|
1
|
Waltz KL, Featherstone K, Tsai L and
Trentacost D: Clinical outcomes of TECNIS toric intraocular lens
implantation after cataract removal in patients with corneal
astigmatism. Ophthalmology. 122:39–47. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kamiya K, Hayashi K, Shimizu K, Negishi K,
Sato M and Bissen-Miyajima H: Survey Working Group of the Japanese
Society of Cataract and Refractive Surgery: Multifocal intraocular
lens explantation: A case series of 50 eyes. Am J Ophthalmol.
158:215–220.e1. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lundström M, Dickman M, Henry Y, Manning
S, Rosen P, Tassignon MJ, Young D and Stenevi U: European Society
of Cataract and Refractive Surgeons Femtosecond laser-assisted
cataract surgery study collaborators Femtosecond laser-assisted
cataract surgeries reported to the European Registry of Quality
Outcomes for Cataract and Refractive Surgery: Baseline
characteristics, surgical procedure, and outcomes. J Cataract
Refract Surg. 43:1549–1556. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Antoun J, Azar G, Jabbour E, Kourie HR,
Slim E, Schakal A and Jalkh A: Vitreoretinal surgery with silicone
oil tamponade in primary uncomplicated rhegmatogenous retinal
detachment: Clinical outcomes and complications. Retina.
36:1906–1912. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen SN, Lian IeB and Wei YJ: Epidemiology
and clinical characteristics of rhegmatogenous retinal detachment
in Taiwan. Br J Ophthalmol. 100:1216–1220. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wormstone IM: Posterior capsule
opacification: A cell biological perspective. Exp Eye Res.
74:337–347. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Wormstone IM, Wang L and Liu CS: Posterior
capsule opacification. Exp Eye Res. 88:257–269. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Dong N, Tang X and Xu B: miRNA-181a
inhibits the proliferation, migration, and epithelial-mesenchymal
transition of lens epithelial cells. Invest Ophthalmol Vis Sci.
56:993–1001. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yao K, Ye PP, Tan J, Tang XJ and Shen Tu
XC: Involvement of PI3K/Akt pathway in TGF-beta2-mediated
epithelial mesenchymal transition in human lens epithelial cells.
Ophthalmic Res. 40:69–76. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Parikh A, Lee C, Joseph P, Marchini S,
Baccarini A, Kolev V, Romualdi C, Fruscio R, Shah H, Wang F, et al:
microRNA-181a has a critical role in ovarian cancer progression
through the regulation of the epithelial-mesenchymal transition.
Nat Commun. 5:29772014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Livak KJ and Schmittgen TD: Analysis of
relative geneexpression data using real time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li J, Tang X and Chen X: Comparative
effects of TGF-β2/Smad2 and TGF-β2/Smad3 signaling pathways on
proliferation, migration, and extracellular matrix production in a
human lens cell line. Exp Eye Res. 92:173–179. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zode GS, Sethi A, Brun-Zinkernagel AM,
Chang IF, Clark AF and Wordinger RJ: Transforming growth factor-β2
increases extracellular matrix proteins in optic nerve head cells
via activation of the Smad signaling pathway. Mol Vis.
17:1745–1758. 2011.PubMed/NCBI
|
|
14
|
Ryan DG, Oliveira-Fernandes M and Lavker
RM: MicroRNAs of the mammalian eye display distinct and overlapping
tissue specificity. Mol Vis. 12:1175–1184. 2006.PubMed/NCBI
|
|
15
|
Makarev E, Spence JR, Del Rio-Tsonis K and
Tsonis PA: Identification of microRNAs and other small RNAs from
the adult newt eye. Mol Vis. 12:1386–1391. 2006.PubMed/NCBI
|
|
16
|
Caiado RR, Magalhães O Jr, Badaró E, Maia
A, Novais EA, Stefanini FR, Navarro RM, Arevalo JF, Wu L, Moraes N,
et al: Effect of lens status in the surgical success of 23-gauge
primary vitrectomy for the management of rhegmatogenous retinal
detachment: The Pan American Collaborative Retina Study (PACORES)
group results. Retina. 35:326–333. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lamouille S, Xu J and Derynck R: Molecular
mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell
Biol. 15:178–196. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yang Y, Zhang ZX, Lian D, Haig A,
Bhattacharjee RN and Jevnikar AM: IL-37 inhibits IL-18-induced
tubular epithelial cell expression of pro-inflammatory cytokines
and renal ischemia-reperfusion injury. Kidney Int. 87:396–408.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li H, Zhang P, Sun X, Sun Y, Shi C, Liu H
and Liu X: MicroRNA-181a regulates epithelial-mesenchymal
transition by targeting PTEN in drug-resistant lung adenocarcinoma
cells. Int J Oncol. 47:1379–1392. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Taylor MA, Sossey-Alaoui K, Thompson CL,
Danielpour D and Schiemann WP: TGF-β upregulates miR-181a
expression to promote breast cancer metastasis. J Clin Invest.
123:150–163. 2013. View
Article : Google Scholar : PubMed/NCBI
|
|
21
|
Brockhausen J, Tay SS, Grzelak CA,
Bertolino P, Bowen DG, d'Avigdor WM, Teoh N, Pok S, Shackel N,
Gamble JR, et al: miR-181a mediates TGF-β-induced hepatocyte EMT
and is dysregulated in cirrhosis and hepatocellular cancer. Liver
Int. 35:240–253. 2015. View Article : Google Scholar : PubMed/NCBI
|