Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
March-2020 Volume 19 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2020 Volume 19 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response

  • Authors:
    • Bing Liu
    • Huali Wei
    • Ming Lan
    • Na Jia
    • Junmeng Liu
    • Meng Zhang
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, National Center of Gerontology of China, Beiing Hospital, Beijing 100730, P.R. China, Department of Gynecology and Obstetrics, Emergency General Hospital, Beijing 100028, P.R. China, Department of Cardiology, Aerospace Center Hospital, Beijing 100049, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1655-1664
    |
    Published online on: January 3, 2020
       https://doi.org/10.3892/etm.2020.8421
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myocardial ischemia‑reperfusion (I/R) injury is the oxidative stress and inflammatory response that occurs when a tissue is reperfused following a prolonged period of ischemic injury. Growing evidence has demonstrated that microRNAs (miRs) are essential in the development of myocardial I/R injury. Salidroside, a phenylpropanoid glycoside isolated from a traditional Chinese medicinal plant, Rhodiola rosea, possesses multiple pharmacological functions and protects against myocardial I/R injury in vitro and in vivo. However, the role of miRs in the cardioprotective effects of salidroside against myocardial I/R injury has not been studied, to the best of our knowledge. In the present study, the role of miR21 in the underlying mechanism of salidroside‑induced protection against oxidative stress and inflammatory injuries in hypoxia/reoxygenation (H/R)‑treated H9c2 cardiomyocytes was determined. The cell viability was assessed with an MTT assay. Lactate dehydrogenase (LDH) release, caspase‑3 activity, malondialdehyde (MDA) level, superoxide dismutase (SOD) and glutathione peroxidase (GSH‑Px) activities were determined by commercial kits. Cell apoptosis was measured by flow cytometry. Intracellular reactive oxygen species (ROS) generation was monitored by DCFH‑DA. The miR‑21 level was quantified by reverse transcription‑quantitative (RT‑q)PCR. The interleukin (IL)‑6, IL‑1β and tumor necrosis factor (TNF)‑α levels were measured by RT‑qPCR and ELISA. The results showed that salidroside pretreatment significantly increased cell viability and decreased the release of LDH, accompanied by an increase in miR‑21 expression in H/R‑treated H9c2 cells and a miR‑21 inhibitor reversed these effects. In addition, the miR‑21 inhibitor also abrogated the inhibition of salidroside on H/R‑induced increases in apoptosis and caspase‑3 activity in H9c2 cells. Salidroside mitigated H/R‑induced oxidative stress as illustrated by the downregulation of ROS generation and MDA level and increased the activities of the antioxidant enzymes, SOD and GSH‑Px, all of which were abrogated in cells transfected with the miR‑21 inhibitor. Salidroside induced a decrease in the expression and levels of the pro‑inflammatory cytokines, IL‑6, IL‑1β and TNF‑α, which were prevented by the miR‑21 inhibitor. Together, these results provide evidence of the beneficial effects of salidroside against myocardial I/R injury by reducing myocardial oxidative stress and inflammation which are enhanced by increasing miR‑21 expression.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Yellon DM and Hausenloy DJ: Myocardial reperfusion injury. N Engl J Med. 357:1121–1135. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Humphries KH, Izadnegahdar M, Sedlak T, Saw J, Johnston N, Schenck-Gustafsson K, Shah RU, Regitz-Zagrosek V, Grewal J, Vaccarino V, et al: Sex differences in cardiovascular disease-impact on care and outcomes. Front Neuroendocrinol. 46:46–70. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Gu C, Li T, Jiang S, Yang Z, Lv J, Yi W, Yang Y and Fang M: AMP-activated protein kinase sparks the fire of cardioprotection against myocardial ischemia and cardiac ageing. Ageing Res Rev. 47:168–175. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA and Atochin DN: c-Jun N-terminal kinases (JNKs) in myocardial and cerebral ischemia/reperfusion injury. Front Pharmacol. 9:7152018. View Article : Google Scholar : PubMed/NCBI

5 

Yu LM, Di WC, Dong X, Li Z, Zhang Y, Xue XD, Xu YL, Zhang J, Xiao X, Han JS, et al: Melatonin protects diabetic heart against ischemia-reperfusion injury, role of membrane receptor-dependent cGMP-PKG activation. Biochim Biophys Acta Mol Basis Dis. 1864:563–578. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Sun MS, Jin H, Sun X, Huang S, Zhang FL, Guo ZN and Yang Y: Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxid Med Cell Longev. 2018:38049792018. View Article : Google Scholar : PubMed/NCBI

7 

González-Montero J, Brito R, Gajardo AI and Rodrigo R: Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World J Cardiol. 10:74–86. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Yang CF: Clinical manifestations and basic mechanisms of myocardial ischemia/reperfusion injury. Ci Ji Yi Xue Za Zhi. 30:209–215. 2018.PubMed/NCBI

9 

Kucinskaite A, Briedis V and Savickas A: Experimental analysis of therapeutic properties of Rhodiola rosea L. and its possible application in medicine. Medicina (Kaunas). 40:614–619. 2004.PubMed/NCBI

10 

Chang X, Luo F, Jiang W, Zhu L, Gao J, He H, Wei T, Gong S and Yan T: Protective activity of salidroside against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway in vivo and in vitro. Int Immunopharmacol. 28:604–615. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Zhu L, Wei T, Chang X, He H, Gao J, Wen Z and Yan T: Effects of salidroside on myocardial injury in vivo in vitro via regulation of Nox/NF-κB/AP1 Pathway. Inflammation. 38:1589–1598. 2015. View Article : Google Scholar : PubMed/NCBI

12 

Chen L, Liu P, Feng X and Ma C: Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med. 21:3178–3189. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Sun MY, Ma DS, Zhao S, Wang L, Ma CY and Bai Y: Salidroside mitigates hypoxia/reoxygenation injury by alleviating endoplasmic reticulum stress induced apoptosis in H9c2 cardiomyocytes. Mol Med Rep. 18:3760–3768. 2018.PubMed/NCBI

14 

Chang X, Zhang K, Zhou R, Luo F, Zhu L, Gao J, He H, Wei T, Yan T and Ma C: Cardioprotective effects of salidroside on myocardial ischemia-reperfusion injury in coronary artery occlusion-induced rats and Langendorff-perfused rat hearts. Int J Cardiol. 215:532–544. 2016. View Article : Google Scholar : PubMed/NCBI

15 

Zhu L, Wei T, Gao J, Chang X, He H, Luo F, Zhou R, Ma C, Liu Y and Yan T: The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis. 20:1433–1443. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Chen J and Wang DZ: microRNAs in cardiovascular development. J Mol Cell Cardiol. 52:949–957. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Cheng Y and Zhang C: MicroRNA-21 in cardiovascular disease. J Cardiovasc Transl Res. 3:251–255. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Oyama Y, Bartman CM, Gile J and Eckle T: Circadian MicroRNAs in Cardioprotection. Curr Pharm Des. 23:3723–3730. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Panagal M, Biruntha M, Vidhyavathi RM, Sivagurunathan P, Senthilkumar SR and Sekar D: Dissecting the role of miR-21 in different types of stroke. Gene. 681:69–72. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Pordzik J, Pisarz K, De Rosa S, Jones AD, Eyileten C, Indolfi C, Malek L and Postula M: The potential role of platelet-related micrornas in the development of cardiovascular events in high-risk populations, including diabetic patients: A review. Front Endocrinol (Lausanne). 9:742018. View Article : Google Scholar : PubMed/NCBI

21 

Pan YQ, Li J, Li XW, Li YC, Li J and Lin JF: Effect of miR-21/TLR4/NF-κB pathway on myocardial apoptosis in rats with myocardial ischemia-reperfusion. Eur Rev Med Pharmacol Sci. 22:7928–7937. 2018.PubMed/NCBI

22 

Tong Z, Tang Y, Jiang B, Wu Y, Liu Y, Li Y and Xiao X: Phosphorylation of nucleolin is indispensable to upregulate miR-21 and inhibit apoptosis in cardiomyocytes. J Cell Physiol. 234:4044–4053. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, Liang M and Ding X: miR-21 in ischemia/reperfusion injury: A double-edged sword? Physiol Genomics. 46:789–797. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Liu K, Ma L, Zhou F, Yang Y, Hu HB, Wang L and Zhong L: Identification of microRNAs related to myocardial ischemic reperfusion injury. J Cell Physiol. 234:11380–11390. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Ye Y, Perez-Polo JR, Qian J and Birnbaum Y: The role of microRNA in modulating myocardial ischemia-reperfusion injury. Physiol Genomics. 43:534–542. 2011. View Article : Google Scholar : PubMed/NCBI

26 

Cheng J, Wu Q, Lv R, Huang L, Xu B, Wang X, Chen A and He F: MicroRNA-449a inhibition protects H9C2 cells against hypoxia/reoxygenation-induced injury by targeting the notch-1 signaling pathway. Cell Physiol Biochem. 46:2587–2600. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

28 

Gao J, He H, Jiang W, Chang X, Zhu L, Luo F, Zhou R, Ma C and Yan T: Salidroside ameliorates cognitive impairment in a d-galactose-induced rat model of Alzheimer's disease. Behav Brain Res. 293:27–33. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Wang J, Xiao L, Zhu L, Hu M, Wang Q and Yan T: The effect of synthetic salidroside on cytokines and airway inflammation of asthma induced by diisocyanate (TDI) in mice by regulating GATA3/T-bet. Inflammation. 38:697–704. 2015. View Article : Google Scholar : PubMed/NCBI

30 

Wang Y, Xu P, Wang Y, Liu H, Zhou Y and Cao X: The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid Med Cell Longev. 2013:5078322013. View Article : Google Scholar : PubMed/NCBI

31 

Xu ZW, Chen X, Jin XH, Meng XY, Zhou X, Fan FX, Mao SY, Wang Y, Zhang WC, Shan NN, et al: SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics. 130:211–220. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Han Q, Zhang HY, Zhong BL, Zhang B and Chen H: Antiapoptotic effect of recombinant HMGB1 A-box protein via regulation of microRNA-21 in myocardial ischemia-reperfusion injury model in rats. DNA Cell Biol. 35:192–202. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Francis A and Baynosa R: Ischaemia-reperfusion injury and hyperbaric oxygen pathways: A review of cellular mechanisms. Diving Hyperb Med. 47:110–117. 2017.PubMed/NCBI

34 

Han J, Xiao Q, Lin YH, Zheng ZZ, He ZD, Hu J and Chen LD: Neuroprotective effects of salidroside on focal cerebral ischemia/reperfusion injury involve the nuclear erythroid 2-related factor 2 pathway. Neural Regen Res. 10:1989–96. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Xing SS, Li J, Chen L, Yang YF, He PL, Li J and Yang J: Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mech Ageing Dev. 175:1–6. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Zhong Z, Han J, Zhang J, Xiao Q, Hu J and Chen L: Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. Drug Des Devel Ther. 12:1479–1489. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Zhu Y, Zhang YJ, Liu WW, Shi AW and Gu N: Salidroside Suppresses HUVECs cell injury induced by oxidative stress through activating the Nrf2 signaling pathway. Molecules. 21(pii): E10332016. View Article : Google Scholar : PubMed/NCBI

38 

Juránek I and Bezek S: Controversy of free radical hypothesis: Reactive oxygen species-cause or consequence of tissue injury? Gen Physiol Biophys. 24:263–278. 2005.PubMed/NCBI

39 

Sena CM, Leandro A, Azul L, Seiça R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI

40 

Sies H: Oxidative stress: A concept in redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Peng J, Huang N, Huang S, Li L, Ling Z, Jin S, Huang A, Lin K and Zou X: Effect of miR-21 down-regulated by H2O2 on osteogenic differentiation of MC3T3-E1 cells. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 32:276–284. 2018.(In Chinese). PubMed/NCBI

42 

Shi B, Wang Y, Zhao R, Long X, Deng W and Wang Z: Bone marrow mesenchymal stem cell-derived exosomal miR-21 protects C-kit+ cardiac stem cells from oxidative injury through the PTEN/PI3K/Akt axis. PLoS One. 13:e01916162018. View Article : Google Scholar : PubMed/NCBI

43 

Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, Mukhametshina RT, Kwek XY, Cabrera-Fuentes HA and Hausenloy DJ: Inflammation following acute myocardial infarction: Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol Ther. 186:73–87. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Wang Z, Hu W, Lu C, Ma Z, Jiang S, Gu C, Acuña-Castroviejo D and Yang Y: Targeting NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome in cardiovascular disorders. Arterioscler Thromb Vasc Biol. 38:2765–2779. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Kalogeris T, Baines CP, Krenz M and Korthuis RJ: Ischemia/Reperfusion. Compr Physiol. 7:113–170. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Xu T, Qin G, Jiang W, Zhao Y, Xu Y and Lv X: 6-gingerol protects heart by suppressing myocardial ischemia/reperfusion induced inflammation via the PI3K/Akt-dependent mechanism in rats. Evid Based Complement Alternat Med. 2018:62096792018. View Article : Google Scholar : PubMed/NCBI

47 

He H, Chang X, Gao J, Zhu L, Miao M and Yan T: Salidroside mitigates sepsis-induced myocarditis in rats by regulating IGF-1/PI3K/Akt/GSK-3β Signaling. Inflammation. 38:2178–2184. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Song N, Zhang T, Xu X, Lu Z, Yu X, Fang Y, Hu J, Jia P, Teng J and Ding X: miR-21 protects against ischemia/reperfusion-induced acute kidney injury by preventing epithelial cell apoptosis and inhibiting dendritic cell maturation. Front Physiol. 9:7902018. View Article : Google Scholar : PubMed/NCBI

49 

Zhang W and Shu L: Upregulation of miR-21 by ghrelin ameliorates ischemia/reperfusion-induced acute kidney injury by inhibiting inflammation and cell apoptosis. DNA Cell Biol. 35:417–25. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu B, Wei H, Lan M, Jia N, Liu J and Zhang M: MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response. Exp Ther Med 19: 1655-1664, 2020.
APA
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., & Zhang, M. (2020). MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response. Experimental and Therapeutic Medicine, 19, 1655-1664. https://doi.org/10.3892/etm.2020.8421
MLA
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., Zhang, M."MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response". Experimental and Therapeutic Medicine 19.3 (2020): 1655-1664.
Chicago
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., Zhang, M."MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response". Experimental and Therapeutic Medicine 19, no. 3 (2020): 1655-1664. https://doi.org/10.3892/etm.2020.8421
Copy and paste a formatted citation
x
Spandidos Publications style
Liu B, Wei H, Lan M, Jia N, Liu J and Zhang M: MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response. Exp Ther Med 19: 1655-1664, 2020.
APA
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., & Zhang, M. (2020). MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response. Experimental and Therapeutic Medicine, 19, 1655-1664. https://doi.org/10.3892/etm.2020.8421
MLA
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., Zhang, M."MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response". Experimental and Therapeutic Medicine 19.3 (2020): 1655-1664.
Chicago
Liu, B., Wei, H., Lan, M., Jia, N., Liu, J., Zhang, M."MicroRNA‑21 mediates the protective effects of salidroside against hypoxia/reoxygenation‑induced myocardial oxidative stress and inflammatory response". Experimental and Therapeutic Medicine 19, no. 3 (2020): 1655-1664. https://doi.org/10.3892/etm.2020.8421
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team