Comp Physiol. 313:R572–R582. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Astrup J, Symon L and Siesjo BK:
Thresholds in cerebral ischemia-the ischemic penumbra. Stroke.
12:723–725. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Stetler RA, Leak RK, Yin W, Zhang L, Wang
S, Gao Y and Chen J: Mitochondrial biogenesis contributes to
ischemic neuroprotection afforded by LPS pre-conditioning. J
Neurochem. 123 (Suppl 2):125–137. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tan DX, Manchester LC, Qin L and Reiter
RJ: Melatonin: A mitochondrial targeting molecule involving
mitochondrial protection and dynamics. Int J Mol Sci. 17:E21242016.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Geng HX, Li RP, Li YG, Wang XQ, Zhang L,
Deng JB, Wang L and Deng JX: 14,15-EET suppresses neuronal
apoptosis in ischemia-reperfusion through the mitochondrial
pathway. Neurochem Res. 42:2841–2849. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Owens B: Stroke. Nature.
26:510(7506)–S12014
|
|
84
|
Grummisch JA, Jadavji NM and Smith PD: tPA
promotes cortical neuron survival via mTOR-dependent mechanisms.
Mol Cell Neurosci. 74:25–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Arita S, Kinoshita Y, Ushida K, Enomoto A
and Inagaki-Ohara K: High-fat diet feeding promotes stemness and
precancerous changes in murine gastric mucosa mediated by leptin
receptor signaling pathway. Arch Biochem Biophys. 610:16–24. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Carboni L, Marchetti L, Lauria M, Gass P,
Vollmayr B, Redfern A, Jones L, Razzoli M, Malki K, Begni V, et al:
Cross-species evidence from human and rat brain transcriptome for
growth factor signaling pathway dysregulation in major depression.
Neuropsychopharmacology. 43:234–2145. 2018. View Article : Google Scholar
|
|
87
|
Yang H, Guo W, Li J, Cao S, Zhang J, Pan
J, Wang Z, Wen P, Shi X and Zhang S: Leptin concentration and risk
of coronary heart disease and stroke: A systematic review and
meta-analysis. PLoS One. 12:e01663602017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Brüstle O, Choudhary K, Karram K, Hüttner
A, Murray K, Dubois-Dalcq M and McKay RD: Chimeric brains generated
by intraventricular transplantation of fetal human brain cells into
embryonic rats. Nat Biotechnol. 16:1040–1044. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Nakatomi H, Kuriu T, Okabe S, Yamamoto S,
Hatano O, Kawahara N, Tamura A, Kirino T and Nakafuku M:
Regeneration of hippocampal pyramidal neurons after ischemic brain
injury by recruitment of endogenous neural progenitors. Cell.
110:429–441. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Carlen M, Meletis K, Goritz C, Darsalia V,
Evergren E, Tanigaki K, Amendola M, Barnabé-Heider F, Yeung MS,
Naldini L, et al: Forebrain ependymal cells are Notch-dependent and
generate neuroblasts and astrocytes after stroke. Nat Neurosc.
12:259–267. 2009. View Article : Google Scholar
|