Open Access

Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse

  • Authors:
    • Yi Wang
    • Guogang Dai
    • Lengtao Li
    • Lijuan Liu
    • Ling Jiang
    • Shengwu Li
    • Shichuan Liao
    • Feng Wang
    • Wanli Du
    • Yuewen Li
  • View Affiliations

  • Published online on: October 25, 2019     https://doi.org/10.3892/etm.2019.8137
  • Pages: 4591-4602
  • Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study aimed to investigate differentially expressed genes (DEGs) in whole blood (WB) obtained from patients with lumbar disc prolapse (LDP) and healthy volunteers. A total of 8 patients with LDP and 8 healthy volunteers were recruited. An Agilent SurePrint G3 human gene expression microarray 8x60 K was used to perform the microarray analyses. R was employed to identify DEGs, which were then subjected to bioinformatics analysis, including a Gene Ontology (GO) analysis, Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis and protein‑protein interaction (PPI) network analysis. DEGs in the degenerative annulus fibrosis (AF) and nucleus pulposus (NP) compared with non‑degenerative tissues were also identified based on microarray data and the intersections of the three were assessed. Furthermore, reverse transcription‑quantitative (RT‑q)PCR was performed to confirm the aberrant expression levels of selected DEGs in the WB of all subjects. A total of 161 DEGs between LDP patients and the healthy controls were identified (128 upregulated and 33 downregulated). These DEGs were enriched in 293 biological process, 36 cellular component and 21 molecular function GO terms, as well as in 24 KEGG pathways. The PPI network contained 4 submodules, and Toll‑like receptor 4 had the highest degree centrality. A total of 22 DEGs were common to the three groups of DEGs. The RT‑qPCR assay confirmed that the expression levels of cytochrome P450 family 27 subfamily A member 1, superoxide dismutase 2, protein disulfide isomerase family A member 4, FKBP prolyl isomerase 11 and ectonucleotide pyrophosphatase/phosphodiesterase 4 were significantly different between the patient group and the volunteer group. In conclusion, several genes were identified as potential biomarkers in WB that should be further explored in future studies to determine their potential application in the clinical treatment and diagnosis of LDP, and the present bioinformatics analysis revealed several GO terms, KEGG pathways and submodules of the PPI network that may be involved in LDP, although the exact mechanisms remain elusive.

Related Articles

Journal Cover

December 2019
Volume 18 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Wang, Y., Dai, G., Li, L., Liu, L., Jiang, L., Li, S. ... Li, Y. (2019). Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse. Experimental and Therapeutic Medicine, 18, 4591-4602. https://doi.org/10.3892/etm.2019.8137
MLA
Wang, Y., Dai, G., Li, L., Liu, L., Jiang, L., Li, S., Liao, S., Wang, F., Du, W., Li, Y."Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse". Experimental and Therapeutic Medicine 18.6 (2019): 4591-4602.
Chicago
Wang, Y., Dai, G., Li, L., Liu, L., Jiang, L., Li, S., Liao, S., Wang, F., Du, W., Li, Y."Transcriptome signatures reveal candidate key genes in the whole blood of patients with lumbar disc prolapse". Experimental and Therapeutic Medicine 18, no. 6 (2019): 4591-4602. https://doi.org/10.3892/etm.2019.8137