|
1
|
Cook C and Foster P: Epidemiology of
glaucoma: What's new? Can J Ophthalmol. 47:223–226. 2012.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Wang YX, Xu L, Yang H and Jonas JB:
Prevalence of glaucoma in North China: The Beijing Eye Study. Am J
Ophthalmol. 150:917–924. 2010.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gomes HA, Moreira BS, Sampaio RF, Furtado
SRC, Cronemberger S, Gomes RA and Kirkwood RN: Gait parameters,
functional mobility and fall risk in individuals with early to
moderate primary open angle glaucoma: A cross-sectional study. Braz
J Phys Ther. 22:376–382. 2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Durnian JM, Cheeseman R, Kumar A, Raja V,
Newman W and Chandna A: Childhood sight impairment: A 10-year
picture. Eye (Lond). 24:112–117. 2010.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Moschos MM, Nitoda E, Fenzel I, Song X,
Langenbucher A, Kaesmann B, Seitz B and Gatzioufas Z: Prognostic
factors of pediatric glaucoma: A retrospective study. Int
Ophthalmol. 39:359–373. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Sharafieh R AHC MS: Molecular genetics of
primary congenital glaucoma. Genet Dis Eye Chapter. 17:295–307.
2011.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hoguet A, Grajewski A, Hodapp E and Chang
TC: A retrospective survey of childhood glaucoma prevalence
according to Childhood Glaucoma Research Network classification.
Indian J Ophthalmol. 64:118–123. 2016.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Pedersen KB, Kappelgaard P, Kessel L,
Sandfeld L, Zibrandtsen N and Bach-Holm D: Primary congenital
glaucoma in Denmark, 1977-2016. Acta Ophthalmol. 98:182–189. 2020.
View Article : Google Scholar
|
|
9
|
Gothwal VK, Bharani S and Mandal AK:
Impact of surgery on the quality of life of caregivers of children
with congenital glaucoma. Ophthalmology. 123:1161–1162.
2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
MacKinnon JR, Giubilato A, Elder JE, Craig
JE and Mackey DA: Primary infantile glaucoma in an Australian
population. Clin Exp Ophthalmol. 32:14–18. 2004.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Gilbert C and Foster A: Childhood
blindness in the context of VISION 2020-the right to sight. Bull
World Health Organ. 79:227–232. 2001.PubMed/NCBI
|
|
12
|
Tamcelik N, Atalay E, Bolukbasi S, Capar O
and Ozkok A: Demographic features of subjects with congenital
glaucoma. Indian J Ophthalmol. 62:565–569. 2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Abouelhoda M, Sobahy T, El-Kalioby M,
Patel N, Shamseldin H, Monies D, Al-Tassan N, Ramzan K, Imtiaz F,
Shaheen R and Alkuraya FS: Clinical genomics can facilitate
countrywide estimation of autosomal recessive disease burden. Genet
Med. 18:1244–1249. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ho CL and Walton DS: Primary congenital
glaucoma: 2004 update. J Pediatr Ophthalmol Strabismus. 41:271–288;
quiz 300-271. 2004.PubMed/NCBI
|
|
15
|
Pilat AV, Shah S, Sheth V, Purohit R,
Proudlock FA, Abbott J and Gottlob I: Detection and
characterisation of optic nerve and retinal changes in primary
congenital glaucoma using hand-held optical coherence tomography.
BMJ Open Ophthalmol. 4(e000194)2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Chang TC, Grajewski AL and Cavuoto KM:
Evolving perspectives on congenital glaucoma. Curr Ophthalmol Rep.
3:85–90. 2015. View Article : Google Scholar
|
|
17
|
Amini H, Fakhraie G, Abolmaali S, Amini N
and Daneshvar R: Central corneal thickness in Iranian congenital
glaucoma patients. Middle East Afr J Ophthalmol. 19:194–198.
2012.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Pilat AV, Proudlock FA, Shah S, Sheth V,
Purohit R, Abbot J and Gottlob I: Assessment of the anterior
segment of patients with primary congenital glaucoma using handheld
optical coherence tomography. Eye (Lond). 33:1232–1239.
2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Lopes JE, Wilson RR, Alvim HS, Shields CL,
Shields JA, Calhoun J, Fontanarosa J and Steinmann WC: Central
corneal thickness in pediatric glaucoma. J Pediatr Ophthalmol
Strabismus. 44:112–117. 2007.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Jin SW and Ryu WY: Clinical manifestations
of strabismus in patients with primary congenital glaucoma. Semin
Ophthalmol. 34:451–457. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Arthur E, Elsner AE, Sapoznik KA, Papay
JA, Muller MS and Burns SA: Distances from capillaries to
arterioles or venules measured using OCTA and AOSLO. Invest
Ophthalmol Vis Sci. 60:1833–1844. 2019.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Patil B, Tandon R, Sharma N, Verma M,
Upadhyay AD, Gupta V and Sihota R: Corneal changes in childhood
glaucoma. Ophthalmology. 122:87–92. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shohdy KS, Rashad WA, Fargoun MK and Urban
P: The morphogen behind primary congenital glaucoma and the dream
of targeting. Rom J Morphol Embryol. 58:351–361. 2017.PubMed/NCBI
|
|
24
|
Sigle KJ, Camano-Garcia G, Carriquiry AL,
Betts DM, Kuehn MH and McLellan GJ: The effect of dorzolamide 2% on
circadian intraocular pressure in cats with primary congenital
glaucoma. Vet Ophthalmol. 14 (Suppl 1)(S48-S53)2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Angeli A, Abdel-Aziz AA, Nocentini A,
El-Azab AS, Gratteri P and Supuran CT: Synthesis and carbonic
anhydrase inhibition of polycyclic imides incorporating
N-benzenesulfonamide moieties. Bioorg Med Chem. 25:5373–5379.
2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Costa CM, Louvisse de Abreu LC, dos Santos
EP, Franca Presgrave OA, Rocha Pierucci AP, Rodrigues CR, de Sousa
VP, Nicoli S, Ricci Junior E and Cabral LM: Preparation and
evaluation of chitosan submicroparticles containing pilocarpine for
glaucoma therapy. Curr Drug Deliv. 12:491–503. 2015.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Morales J, Al Shahwan S, Al Odhayb S, Al
Jadaan I and Edward DP: Current surgical options for the management
of pediatric glaucoma. J Ophthalmol. 2013(763735)2013.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Al-Saikhan FI: The gene therapy revolution
in ophthalmology. Saudi J Ophthalmol. 27:107–111. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Perkins TW, Faha B, Ni M, Kiland JA,
Poulsen GL, Antelman D, Atencio I, Shinoda J, Sinha D, Brumback L,
et al: Adenovirus-mediated gene therapy using human
p21WAF-1/Cip-1to prevent wound healing in a rabbit model of
glaucoma filtration surgery. Arch Ophthalmol. 120:941–949.
2002.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Wen SF, Chen Z, Nery J and Faha B:
Characterization of adenovirus p21 gene transfer, biodistribution,
and immune response after local ocular delivery in New Zealand
white rabbits. Exp Eye Res. 77:0–365. 2003.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Heatley G, Kiland J, Faha B, Seeman J,
Schlamp CL, Dawson DG, Gleiser J, Maneval D, Kaufman PL and
Nickells RW: Gene therapy using p21WAF-1/Cip-1 to modulate wound
healing after glaucoma trabeculectomy surgery in a primate model of
ocular hypertension. Gene Ther. 11:949–955. 2004.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Khan AO: Genetics of primary glaucoma.
Curr Opin Ophthalmol. 22:347–355. 2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Sheffield VC, Stone EM, Alward WL, Drack
AV, Johnson AT, Streb LM and Nichols BE: Genetic linkage of
familial open angle glaucoma to chromosome 1q21-q31. Nat Genet.
4:47–50. 1993.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Talluri R and Shete S: A linkage
disequilibrium-based approach to selecting disease-associated rare
variants. PLoS One. 8(e69226)2013.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Sarfarazi M, Akarsu NA, Hossain A, Turacli
ME, Aktan SG, Barsoum-Homsy M, Chevrette L and Sayli BS: Assignment
of a locus (GLC3A) for primary congenital glaucoma (Buphthalmos) to
2p21 and evidence for genetic heterogeneity. Genomics. 30:171–177.
1995.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Akarsu AN, Turacli ME, Aktan SG,
Barsoum-Homsy M, Chevrette L, Sayli BS and Sarfarazi M: A second
locus (GLC3B) for primary congenital glaucoma (Buphthalmos) maps to
the 1p36 region. Hum Mol Genet. 5:1199–1203. 1996.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Stoilov IR and Sarfarazi M: The third
genetic locus (GLC3C) for primary congenital glaucoma (PCG) maps to
chromosome 14q24.3. Invest Ophth Vis Sci. 43:847. 2002.PubMed/NCBI
|
|
38
|
Tian Q, Li FH, Zhao KX, Wang L, Shan XY,
Pang YY, Li YX, Wu MJ, Qiu F and Li HY: A novel mutation in the
myocilin gene identified in a Chinese primary open angle glaucoma
family. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 24:629–634. 2007.(In
Chinese). PubMed/NCBI
|
|
39
|
Chen R, Gong B, Li Q, Zeng G, Hao F, Li N,
Shi Y and Zhang D: Analysis of COL9A2 gene mutations in a Chinese
Han population with pathological myopia. Zhonghua Yi Xue Yi Chuan
Xue Za Zhi. 31:129–133. 2014.(In Chinese). PubMed/NCBI View Article : Google Scholar
|
|
40
|
Sheikh SA, Waryah AM, Narsani AK, Shaikh
H, Gilal IA, Shah K, Qasim M, Memon AI, Kewalramani P and Shaikh N:
Mutational spectrum of the CyP1B1 gene in Pakistani patients with
primary congenital glaucoma: Novei variants and genotype-phenotype
correlations. Mol Vis. 20:991–1001. 2014.PubMed/NCBI
|
|
41
|
Micheal S, Ayub H, Zafar SN, Bakker B, Ali
M, Akhtar F, Islam F, Khan MI, Qamar R and den Hollander AI:
Identification of novel CYP1B1 gene mutations in patients with
primary congenital and primary open-angle glaucoma. Clin Exp
Ophthalmol. 43:31–39. 2015.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Koparir A, Karatas OF, Yuceturk B, Yuksel
B, Bayrak AO, Gerdan OF, Sagiroglu MS, Gezdirici A, Kirimtay K,
Selcuk E, et al: Novel POC1A mutation in primordial dwarfism
reveals new insights for centriole biogenesis. Hum Mol Genet.
24:5378–5387. 2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Lim SH, Tran-Viet KN, Yanovitch TL,
Freedman SF, Klemm T, Call W, Powell C, Ravichandran A, Metlapally
R, Nading EB, et al: CYP1B1, MYOC, and LTBP2 mutations in primary
congenital glaucoma patients in the United States. Am J Ophthalmol.
155:508–517. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Zhang C, Cerveira E, Romanovitch M and Zhu
Q: Array-based comparative genomic hybridization (aCGH). Methods
Mol Biol. 1541:167–179. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Lee JH, Ki CS, Kim HJ, Suh W, Lee ST, Kim
JW and Kee C: Analysis of copy number variation using whole genome
exon-focused array CGH in Korean patients with primary congenital
glaucoma. Mol Vis. 17:3583–3590. 2011.PubMed/NCBI
|
|
46
|
Abu-Amero KK, Osman EA, Mousa A, Wheeler
J, Whigham B, Allingham RR, Hauser MA and Al-Obeidan SA: Screening
of CYP1B1 and LTBP2 genes in Saudi families with primary congenital
glaucoma: Genotype-phenotype correlation. Mol Vis. 17:2911–2919.
2011.PubMed/NCBI
|
|
47
|
Broughton WL, Rosenbaum KN and Beauchamp
GR: Congenital glaucoma and other ocular abnormalities associated
with pericentric inversion of chromosome 11. Arch Ophthalmol.
101:594–597. 1983.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Nakane T, Kousuke N, Sonoko H, Yuko K,
Sato H, Kubota T and Sugita K: 6p subtelomere deletion with
congenital glaucoma, severe mental retardation, and growth
impairment. Pediatr Int. 55:376–381. 2013.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Merritt JL and Lindor NM: Further clinical
description of duplication of Williams-Beuren region presenting
with congenital glaucoma and brachycephaly. American J Med Genet.
Part A 146A:1055–1058. 2008.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Suri F, Yazdani S, Narooie-Nejhad M,
Zargar SJ, Paylakhi SH, Zeinali S, Pakravan M and Elahi E: Variable
expressivity and high penetrance of CYP1B1 mutations associated
with primary congenital glaucoma. Ophthalmology. 116:2101–2109.
2009.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Abu-Amero KK, Kondkar AA and Khan AO:
Molecular karyotyping of a dysmorphic girl from Saudi Arabia with
CYP1B1-negative primary congenital glaucoma. Ophthalmic Genet.
37:98–101. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Rasmussen DH and Ellis PP: Congenital
glaucoma in identical twins. Arch Ophthalmol. 84:827–830.
1970.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Fried K, Sachs R and Krakowsky D:
Congenital glaucoma in only one of identical twins.
Ophthalmologica. 174:185–187. 1977.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Walton DS, Nagao K, Yeung HH and Kane SA:
Late-recognized primary congenital glaucoma. J Pediatr Ophthalmol
Strabismus. 50:234–238. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Faiq MA, Dada R, Qadri R and Dada T:
CYP1B1-mediated pathobiology of primary congenital glaucoma. J Curr
Glaucoma Pract. 9:77–80. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Souzeau E, Dubowsky A, Ruddle JB and Craig
JE: Primary congenital glaucoma due to paternal uniparental
isodisomy of chromosome 2 and CYP1B1 deletion. Mol Genet Genomic
Med. 7(774)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Manali D, Craig M, Bejjani BA and Edward
DP: Immunolocalization of CYP1B1 in normal, human, fetal and adult
eyes. Exp Eye Res. 82:24–32. 2006.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Song N, Leng L, Yang XJ, Zhang YQ, Tang C,
Chen WS, Zhu W and Yang X: Compound heterozygous mutations in
CYP1B1 gene leads to severe primary congenital glaucoma phenotype.
Int J Ophthalmol. 12:909–914. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Campos-Mollo E, López-Garrido MP,
Blanco-Marchite C, Garcia-Feijoo J, Peralta J, Belmonte-Martínez J,
Ayuso C and Escribano J: CYP1B1 mutations in Spanish patients with
primary congenital glaucoma: Phenotypic and functional variability.
Mol Vis. 15:417–431. 2009.PubMed/NCBI
|
|
60
|
Chavarria-Soley G, Sticht H, Aklillu E,
Ingelman-Sundberg M, Pasutto F, Reis A and Rautenstrauss B:
Mutations in CYP1B1 cause primary congenital glaucoma by reduction
of either activity or abundance of the enzyme. Hum Mutat.
29:1147–1153. 2008.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Tran HT, Tran HT, Luong LH, Nguyen TS,
Nguyen HQ, Vu TT, Ta TD, Dao TMA, Bui TH, Ta TV and Tran VK:
Primary congenital glaucoma in Vietnam: Analysis and identification
of novel CYP1B1 variants. Ophthalmic Genet. 40:286–287.
2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Khafagy MM, El-Guendy N, Tantawy MA,
Eldaly MA, Elhilali HM and Wahab AHAA: Novel CYP1B1 mutations and a
possible prognostic use for surgical management of congenital
glaucoma. Int J Ophthalmol. 12:607–614. 2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hilal L, Boutayeb S, Serrou A,
Refass-Buret L, Shisseh H, Bencherifa F, El Mzibri M, Benazzouz B
and Berraho A: Screening of CYP1B1 and MYOC in Moroccan families
with primary congenital glaucoma: Three novel mutations in CYP1B1.
Mol Vis. 16:1215–1226. 2010.PubMed/NCBI
|
|
64
|
Dimasi DP, Hewitt AW, Straga T, Pater J,
MacKinnon JR, Elder JE, Casey T, Mackey DA and Craig JE: Prevalence
of CYP1B1 mutations in Australian patients with primary congenital
glaucoma. Clin Genet. 72:255–260. 2007.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Libby RT, Smith RS, Savinova OV, Zabaleta
A, Martin JE, Gonzalez FJ and John SW: Modification of ocular
defects in mouse developmental glaucoma models by tyrosinase.
Science. 299:1578–1581. 2003.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lewis CJ, Hedberg-Buenz A, DeLuca AP,
Stone EM, Alward WLM and Fingert JH: Primary congenital and
developmental glaucomas. Hum Mol Genet. 26:28–36. 2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Zhao Y, Wang S, Sorenson CM, Teixeira L,
Dubielzig RR, Peters DM, Conway SJ, Jefcoate CR and Sheibani N:
Cyp1b1 mediates periostin regulation of trabecular meshwork
development by suppression of oxidative stress. Mol Cell Biol.
33:4225–4240. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Mookherjee S, Acharya M, Banerjee D,
Bhattacharjee A and Ray K: Molecular basis for involvement of
CYP1B1 in MYOC upregulation and its potential implication in
glaucoma pathogenesis. PLoS One. 7(45077)2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
López-Garrido MP, Medina-Trillo C,
Morales-Fernandez L, Garcia-Feijoo J, Martínez-de-la-Casa JM,
García-Antón M and Escribano J: Null CYP1B1 genotypes in primary
congenital and nondominant juvenile glaucoma. Ophthalmology.
120:716–723. 2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Alsaif HS, Khan AO, Patel N, Alkuraya H,
Hashem M, Abdulwahab F, Ibrahim N, Aldahmesh MA and Alkuraya FS:
Congenital glaucoma and CYP1B1: An old story revisited. Hum Genet.
138:1043–1049. 2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Li N, Zhou Y, Du L, Wei M and Chen X:
Overview of Cytochrome P450 1B1 gene mutations in patients with
primary congenital glaucoma. Exp Eye Res. 93:572–579.
2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ou Z, Liu G, Liu W, Deng Y, Zheng L, Zhang
S and Feng G: Bioinformatics analysis of CYP1B1 mutation hotspots
in Chinese primary congenital glaucoma patients. Biosci Rep.
38(BSR20180056)2018.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Coêlho REA, Sena DR, Santa Cruz F, Moura
BCFS, Han CC, Andrade FN and Lira RPC: CYP1B1 gene and phenotypic
correlation in patients from Northeastern Brazil with primary
congenital glaucoma. J Glaucoma. 28:161–164. 2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Rashid M, Yousaf S, Sheikh SA, Sajid Z,
Shabbir AS, Kausar T, Tariq N, Usman M, Shaikh RS, Ali M, et al:
Identities and frequencies of variants in CYP1B1 causing primary
congenital glaucoma in Pakistan. Mol Vis. 25:144–154.
2019.PubMed/NCBI
|
|
75
|
Waryah YM, Iqbal M, Sheikh SA, Baig MA,
Narsani AK, Atif M, Bhinder MA, Ur Rahman A, Memon AI, Pirzado MS
and Waryah AM: Two novel variants in CYP1B1 gene: A major
contributor of autosomal recessive primary congenital glaucoma with
allelic heterogeneity in Pakistani patients. Int J Ophthalmol.
12:8–15. 2019.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Talebi F, Mardasi FG, Asl JM and Lashgari
A: Mutational spectrum of the CYP1B1 gene in Iranain primary
congenital glaucoma family. Can J Ophthalmol. 53:87–89.
2018.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Sarfarazi M and Stoilov I: Molecular
genetics of primary congenital glaucoma. Eye (Lond). 14:422–428.
2000.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Wang SL, Piao SY, Xu MY, Zhang W, Ma JQ,
Hao J, Chi H, Xue ZQ, Ha SP and Zhuang WJ: Evaluating correlation
between the ocular biometry and genetic variants of MYOC and ABCA1
with primary angleclosure glaucoma in a cohort from northern China.
Int J Ophthalmol. 12:1317–1322. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Nazir S, Mukhtar M, Shahnawaz M, Farooqi
S, Fatima N, Mehmood R and Sheikh N: A novel single nucleotide
polymorphism in exon 3 of MYOC enhances the risk of glaucoma. PLoS
One. 13(e0195157)2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Millá E, Mañé B, Duch S, Hernan I, Borràs
E, Planas E, Dias Mde S, Carballo M and Gamundi MJ: Spanish
Multicenter Glaucoma Group-Estudio Multicéntrico Español de
Investigación Genética del Glaucoma, EMEIGG. Survey of familial
glaucoma shows a high incidence of cytochrome P450, family 1,
subfamily B, polypeptide 1 (CYP1B1) mutations in non-consanguineous
congenital forms in a Spanish population. Mol Vis. 19:1707–1722.
2013.PubMed/NCBI
|
|
81
|
Lei L, Shushan L, Liu XY and Zhang C:
Novel MYOC gene mutation in a Chinese family with primary
open-angle glaucoma. Br J Ophthalmol. 1–6. 2019.
|
|
82
|
Kaur K, Reddy AB, Mukhopadhyay A, Mandal
AK, Hasnain SE, Ray K, Thomas R, Balasubramanian D and Chakrabarti
S: Myocilin gene implicated in primary congenital glaucoma. Clin
Genet. 67:335–340. 2005.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chakrabarti S, Kaur K, Rao KN, Mandal AK,
Kaur I, Parikh RS and Thomas R: The transcription factor gene FOXC1
exhibits a limited role in primary congenital glaucoma. Invest
Ophthalmol Vis Sci. 50:75–83. 2009.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Kim HJ, Suh W, Park SC, Kim CY, Park KH,
Kook MS, Kim YY, Kim CS, Park CK, Ki CS and Kee C: Mutation
spectrum of CYP1B1 and MYOC genes in Korean patients with primary
congenital glaucoma. Mol Vis. 17:2093–2101. 2011.PubMed/NCBI
|
|
85
|
Chen Y, Jiang D, Yu L, Katz B, Zhang K,
Wan B and Sun X: CYP1B1 and MYOC mutations in 116 Chinese patients
with primary congenital glaucoma. Arch Ophthalmol. 126:1443–1447.
2008.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Siggs OM, Souzeau E, Pasutto F, Dubowsky
A, Smith JEH, Taranath D, Pater J, Rait JL, Narita A, Mauri L, et
al: Prevalence of FOXC1 variants in individuals with a suspected
diagnosis of primary congenital glaucoma. JAMA Ophthalmol.
137:348–355. 2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Smith RS, Zabaleta A, Kume T, Savinova OV,
Kidson SH, Martin JE, Nishimura DY, Alward WL, Hogan BL and John
SW: Haploinsufficiency of the transcription factors FOXC1 and FOXC2
results in aberrant ocular development. Hum Mol Genet. 9:1021–1032.
2000.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Chakrabarti S, Kaur K, Komatireddy S,
Acharya M, Devi KR, Mukhopadhyay A, Mandal AK, Hasnain SE,
Chandrasekhar G, Thomas R and Ray K: Gln48His is the prevalent
myocilin mutation in primary open angle and primary congenital
glaucoma phenotypes in India. Mol Vis. 11:111–113. 2005.PubMed/NCBI
|
|
89
|
Medina-Trillo C, Aroca-Aguilar JD,
Méndez-Hernández CD, Morales L, García-Antón M, García-Feijoo J and
Escribano J: Rare FOXC1 variants in congenital glaucoma:
Identification of translation regulatory sequences. Eur J Hum
Genet. 24:672–680. 2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Rosbach J, Vossmerbaeumer U, Renieri G,
Pfeiffer N and Thieme H: Osteogenesis imperfecta and glaucoma. A
case report. Ophthalmologe. 109:479–82. 2012.(In German).
PubMed/NCBI View Article : Google Scholar
|
|
91
|
Mauri L, Uebe S, Sticht H, Vossmerbaeumer
U, Weisschuh N, Manfredini E, Maselli E, Patrosso M, Weinreb RN,
Penco S, et al: Expanding the clinical spectrum of COL1A1 mutations
in different forms of glaucoma. Orphanet J Rare Dis.
11(108)2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Vithana EN, Aung T, Khor CC, Cornes BK,
Tay WT, Sim X, Lavanya R, Wu R, Zheng Y, Hibberd ML, et al:
Collagen-related genes influence the glaucoma risk factor, central
corneal thickness. Hum Mol Genet. 20:649–658. 2011.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Dimasi DP, Chen JY, Hewitt AW, Klebe S,
Davey R, Stirling J, Thompson E, Forbes R, Tan TY Savarirayan R, et
al: Novel quantitative trait loci for central corneal thickness
identified by candidate gene analysis of osteogenesis imperfecta
genes. Hum Genet. 127:33–44. 2010.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Liang X, Zhang L, Ji Q, Wang B, Wei D and
Cheng D: miR-421 promotes apoptosis and suppresses metastasis of
osteosarcoma cells via targeting LTBP2. J Cell Biochem.
120:10978–10987. 2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Suri F, Yazdani S and Elahi E: LTBP2
knockdown and oxidative stress affect glaucoma features including
TGFβ pathways, ECM genes expression and apoptosis in trabecular
meshwork cells. Gene. 673:70–81. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Narooie-Nejad M, Paylakhi SH, Shojaee S,
Fazlali Z, Rezaei Kanavi M, Nilforushan N, Yazdani S, Babrzadeh F,
Suri F, Ronaghi M, et al: Loss of function mutations in the gene
encoding latent transforming growth factor beta binding protein 2,
LTBP2, cause primary congenital glaucoma. Hum Mol Genet.
18:3969–3977. 2009.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ali M, McKibbin M, Booth A, Parry DA, Jain
P, Riazuddin SA, Hejtmancik JF, Khan SN, Firasat S, Shires M, et
al: Null mutations in LTBP2 cause primary congenital glaucoma. Am J
Hum Genet. 84:664–671. 2009.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Morlino S, Alesi V, Calì F, Lepri FR,
Secinaro A, Grammatico P, Novelli A, Drago F, Castori M and Baban
A: LTBP2-related ‘Marfan-like’ phenotype in two Roma/Gypsy subjects
with the LTBP2 homozygous p.R299X variant. Am J Med Genet A.
179:104–112. 2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Challa P, Hauser MA, Luna CC, Freedman SF,
Pericak-Vance M, Yang J, McDonald MT and Allingham RR: Juvenile
bilateral lens dislocation and glaucoma associated with a novel
mutation in the fibrillin 1 gene. Mol Vis. 12:1009–1115.
2006.PubMed/NCBI
|
|
100
|
Yang Y, Zhang L, Li S, Zhu X and
Sundaresan P: Candidate gene analysis identifies mutations in
CYP1B1 and LTBP2 in Indian families with primary congenital
glaucoma. Genet Test Mol Biomarkers. 21:252–258. 2017.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Micheal S, Siddiqui SN, Zafar SN, Iqbal A,
Khan MI and Hollander AID: Identification of novel variants
inLTBP2andPXDNUsing whole-exome sequencing in developmental and
congenital glaucoma. PLoS One. 11(e0159259)2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Kuehn MH, Lipsett KA, Menotti-Raymond M,
Whitmore SS, Scheetz TE, David VA, O'Brien SJ, Zhao Z, Jens JK,
Snella EM, et al: Correction: A mutation in LTBP2 causes congenital
glaucoma in domestic cats (Felis catus). PLoS One.
11(e0161517)2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Inoue T, Ohbayashi T, Fujikawa Y, Yoshida
H, Akama TO, Noda K, Horiguchi M, Kameyama K, Hata Y, Takahashi K,
et al: Latent TGF-β binding protein-2 is essential for the
development of ciliary zonule microfibrils. Hum Mol Genet.
23:5672–5682. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Ma AS, Grigg JR and Jamieson RV:
Phenotype-genotype correlations and emerging pathways in ocular
anterior segment dysgenesis. Hum Genet. 138:899–915.
2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Coleman AL and Miglior S: Risk factors for
glaucoma onset and progression. Sur Ophthalmol. 53 (Suppl
1)(S3-S10)2008.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Krishnakumar K, Margaret R, Marchant JK,
Stephen H and John SW: Schlemm's canal is a unique vessel with a
combination of blood vascular and lymphatic phenotypes that forms
by a novel developmental process. PLoS Biol.
12(e1001912)2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Aspelund A, Tammela T, Antila S, Nurmi H,
Leppänen VM, Zarkada G, Stanczuk L, Francois M, Mäkinen T,
Saharinen P, et al: The Schlemm's canal is a
VEGF-C/VEGFR-3-responsive lymphatic-like vessel. J Clin Invest.
124:3975–3986. 2014.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Saharinen P, Eklund L and Alitalo K:
Therapeutic targeting of the angiopoietin-TIE pathway. Nat Rev Drug
Dis. 16:635–661. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Partanen J, Armstrong E, Mäkelä TP,
Korhonen J, Sandberg M, Renkonen R, Knuutila S, Huebner K and
Alitalo K: A novel endothelial cell surface receptor tyrosine
kinase with extracellular epidermal growth factor homology domains.
Mol Cell Biol. 12:1698–1707. 1992.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Limaye N, Wouters V, Uebelhoer M, Tuominen
M, Wirkkala R, Mulliken JB, Eklund L, Boon LM and Vikkula M:
Somatic mutations in angiopoietin receptor gene TEK cause solitary
and multiple sporadic venous malformations. Nat Genet. 41:118–124.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
111
|
Suri C, Jones PF, Patan S, Bartunkova S,
Maisonpierre PC, Davis S, Sato TN and Yancopoulos GD: Requisite
role of angiopoietin-1, a ligand for the TIE2 receptor, during
embryonic angiogenesis. Cell. 87:1171–1180. 1996.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Barton WA, Dalton AC, Seegar TCM, Himanen
JP and Nikolov DB: Tie2 and Eph receptor tyrosine kinase activation
and signaling. Cold Spring Harb Perspect Biol.
6(a009142)2014.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Kesler CT, Pereira ER, Cui CH, Nelson GM,
Masuck DJ, Baish JW and Padera TP: Angiopoietin-4 increases
permeability of blood vessels and promotes lymphatic dilation.
FASEB J. 29:3668–3677. 2015.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Elamaa H, Kihlström M, Kapiainen E,
Kaakinen M, Miinalainen I, Ragauskas S, Cerrada-Gimenez M, Mering
S, Nätynki M and Eklund L: Angiopoietin-4-dependent venous
maturation and fluid drainage in the peripheral retina. Elife.
7(e37776)2018.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Thomson BR, Heinen S, Jeansson M, Ghosh
AK, Fatima A, Sung HK, Onay T, Chen H, Yamaguchi S, Economides AN,
et al: A lymphatic defect causes ocular hypertension and glaucoma
in mice. J Clin Invest. 124:4320–4324. 2014.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Thomson BR, Souma T, Tompson SW, Onay T,
Kizhatil K, Siggs OM, Feng L, Whisenhunt KN, Yanovitch TL,
Kalaydjieva L, et al: Angiopoietin-1 is required for Schlemm's
canal development in mice and humans. J Clin Invest. 127:4421–4436.
2017.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Souma T, Tompson SW, Thomson BR, Siggs OM,
Kizhatil K, Yamaguchi S, Feng L, Limviphuvadh V, Whisenhunt KN,
Maurer-Stroh S, et al: Angiopoietin receptor TEK mutations underlie
primary congenital glaucoma with variable expressivity. J Clin
Invest. 126:2575–2587. 2016.PubMed/NCBI View Article : Google Scholar
|