|
1
|
Chhor V and Journois D: Perioperative
acute kidney injury and failure. Nephrol The. 10:121–131. 2014.(In
French). PubMed/NCBI View Article : Google Scholar
|
|
2
|
Seth R, Yang C, Kaushal V, Shah SV and
Kaushal GP: p53-dependent caspase-2 activation in mitochondrial
release of apoptosis-inducing factor and its role in renal tubular
epithelial cell injury. J Biol Chem. 280:31230–31239.
2005.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Malek M and Nematbakhsh M: Renal
ischemia/reperfusion injury; from pathophysiology to treatment. J
Renal Inj Prev. 4:20–27. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Snoeijs MG, van Heurn LW and Buurman WA:
Biological modulation of renal ischemia-reperfusion injury. Curr
Opin Organ Transplant. 15:190–199. 2010.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Salvadori M, Rosso G and Bertoni E: Update
on ischemia-reperfusion injury in kidney transplantation:
Pathogenesis and treatment. World J Transplant. 5:52–67.
2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Ponticelli C: Ischaemia-reperfusion
injury: A major protagonist in kidney transplantation. Nephrol Dial
Transplant. 29:1134–1140. 2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Snoeijs MG, Vink H, Voesten N, Christiaans
MH, Daemen JW, Peppelenbosch AG, Tordoir JH, Peutz-Kootstra CJ,
Buurman WA, Schurink GW and van Heurn LW: Acute ischemic injury to
the renal microvasculature in human kidney transplantation. Am J
Physiol Renal Physiol. 299:F1134–F1140. 2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Rodriguez F, Bonacasa B, Fenoy FJ and
Salom MG: Reactive oxygen and nitrogen species in the renal
ischemia/reperfusion injury. Curr Pharm Des. 19:2776–2794.
2013.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Lorenzen JM, Kaucsar T, Schauerte C,
Schmitt R, Rong S, Hübner A, Scherf K, Fiedler J, Martino F,
Kumarswamy R, et al: MicroRNA-24 antagonism prevents renal ischemia
reperfusion injury. J Am Soc Nephrol. 25:2717–2729. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Eldaif SM, Deneve JA, Wang NP, Jiang R,
Mosunjac M, Mutrie CJ, Guyton RA, Zhao ZQ and Vinten-Johansen J:
Attenuation of renal ischemia-reperfusion injury by
postconditioning involves adenosine receptor and protein kinase C
activation. Transpl Int. 23:217–226. 2010.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Yang X, Gao L, Guo X, Shi X, Wu H, Song F
and Wang B: A network based method for analysis of lncRNA-disease
associations and prediction of lncRNAs implicated in diseases. PloS
One. 9(e87797)2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Yu TM, Palanisamy K, Sun KT, Day YJ, Shu
KH, Wang IK, Shyu WC, Chen P, Chen YL and Li CY: RANTES mediates
kidney ischemia reperfusion injury through a possible role of
HIF-1α and LncRNA PRINS. Sci Rep. 6(18424)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Zhou Q, Chung AC, Huang XR, Dong Y, Yu X
and Lan HY: Identification of novel long noncoding RNAs associated
with TGF-β/Smad3-mediated renal inflammation and fibrosis by RNA
sequencing. Am J Pathol. 184:409–417. 2014.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Thurman JM: Triggers of inflammation after
renal ischemia/reperfusion. Clin Immunol. 123:7–13. 2007.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Huang X, Gao Y, Qin J and Lu S: The
mechanism of long noncoding RNA MEG3 for hepatic
ischemia‐reperfusion: Mediated by miR‐34a/Nrf2 signaling pathway. J
Cell Biochem. 119:1163–1172. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408.
2001.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Wang H, Yan Z, Qiu L, Hu Z, Qian W and Xu
L: Dynamic changes of platelet endothelial cell adhesion molecule-1
(PECAM-1/CD31) on pulmonary injury induced by ischemia-reperfusion
in rats. Ir J Med Sci. 180:483–488. 2011.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Daemen M, de Vries B and Buurman W:
Apoptosis and inflammation in renal reperfusion injury.
Transplantation. 73:1693–1700. 2002.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Vaidya VS, Ozer JS, Dieterle F, Collings
FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder
DJ, et al: Kidney injury molecule-1 outperforms traditional
biomarkers of kidney injury in preclinical biomarker qualification
studies. Nat Biotechnol. 28:478–485. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
20
|
Lorenzen JM, Schauerte C, Kielstein JT,
Hübner A, Martino F, Fiedler J, Gupta SK, Faulhaber-Walter R,
Kumarswamy R, Hafer C, et al: Circulating long noncoding RNA
TapSAKI is a predictor of mortality in critically ill patients with
acute kidney injury. Clin Chem. 61:191–201. 2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Chen Z, Jia S, Li D, Cai J, Tu J, Geng B,
Guan Y, Cui Q and Yang J: Silencing of long noncoding RNA AK139328
attenuates ischemia/reperfusion injury in mouse livers. PloS One.
8(e80817)2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chung AC, Huang XR, Meng X and Lan HY:
miR-192 mediates TGF-beta/Smad3-driven renal fibrosis. J Am Soc
Nephrol. 21:1317–1325. 2010.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Massagué J and Wotton D: Transcriptional
control by the TGF-beta/Smad signaling system. EMBO J.
19:1745–1754. 2000.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Savage C, Das P, Finelli AL, Townsend SR,
Sun CY, Baird SE and Padgett RW: Caenorhabditis elegans genes
sma-2, sma-3, and sma-4 define a conserved family of transforming
growth factor beta pathway components. Proc Natl Acad Sci USA.
93:790–794. 1996.PubMed/NCBI View Article : Google Scholar
|