Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Role of macrophages in experimental liver injury and repair in mice (Review)

  • Authors:
    • Xiaotian Dong
    • Jingqi Liu
    • Yanping Xu
    • Hongcui Cao
  • View Affiliations / Copyright

    Affiliations: State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
  • Pages: 3835-3847
    |
    Published online on: March 27, 2019
       https://doi.org/10.3892/etm.2019.7450
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Liver macrophages make up the largest proportion of tissue macrophages in the host and consist of two dissimilar groups: Kupffer cells (KCs) and monocyte‑derived macrophages (MoMø). As the liver is injured, KCs sense the injury and initiate inflammatory cascades mediated by the release of inflammatory cytokines and chemokines. Subsequently, inflammatory monocytes accumulate in the liver via chemokine‑chemokine receptor interactions, resulting in massive inflammatory MoMø infiltration. When live r injury ceases, restorative macrophages, derived from recruited inflammatory monocytes (lymphocyte antigen 6 complex, locus Chi monocytes), promote the resolution of hepatic damage and fibrosis. Consequently, a large number of studies have assessed the mechanisms by which liver macrophages exert their opposing functions at different time‑points during liver injury. The present review primarily focuses on the diverse functions of macrophages in experimental liver injury, fibrosis and repair in mice and illustrates how macrophages may be targeted to treat liver disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Wynn TA and Vannella KM: Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 44:450–462. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Vannella KM and Wynn TA: Mechanisms of organ injury and repair by macrophages. Annu Rev Physiol. 79:593–617. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Epelman S, Lavine KJ and Randolph GJ: Origin and functions of tissue macrophages. Immunity. 41:21–35. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Ginhoux F and Guilliams M: Tissue-resident macrophage ontogeny and homeostasis. Immunity. 44:439–449. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Gregory SH and Wing EJ: Neutrophil-Kupffer cell interaction: A critical component of host defenses to systemic bacterial infections. J Leukoc Biol. 72:239–248. 2002.PubMed/NCBI

6 

Ganz T: Macrophages and systemic iron homeostasis. J Innate Immun. 4:446–453. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, et al: A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 336:86–90. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Davies LC, Jenkins SJ, Allen JE and Taylor PR: Tissue-resident macrophages. Nat Immunol. 14:986–995. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA, Topham DJ, Pierce RH and Crispe IN: Kupffer cell heterogeneity: Functional properties of bone marrow derived and sessile hepatic macrophages. Blood. 110:4077–4085. 2007. View Article : Google Scholar : PubMed/NCBI

10 

Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, et al: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity. 41:14–20. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Stein M, Keshav S, Harris N and Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. J Exp Med. 176:287–292. 1992. View Article : Google Scholar : PubMed/NCBI

12 

Laskin DL, Sunil VR, Gardner CR and Laskin JD: Macrophages and tissue injury: Agents of defense or destruction? Annu Rev Pharmacol Toxicol. 51:267–288. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Martinez FO and Gordon S: The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 6:132014. View Article : Google Scholar : PubMed/NCBI

14 

Weber LW, Boll M and Stampfl A: Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 33:105–136. 2003. View Article : Google Scholar : PubMed/NCBI

15 

Mehendale HM: Tissue repair: An important determinant of final outcome of toxicant-induced injury. Toxicol Pathol. 33:41–51. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Tacke F: Functional role of intrahepatic monocyte subsets for the progression of liver inflammation and liver fibrosis in vivo. Fibrogenesis Tissue Repair. 5 (Suppl 1):S272012. View Article : Google Scholar : PubMed/NCBI

17 

Karlmark KR, Weiskirchen R, Zimmermann HW, Gassler N, Ginhoux F, Weber C, Merad M, Luedde T, Trautwein C and Tacke F: Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology. 50:261–274. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, Gassler N, Lira SA, Luedde T, Trautwein C, et al: Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 55:898–909. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M and Ley K: Development of monocytes, macrophages, and dendritic cells. Science. 327:656–661. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Carlin LM, Stamatiades EG, Auffray C, Hanna RN, Glover L, Vizcay-Barrena G, Hedrick CC, Cook HT, Diebold S and Geissmann F: Nr4a1-dependent Ly6C(low) monocytes monitor endothelial cells and orchestrate their disposal. Cell. 153:362–375. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Mildner A, Schonheit J, Giladi A, David E, Lara-Astiaso D, Lorenzo-Vivas E, Paul F, Chappell-Maor L, Priller J, Leutz A, et al: Genomic characterization of murine monocytes reveals C/EBPβ transcription factor dependence of Ly6C-Cells. Immunity. 46:849–862 e847. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Duffield JS, Forbes SJ, Constandinou CM, Clay S, Partolina M, Vuthoori S, Wu S, Lang R and Iredale JP: Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest. 115:56–65. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Ramachandran P, Pellicoro A, Vernon MA, Boulter L, Aucott RL, Ali A, Hartland SN, Snowdon VK, Cappon A, Gordon-Walker TT, et al: Differential Ly-6C expression identifies the recruited macrophage phenotype, which orchestrates the regression of murine liver fibrosis. Proc Natl Acad Sci USA. 109:E3186–3195. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Ma PF, Gao CC, Yi J, Zhao JL, Liang SQ, Zhao Y, Ye YC, Bai J, Zheng QJ, Dou KF, et al: Cytotherapy with M1-polarized macrophages ameliorates liver fibrosis by modulating immune microenvironment in mice. J Hepatol. 67:770–779. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Ramachandran P, Iredale JP and Fallowfield JA: Resolution of liver fibrosis: Basic mechanisms and clinical relevance. Semin Liver Dis. 35:119–131. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Tacke F and Zimmermann HW: Macrophage heterogeneity in liver injury and fibrosis. J Hepatol. 60:1090–1096. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Wree A and Marra F: The inflammasome in liver disease. J Hepatol. 65:1055–1056. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Weber LWD, Boll M and Stampfl A: Hepatotoxicity and mechanism of action of haloalkanes: Carbon tetrachloride as a toxicological model. Crit Rev Toxicol. 33:105–136. 2003. View Article : Google Scholar : PubMed/NCBI

29 

Marra F and Tacke F: Roles for chemokines in liver disease. Gastroenterology. 147:577–594.e571. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Nakamoto N, Ebinuma H, Kanai T, Chu PS, Ono Y, Mikami Y, Ojiro K, Lipp M, Love PE, Saito H, et al: CCR9+ macrophages are required for acute liver inflammation in mouse models of hepatitis. Gastroenterology. 142:366–376. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Chu PS, Nakamoto N, Ebinuma H, Usui S, Saeki K, Matsumoto A, Mikami Y, Sugiyam K, Tomita K, Kanai T, et al: C-C motif chemokine receptor 9 positive macrophages activate hepatic stellate cells and promote liver fibrosis in mice. Hepatology. 58:337–350. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Hamidzadeh K, Christensen SM, Dalby E, Chandrasekaran P and Mosser DM: Macrophages and the Recovery from Acute and Chronic Inflammation. Annu Rev Physiol. 79:567–592. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Zimmers TA, McKillop IH, Pierce RH, Yoo JY and Koniaris LG: Massive liver growth in mice induced by systemic interleukin 6 administration. Hepatology. 38:326–334. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA and Tabas I: Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: Model of NF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. J Biol Chem. 280:21763–21772. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Pradere JP, Kluwe J, De Minicis S, Jiao JJ, Gwak GY, Dapito DH, Jang MK, Guenther ND, Mederacke I, Friedman R, et al: Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice. Hepatology. 58:1461–1473. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Lotersztajn S, Julien B, Teixeira-Clerc F, Grenard P and Mallat A: Hepatic fibrosis: Molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol. 45:605–628. 2005. View Article : Google Scholar : PubMed/NCBI

37 

Borkham-Kamphorst E, Kovalenko E, van Roeyen CR, Gassler N, Bomble M, Ostendorf T, Floege J, Gressner AM and Weiskirchen R: Platelet-derived growth factor isoform expression in carbon tetrachloride-induced chronic liver injury. Lab Invest. 88:1090–1100. 2008. View Article : Google Scholar : PubMed/NCBI

38 

Hao ZM, Fan XB, Li S, Lv YF, Su HQ, Jiang HP and Li HH: Vaccination with Platelet-Derived Growth Factor B Kinoids Inhibits CCl4-Induced Hepatic Fibrosis in Mice. J Pharmacol Exp Ther. 342:835–842. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Perugorria MJ, Murphy LB, Fullard N, Chakraborty JB, Vyrla D, Wilson CL, Oakley F, Mann J and Mann DA: Tumor progression locus 2/Cot is required for activation of extracellular regulated kinase in liver injury and toll-like receptor-induced TIMP-1 gene transcription in hepatic stellate cells in mice. Hepatology. 57:1238–1249. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Louis H, Van Laethem JL, Wu W, Quertinmont E, Degraef C, Van den Berg K, Demols A, Goldman M, Le Moine O, Geerts A and Devière J: Interleukin-10 controls neutrophilic infiltration, hepatocyte proliferation, and liver fibrosis induced by carbon tetrachloride in mice. Hepatology. 28:1607–1615. 1998. View Article : Google Scholar : PubMed/NCBI

41 

Thompson K, Maltby J, Fallowfield J, McAulay M, Millward-Sadler H and Sheron N: Interleukin-10 expression and function in experimental murine liver inflammation and fibrosis. Hepatology. 28:1597–1606. 1998. View Article : Google Scholar : PubMed/NCBI

42 

Fallowfield JA, Mizuno M, Kendall TJ, Constandinou CM, Benyon RC, Duffield JS and Iredale JP: Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J Immunol. 178:5288–5295. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Wasmuth HE, Lammert F, Zaldivar MM, Weiskirchen R, Hellerbrand C, Scholten D, Berres ML, Zimmermann H, Streetz KL, Tacke F, et al: Antifibrotic effects of CXCL9 and its receptor CXCR3 in livers of mice and humans. Gastroenterology. 137:309–319, 319 e301-303. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Karlmark KR, Zimmermann HW, Roderburg C, Gassler N, Wasmuth HE, Luedde T, Trautwein C and Tacke F: The fractalkine receptor CX(3)CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology. 52:1769–1782. 2010. View Article : Google Scholar : PubMed/NCBI

45 

Scott-Conner CE and Grogan JB: The pathophysiology of biliary obstruction and its effect on phagocytic and immune function. J Surg Res. 57:316–336. 1994. View Article : Google Scholar : PubMed/NCBI

46 

Lazar G, Paszt A, Kaszaki J, Duda E, Szakacs J, Tiszlavicz L, Boros M, Balogh A and Lazar G: Kupffer cell phagocytosis blockade decreases morbidity in endotoxemic rats with obstructive jaundice. Inflamm Res. 51:511–518. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH and Gores GJ: Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest. 103:137–145. 1999. View Article : Google Scholar : PubMed/NCBI

48 

Canbay A, Higuchi H, Bronk SF, Taniai M, Sebo TJ and Gores GJ: Fas enhances fibrogenesis in the bile duct ligated mouse: A link between apoptosis and fibrosis. Gastroenterology. 123:1323–1330. 2002. View Article : Google Scholar : PubMed/NCBI

49 

Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF and Gores GJ: Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology. 38:1188–1198. 2003. View Article : Google Scholar : PubMed/NCBI

50 

Gehring S, Dickson EM, San Martin ME, van Rooijen N, Papa EF, Harty MW, Tracy TF Jr..Gregory SH: Kupffer cells abrogate cholestatic liver injury in mice. Gastroenterology. 130:810–822. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Osawa Y, Seki E, Adachi M, Suetsugu A, Ito H, Moriwaki H, Seishima M and Nagaki M: Role of acid sphingomyelinase of kupffer cells in cholestatic liver injury in mice. Hepatology. 51:237–245. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Seki E, De Minicis S, Osterreicher CH, Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, et al: Interleukin-17 Signaling in inflammatory, kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 143:765–776.e3. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Steinman L: A brief history of T(H)17, the first major revision in the T(H)1/T(H)2 hypothesis of T cell-mediated tissue damage. Nat Med. 13:139–145. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Ying HZ, Chen Q, Zhang WY, Zhang HH, Ma Y, Zhang SZ, Fang J and Yu CH: PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics. Mol Med Report. 16:7879–7889. 2017. View Article : Google Scholar

56 

Guillot A, Hamdaoui N, Bizy A, Zoltani K, Souktani R, Zafrani ES, Mallat A, Lotersztajn S and Lafdil F: Cannabinoid receptor 2 counteracts interleukin-17-induced immune and fibrogenic responses in mouse liver. Hepatology. 59:296–306. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Popov Y, Sverdlov DY, Bhaskar KR, Sharma AK, Millonig G, Patsenker E, Krahenbuhl S, Krahenbuhl L and Schuppan D: Macrophage-mediated phagocytosis of apoptotic cholangiocytes contributes to reversal of experimental biliary fibrosis. Am J Physiol Gastrointest Liver Physiol. 298:G323–G334. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Chilakapati J, Shankar K, Korrapati MC, Hill RA and Mehendale HM: Saturation toxicokinetics of thioacetamide: Role in initiation of liver injury. Drug Metab Dispos. 33:1877–1885. 2005.PubMed/NCBI

59 

Kuramochi M, Izawa T, Pervin M, Bondoc A, Kuwamura M and Yamate J: The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats. Exp Toxicol Pathol. 68:471–477. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Erridge C: Endogenous ligands of TLR2 and TLR4: Agonists or assistants? J Leukoc Biol. 87:989–999. 2010. View Article : Google Scholar : PubMed/NCBI

61 

Fujisawa K, Miyoshi T, Tonomura Y, Izawa T, Kuwamura M, Torii M and Yamate J: Relationship of heat shock protein 25 with reactive macrophages in thioacetamide-induced rat liver injury. Exp Toxicol Pathol. 63:599–605. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Andres D, Sanchez-Reus I, Bautista M and Cascales M: Depletion of Kupffer cell function by gadolinium chloride attenuates thioacetamide-induced hepatotoxicity-Expression of metallothionein and HSP70. Biochem Pharmacol. 66:917–926. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Ide M, Kuwamura M, Kotani T, Sawamoto O and Yamate J: Effects of gadolinium chloride (GdCl3) on the appearance of macrophage populations and fibrogenesis in thioacetamide-induced rat hepatic lesions. J Comp Pathol. 133:92–102. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Ide M, Yamate J, Machida Y, Nakanishi M, Kuwamura M, Kotani T and Sawamoto O: Emergence of different macrophage populations in hepatic fibrosis following thioacetamide-induced acute hepatocyte injury in rats. J Comp Pathol. 128:41–51. 2003. View Article : Google Scholar : PubMed/NCBI

65 

Golbar HM, Izawa T, Wijesundera KK, Bondoc A, Tennakoon AH, Kuwamura M and Yamate J: Depletion of hepatic macrophages aggravates liver lesions induced in rats by thioacetamide (TAA). Toxicol Pathol. 44:246–258. 2016. View Article : Google Scholar : PubMed/NCBI

66 

DiezFernandez C, Sanz N, Bosca L, Hortelano S and Cascales M: Involvement of nitric oxide synthesis in hepatic perturbations induced in rats by a necrogenic dose of thioacetamide. Br J Pharmacol. 121:820–826. 1997. View Article : Google Scholar : PubMed/NCBI

67 

Hernandez-Gea V, Ghiassi-Nejad Z, Rozenfeld R, Gordon R, Fiel MI, Yue ZY, Czaja MJ and Friedman SL: Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology. 142:938–946. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Palacios RS, Roderfeld M, Hemmann S, Rath T, Atanasova S, Tschuschner A, Gressner OA, Weiskirchen R, Graf J and Roeb E: Activation of hepatic stellate cells is associated with cytokine expression in thioacetamide-induced hepatic fibrosis in mice. Lab Invest. 88:1192–1203. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Traber PG, Chou H, Zomer E, Hong F, Klyosov A, Fiel MI and Friedman SL: Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One. 8:e753612013. View Article : Google Scholar : PubMed/NCBI

70 

Wijesundera KK, Izawa T, Tennakoon AH, Murakami H, Golbar HM, Katou-Ichikawa C, Tanaka M, Kuwamura M and Yamate J: M1- and M2-macrophage polarization in rat liver cirrhosis induced by thioacetamide (TAA), focusing on Iba1 and galectin-3. Exp Mol Pathol. 96:382–392. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Yada A, Iimuro Y, Uyama N, Uda Y, Okada T and Fujimoto J: Splenectomy attenuates murine liver fibrosis with hypersplenism stimulating hepatic accumulation of Ly-6C(lo) macrophages. J Hepatol. 63:905–916. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Jaeschke H and Bajt ML: Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci. 89:31–41. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Krenkel O, Mossanen Jana C and Tacke F: Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surgery and Nutrition. 3:331–343. 2014.PubMed/NCBI

74 

Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, et al: A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci USA. 107:11942–11947. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Wang X, Sun R, Wei H and Tian Z: High-mobility group box 1 (HMGB1)-toll-like receptor (TLR)4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: Interaction of γδ T cells with macrophages. Hepatology. 57:373–384. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG, et al: Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 56:1971–1982. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Marques PE, Amaral SS, Pires DA, Nogueira LL, Soriani FM, Lima BH, Lopes GA, Russo RC, Avila TV, Melgaco JG, et al: Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology. 56:1971–1982. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Williams CD, Bajt ML, Sharpe MR, McGill MR, Farhood A and Jaeschke H: Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol Appl Pharmacol. 275:122–133. 2014. View Article : Google Scholar : PubMed/NCBI

79 

Jaeschke H, Williams CD, Ramachandran A and Bajt ML: Acetaminophen hepatotoxicity and repair: The role of sterile inflammation and innate immunity. Liver Int. 32:8–20. 2012. View Article : Google Scholar : PubMed/NCBI

80 

Triantafyllou E, Pop OT, Possamai LA, Wilhelm A, Liaskou E, Singanayagam A, Bernsmeier C, Khamri W, Petts G, Dargue R, et al: MerTK expressing hepatic macrophages promote the resolution of inflammation in acute liver failure. Gut. 67:333–347. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Zigmond E, Samia-Grinberg S, Pasmanik-Chor M, Brazowski E, Shibolet O, Halpern Z and Varol C: Infiltrating monocyte-derived macrophages and resident kupffer cells display different ontogeny and functions in acute liver injury. J Immunol. 193:344–353. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, et al: Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology. 64:1667–1682. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Graubardt N, Vugman M, Mouhadeb O, Caliari G, Pasmanik-Chor M, Reuveni D, Zigmond E, Brazowski E, David E, Chappell-Maor L, et al: Ly6C(hi) monocytes and their macrophage descendants regulate neutrophil function and clearance in acetaminophen-induced liver injury. Front Immunol. 8:6262017. View Article : Google Scholar : PubMed/NCBI

84 

Stachlewitz RF, Seabra V, Bradford B, Bradham CA, Rusyn I, Germolec D and Thurman RG: Glycine and uridine prevent D-galactosamine hepatotoxicity in the rat: Role of Kupffer cells. Hepatology. 29:737–745. 1999. View Article : Google Scholar : PubMed/NCBI

85 

Xiong QB, Hase K, Tezuka Y, Namba T and Kadota S: Acteoside inhibits apoptosis in D-galactosamine and lipopolysaccharide-induced liver injury. Life Sci. 65:421–430. 1999. View Article : Google Scholar : PubMed/NCBI

86 

Galanos C, Freudenberg MA and Reutter W: Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA. 76:5939–5943. 1979. View Article : Google Scholar : PubMed/NCBI

87 

Kitazawa T, Tsujimoto T, Kawaratani H, Fujimoto M and Fukui H: Expression of Toll-like receptor 4 in various organs in rats with D-galactosamine-induced acute hepatic failure. J Gastroenterol Hepatol. 23:E494–E498. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Ben Ari Z, Avlas O, Pappo O, Zilbermints V, Cheporko Y, Bachmetov L, Zemel R, Shainberg A, Sharon E, Grief F, et al: Reduced hepatic injury in toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure. Cell Physiol Biochem. 29:41–50. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Ilyas G, Zhao EP, Liu K, Lin Y, Tesfa L, Tanaka KE and Czaja MJ: Macrophage autophagy limits acute toxic liver injury in mice through down regulation of interleukin-1β. J Hepatol. 64:118–127. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Li L, Duan CL, Zhao Y, Zhang XF, Yin HY, Wang TX, Huang CX, Liu SH, Yang SY and Li XJ: Preventive effects of interleukin-6 in lipopolysaccharide/D-galactosamine induced acute liver injury via regulating inflammatory response in hepatic macrophages. Int Immunopharmacol. 51:99–106. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Dejager L and Libert C: Tumor necrosis factor alpha mediates the lethal hepatotoxic effects of poly(I:C) in D-galactosamine-sensitized mice. Cytokine. 42:55–61. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Wolf AM, Wolf D, Rumpold H, Ludwiczek S, Enrich B, Gastl G, Weiss G and Tilg H: The kinase inhibitor imatinib mesylate inhibits TNF-alpha production in vitro and prevents TNF-dependent acute hepatic inflammation. Proc Natl Acad Sci USA. 102:13622–13627. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Jiang W, Sun R, Wei HM and Tian ZG: Toll-like receptor 3 ligand attenuates LPS-induced liver injury by down-regulation of toll-like receptor 4 expression on macrophages. Proc Natl Acad Sci USA. 102:17077–17082. 2005. View Article : Google Scholar : PubMed/NCBI

94 

Zheng XF, Hu XY, Ma B, Fang H, Zhang F, Mao YF, Yang FY, Xiao SC and Xia ZF: Interleukin-35 attenuates D-galactosamine/lipopolysaccharide-induced liver injury via enhancing interleukin-10 production in kupffer cells. Front Pharmacol. 9:9592018. View Article : Google Scholar : PubMed/NCBI

95 

Lu L, Zhou HM, Ni M, Wang XH, Busuttil R, Kupiec-Weglinski J and Zhai Y: Innate immune regulations and liver ischemia-reperfusion injury. Transplantation. 100:2601–2610. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, et al: The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med. 201:1135–1143. 2005. View Article : Google Scholar : PubMed/NCBI

97 

Mosher B, Dean R, Harkema J, Remick D, Palma J and Crockett E: Inhibition of Kupffer cells reduced CXC chemokine production and liver injury. J Surg Res. 99:201–210. 2001. View Article : Google Scholar : PubMed/NCBI

98 

Jiang W, Tang W, Geng Q and Xu X: Inhibition of toll-like receptor 4 with vasoactive intestinal peptide attenuates liver ischemia-reperfusion injury. Transplant Proc. 43:1462–1467. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Devey L, Ferenbach D, Mohr E, Sangster K, Bellamy CO, Hughes J and Wigmore SJ: Tissue-resident macrophages protect the liver from ischemia reperfusion injury via a heme oxygenase-1-dependent mechanism. Mol Ther. 17:65–72. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Ellett JD, Atkinson C, Evans ZP, Amani Z, Balish E, Schmidt MG, van Rooijen N, Schnellmann RG and Chavin KD: Murine Kupffer cells are protective in total hepatic ischemia/reperfusion injury with bowel congestion through IL-10. J Immunol. 184:5849–5858. 2010. View Article : Google Scholar : PubMed/NCBI

101 

Ke B, Shen XD, Gao F, Ji HF, Qiao B, Zhai Y, Farmer DG, Busuttil RW and Kupiec-Weglinski JW: Adoptive transfer of Ex Vivo HO-1 modified bone marrow-derived macrophages prevents liver ischemia and reperfusion injury. Mol Ther. 18:1019–1025. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Ke B, Shen XD, Ji H, Kamo N, Gao F, Freitas MC, Busuttil RW and Kupiec-Weglinski JW: HO-1-STAT3 axis in mouse liver ischemia/reperfusion injury: Regulation of TLR4 innate responses through PI3K/PTEN signaling. J Hepatol. 56:359–366. 2012. View Article : Google Scholar : PubMed/NCBI

103 

Ji H, Shen X, Gao F, Ke B, Freitas MC, Uchida Y, Busuttil RW, Zhai Y and Kupiec-Weglinski JW: Programmed death-1/B7-H1 negative costimulation protects mouse liver against ischemia and reperfusion injury. Hepatology. 52:1380–1389. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Devisscher L, Verhelst X, Colle I, Van Vlierberghe H and Geerts A: The role of macrophages in obesity-driven chronic liver disease. J Leukoc Biol. 99:693–698. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Lumeng Carey N, Bodzin Jennifer L and Saltiel Alan R: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 117:175–184. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Neuschwander-Tetri Brent A: Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: The central role of nontriglyceride fatty acid metabolites. Hepatology. 52:774–788. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W, et al: Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 171:372–384 e312. 2017. View Article : Google Scholar : PubMed/NCBI

108 

Luo W, Xu Q, Wang Q, Wu H and Hua J: Effect of modulation of PPAR-γ activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 7:446122017. View Article : Google Scholar : PubMed/NCBI

109 

Stienstra R, Saudale F, Duval C, Keshtkar S, Groener JE, van Rooijen N, Staels B, Kersten S and Mueller M: Kupffer cells promote hepatic steatosis via interleukin-1 beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology. 51:511–522. 2010. View Article : Google Scholar : PubMed/NCBI

110 

Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube John J, Scott Donald K and O'Doherty Robert M: Depletion of liver kupffer cells prevents the development of diet-induced hepatic steatosis and insulin resistance. Diabetes. 59:347–357. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Wan J, Benkdane M, Teixeira-Clerc F, Bonnafous S, Louvet A, Lafdil F, Pecker F, Tran A, Gual P, Mallat A, et al: M2 kupffer cells promote M1 kupffer cell apoptosis: A protective mechanism against alcoholic and nonalcoholic fatty liver disease. Hepatology. 59:130–142. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Day CP and James OF: Steatohepatitis: A tale of two ‘hits’? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI

113 

Tilg H and Moschen AR: Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology. 52:1836–1846. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Malhi H and Gores GJ: Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 28:360–369. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Ibrahim SH, Hirsova P, Tomita K, Bronk SF, Werneburg NW, Harrison SA, Goodfellow VS, Malhi H and Gores GJ: Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology. 63:731–744. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Idrissova L, Malhi H, Werneburg NW, LeBrasseur NK, Bronk SF, Fingas C, Tchkonia T, Pirtskhalava T, White TA, Stout MB, et al: TRAIL receptor deletion in mice suppresses the inflammation of nutrient excess. J Hepatol. 62:1156–1163. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Li L, Chen L, Hu L, Liu Y, Sun HY, Tang J, Hou YJ, Chang YX, Tu QQ, Feng GS, et al: Nuclear factor high-mobility group box1 mediating the activation of toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology. 54:1620–1630. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Reid DT, Reyes JL, McDonald BA, Vo T, Reimer RA and Eksteen B: Kupffer cells undergo fundamental changes during the development of experimental NASH and are critical in initiating liver damage and inflammation. PLoS One. 11:e01595242016. View Article : Google Scholar : PubMed/NCBI

119 

Baeck C, Wehr A, Karlmark Karlin R, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T, et al: Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut. 61:416–426. 2012. View Article : Google Scholar : PubMed/NCBI

120 

Miura K, Yang L, van Rooijen N, Ohnishi H and Seki E: Hepatic recruitment of macrophages promotes nonalcoholic steatohepatitis through CCR2. Am J Physiol-Gastroint Liver Physiol. 302:G1310–G1321. 2012. View Article : Google Scholar

121 

McMahan RH, Wang XXX, Cheng LL, Krisko T, Smith M, El Kasmi K, Pruzanski M, Adorini L, Golden-Mason L, Levi M, et al: Bile acid receptor activation modulates hepatic monocyte activity and improves nonalcoholic fatty liver disease. J Biol Chem. 288:11761–11770. 2013. View Article : Google Scholar : PubMed/NCBI

122 

Miura K, Kodama Y, Inokuchi S, Schnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA and Seki E: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1 beta in mice. Gastroenterology. 139:323–334.e7. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, Kitamura N, Toda K, Kaneko T, Horie Y, et al: Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 55:415–424. 2006. View Article : Google Scholar : PubMed/NCBI

124 

Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM, Brigstock D and George J: Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterology. 137:713–723. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Tacke F: Targeting hepatic macrophages to treat liver diseases. J Hepatol. 66:1300–1312. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong X, Liu J, Xu Y and Cao H: Role of macrophages in experimental liver injury and repair in mice (Review). Exp Ther Med 17: 3835-3847, 2019.
APA
Dong, X., Liu, J., Xu, Y., & Cao, H. (2019). Role of macrophages in experimental liver injury and repair in mice (Review). Experimental and Therapeutic Medicine, 17, 3835-3847. https://doi.org/10.3892/etm.2019.7450
MLA
Dong, X., Liu, J., Xu, Y., Cao, H."Role of macrophages in experimental liver injury and repair in mice (Review)". Experimental and Therapeutic Medicine 17.5 (2019): 3835-3847.
Chicago
Dong, X., Liu, J., Xu, Y., Cao, H."Role of macrophages in experimental liver injury and repair in mice (Review)". Experimental and Therapeutic Medicine 17, no. 5 (2019): 3835-3847. https://doi.org/10.3892/etm.2019.7450
Copy and paste a formatted citation
x
Spandidos Publications style
Dong X, Liu J, Xu Y and Cao H: Role of macrophages in experimental liver injury and repair in mice (Review). Exp Ther Med 17: 3835-3847, 2019.
APA
Dong, X., Liu, J., Xu, Y., & Cao, H. (2019). Role of macrophages in experimental liver injury and repair in mice (Review). Experimental and Therapeutic Medicine, 17, 3835-3847. https://doi.org/10.3892/etm.2019.7450
MLA
Dong, X., Liu, J., Xu, Y., Cao, H."Role of macrophages in experimental liver injury and repair in mice (Review)". Experimental and Therapeutic Medicine 17.5 (2019): 3835-3847.
Chicago
Dong, X., Liu, J., Xu, Y., Cao, H."Role of macrophages in experimental liver injury and repair in mice (Review)". Experimental and Therapeutic Medicine 17, no. 5 (2019): 3835-3847. https://doi.org/10.3892/etm.2019.7450
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team