Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review)

  • Authors:
    • Yuchen Song
    • Manqi Lu
    • Haixia Yuan
    • Tianyi Chen
    • Xinmin Han
  • View Affiliations / Copyright

    Affiliations: Institute of Pediatrics of Traditional Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
    Copyright: © Song et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 714-726
    |
    Published online on: May 25, 2020
       https://doi.org/10.3892/etm.2020.8789
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental and behavioral disorder with a serious negative impact on the quality of life from childhood until adulthood, which may cause academic failure, family disharmony and even social unrest. The pathogenesis of ADHD has remained to be fully elucidated, leading to difficulties in the treatment of this disease. Genetic and environmental factors contribute to the risk of ADHD development. Certain studies indicated that ADHD has high comorbidity with allergic and autoimmune diseases, with various patients with ADHD having a high inflammatory status. Increasing evidence indicated that mast cells (MCs) are involved in the pathogenesis of brain inflammation and neuropsychiatric disorders. MCs may cause or aggravate neuroinflammation via the selective release of inflammatory factors, interaction with glial cells and neurons, activation of the hypothalamic‑pituitary adrenal axis or disruption of the blood‑brain barrier integrity. In the present review, the notion that MC activation may be involved in the occurrence and development of ADHD through a number of ways is discussed based on previously published studies. The association between MCs and ADHD appears to lack sufficient evidence at present and this hypothesis is considered to be worthy of further study, providing a novel perspective for the treatment of ADHD.
View Figures

Figure 1

View References

1 

Thapar A and Cooper M: Attention deficit hyperactivity disorder. Lancet. 387:1240–1250. 2016.PubMed/NCBI View Article : Google Scholar

2 

Dalsgaard S, Ostergaard SD, Leckman JF, Mortensen PB and Pedersen MG: Mortality in children, adolescents, and adults with attention deficit hyperactivity disorder: A nationwide cohort study. Lancet. 385:2190–2196. 2015.PubMed/NCBI View Article : Google Scholar

3 

Howlett JR, Campbell-Sills L, Jain S, Heeringa SG, Nock MK, Sun X, Ursano RJ and Stein MB: Attention deficit hyperactivity disorder and risk of posttraumatic stress and related disorders: A prospective longitudinal evaluation in U.S. army soldiers. J Trauma Stress. 31:909–918. 2018.PubMed/NCBI View Article : Google Scholar

4 

Ahmed R, Borst JM, Yong CW and Aslani P: Do parents of children with attention-deficit/hyperactivity disorder (ADHD) receive adequate information about the disorder and its treatments? A qualitative investigation. Patient Prefer Adherence. 8:661–670. 2014.PubMed/NCBI View Article : Google Scholar

5 

Hawi Z, Cummins TD, Tong J, Johnson B, Lau R, Samarrai W and Bellgrove MA: The molecular genetic architecture of attention deficit hyperactivity disorder. Mol Psychiatry. 20:289–297. 2015.PubMed/NCBI View Article : Google Scholar

6 

Posner J, Polanczyk GV and Sonuga-Barke E: Attention-deficit hyperactivity disorder. Lancet. 395:450–462. 2020.PubMed/NCBI View Article : Google Scholar

7 

Williams NM, Zaharieva I, Martin A, Langley K, Mantripragada K, Fossdal R, Stefansson H, Stefansson K, Magnusson P, Gudmundsson OO, et al: Rare chromosomal deletions and duplications in attention-deficit hyperactivity disorder: A genome-wide analysis. Lancet. 376:1401–1408. 2010.PubMed/NCBI View Article : Google Scholar

8 

Thapar A, Cooper M, Eyre O and Langley K: What have we learnt about the causes of ADHD? J Child Psychol Psychiatry. 54:3–16. 2013.

9 

Thompson JM, Waldie KE, Wall CR, Murphy R and Mitchell EA: ABC study group: Associations between acetaminophen use during pregnancy and ADHD symptoms measured at ages 7 and 11 years. PLoS One. 9(e108210)2014.PubMed/NCBI View Article : Google Scholar

10 

Harold GT, Leve LD, Barrett D, Elam K, Neiderhiser JM, Natsuaki MN, Shaw DS, Reiss D and Thapar A: Biological and rearing mother influences on child ADHD symptoms: Revisiting the developmental interface between nature and nurture. J Child Psychol Psychiatry. 54:1038–1046. 2013.PubMed/NCBI View Article : Google Scholar

11 

Waltes R, Freitag CM, Herlt T, Lempp T, Seitz C, Palmason H, Meyer J and Chiocchetti AG: Impact of autism-associated genetic variants in interaction with environmental factors on ADHD comorbidities: An exploratory pilot study. J Neural Transm (Vienna). 126:1679–1693. 2019.PubMed/NCBI View Article : Google Scholar

12 

Grisham JR, Fullana MA, Mataix-Cols D, Moffitt TE, Caspi A and Poulton R: Risk factors prospectively associated with adult obsessive-compulsive symptom dimensions and obsessive-compulsive disorder. Psychol Med. 41:2495–2506. 2011.PubMed/NCBI View Article : Google Scholar

13 

Russell VA: Overview of animal models of attention deficit hyperactivity disorder (ADHD). Curr Protoc Neurosci. 9:9–35. 2011.PubMed/NCBI View Article : Google Scholar

14 

Hoogman M, Bralten J, Hibar DP, Mennes M, Zwiers MP, Schweren LSJ, van Hulzen KJE, Medland SE, Shumskaya E, Jahanshad N, et al: Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: A cross-sectional mega-analysis. Lancet Psychiatry. 4:310–319. 2017.PubMed/NCBI View Article : Google Scholar

15 

Gurkan K, Bilgic A, Turkoglu S, Kilic BG, Aysev A and Uslu R: Depression, anxiety and obsessive-compulsive symptoms and quality of life in children with attention-deficit hyperactivity disorder (ADHD) during three-month methylphenidate treatment. J Psychopharmacol. 24:1810–1818. 2010.PubMed/NCBI View Article : Google Scholar

16 

Wilens TE: Effects of methylphenidate on the catecholaminergic system in attention-deficit/hyperactivity disorder. J Clin Psychopharmacol. 28 (3 Suppl 2):S46–S53. 2008.PubMed/NCBI View Article : Google Scholar

17 

Lyman M, Lloyd DG, Ji X, Vizcaychipi MP and Ma D: Neuroinflammation: The role and consequences. Neurosci Res. 79:1–12. 2014.PubMed/NCBI View Article : Google Scholar

18 

Milo R, Korczyn AD, Manouchehri N and Stüve O: The temporal and causal relationship between inflammation and neurodegeneration in multiple sclerosis. Mult Scler. 4(1352458519886943)2019.PubMed/NCBI View Article : Google Scholar

19 

Varley J, Brooks DJ and Edison P: Imaging neuroinflammation in Alzheimer's disease and other dementias: Recent advances and future directions. Alzheimers Dement. 11:1110–1120. 2015.PubMed/NCBI View Article : Google Scholar

20 

Bradburn S, Murgatroyd C and Ray N: Neuroinflammation in mild cognitive impairment and Alzheimer's disease: A meta-analysis. Ageing Res Rev. 50:1–8. 2019.PubMed/NCBI View Article : Google Scholar

21 

Jayaraj RL, Azimullah S, Beiram R, Jalal FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation. 16(142)2019.PubMed/NCBI View Article : Google Scholar

22 

Woelfer M, Kasties V, Kahlfuss S and Walter M: The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience. 403:93–110. 2019.PubMed/NCBI View Article : Google Scholar

23 

Matta SM, Hill-Yardin EL and Crack PJ: The influence of neuroinflammation in autism spectrum disorder. Brain Behav Immun. 79:75–90. 2019.PubMed/NCBI View Article : Google Scholar

24 

Calabrese V, Giordano J, Crupi R, Di Paola R, Ruggieri M, Bianchini R, Ontario ML, Cuzzocrea S and Calabrese EJ: Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res. 95:1182–1193. 2017.PubMed/NCBI View Article : Google Scholar

25 

Huh Y, Ji RR and Chen G: Neuroinflammation, bone marrow stem cells, and chronic pain. Front Immunol. 8(1014)2017.PubMed/NCBI View Article : Google Scholar

26 

Lucas SM, Rothwell NJ and Gibson RM: The role of inflammation in CNS injury and disease. Br J Pharmacol. 147 (Suppl 1):S232–S240. 2006.PubMed/NCBI View Article : Google Scholar

27 

Skaper SD, Facci L, Zusso M and Giusti P: An inflammation-centric view of neurological disease: Beyond the neuron. Front Cell Neurosci. 12(72)2018.PubMed/NCBI View Article : Google Scholar

28 

Colonna M and Butovsky O: Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 35:441–468. 2017.PubMed/NCBI View Article : Google Scholar

29 

Skaper SD, Giusti P and Facci L: Microglia and mast cells: Two tracks on the road to neuroinflammation. FASEB J. 26:3103–3117. 2012.PubMed/NCBI View Article : Google Scholar

30 

Zhang CJ, Jiang M, Zhou H, Liu W, Wang C, Kang Z, Han B, Zhang Q, Chen X, Xiao J, et al: TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. J Clin Invest. 128:5399–5412. 2018.PubMed/NCBI View Article : Google Scholar

31 

Xiong XY, Liu L and Yang QW: Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog Neurobiol. 142:23–44. 2016.PubMed/NCBI View Article : Google Scholar

32 

Colombo E and Farina C: Astrocytes: Key regulators of neuroinflammation. Trends Immunol. 37:608–620. 2016.PubMed/NCBI View Article : Google Scholar

33 

Montoya A, Elgueta D, Campos J, Chovar O, Falcón P, Matus S, Alfaro I, Bono MR and Pacheco R: Dopamine receptor D3 signalling in astrocytes promotes neuroinflammation. J Neuroinflammation. 16(258)2019.PubMed/NCBI View Article : Google Scholar

34 

Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Raikwar SP, Iyer SS, Bhagavan SM, Beladakere-Ramaswamy S and Zaheer A: Mast cell activation in brain injury, stress, and post-traumatic stress disorder and Alzheimer's disease pathogenesis. Front Neurosci. 11(703)2017.PubMed/NCBI View Article : Google Scholar

35 

Krystel-Whittemore M, Dileepan KN and Wood JG: Mast cell: A multi-functional master cell. Front Immunol. 6(620)2016.PubMed/NCBI View Article : Google Scholar

36 

Gilfillan AM, Austin SJ and Metcalfe DD: Mast cell biology: Introduction and overview. Adv Exp Med Biol. 716:2–12. 2011.PubMed/NCBI View Article : Google Scholar

37 

Prussin C and Metcalfe DD: 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 111 (Suppl 2):S486–S494. 2003.PubMed/NCBI View Article : Google Scholar

38 

Vyas H and Krishnaswamy G: Paul Ehrlich's ‘Mastzellen’-from aniline dyes to DNA chip arrays: A historical review of developments in mast cell research. Methods Mol Biol. 315:3–11. 2006.PubMed/NCBI

39 

Irani AM and Schwartz LB: Human mast cell heterogeneity. Allergy Proc. 15:303–308. 1994.PubMed/NCBI View Article : Google Scholar

40 

da Silva EZ, Jamur MC and Oliver C: Mast cell function: A new vision of an old cell. J Histochem Cytochem. 62:698–738. 2014.PubMed/NCBI View Article : Google Scholar

41 

Polyzoidis S, Koletsa T, Panagiotidou S, Ashkan K and Theoharides TC: Mast cells in meningiomas and brain inflammation. J Neuroinflammation. 12(170)2015.PubMed/NCBI View Article : Google Scholar

42 

Galli SJ and Tsai M: IgE and mast cells in allergic disease. Nat Med. 18:693–704. 2012.PubMed/NCBI View Article : Google Scholar

43 

Kritikou E, Kuiper J, Kovanen PT and Bot I: The impact of mast cells on cardiovascular diseases. Eur J Pharmacol. 778:103–115. 2016.PubMed/NCBI View Article : Google Scholar

44 

Sant GR, Kempuraj D, Marchand JE and Theoharides TC: The mast cell in interstitial cystitis: Role in pathophysiology and pathogenesis. Urology. 69 (Suppl 4):S34–S40. 2007.PubMed/NCBI View Article : Google Scholar

45 

Suurmond J, van der Velden D, Kuiper J, Bot I and Toes RE: Mast cells in rheumatic disease. Eur J Pharmacol. 778:116–124. 2016.PubMed/NCBI View Article : Google Scholar

46 

Theoharides TC, Donelan J, Kandere-Grzybowska K and Konstantinidou A: The role of mast cells in migraine pathophysiology. Brain Res Brain Res Rev. 49:65–76. 2005.PubMed/NCBI View Article : Google Scholar

47 

Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E and Kalogeromitros D: Mast cell activation and autism. Biochim Biophys Acta. 1822:34–41. 2012.PubMed/NCBI View Article : Google Scholar

48 

Boyce JA: Mast cells and eicosanoid mediators: A system of reciprocal paracrine and autocrine regulation. Immunol Rev. 217:168–185. 2007.PubMed/NCBI View Article : Google Scholar

49 

Dong H, Wang Y, Zhang X, Zhang X, Qian Y, Ding H and Zhang S: Stabilization of brain mast cells alleviates LPS-induced neuroinflammation by inhibiting microglia activation. Front Cell Neurosci. 13(191)2019.PubMed/NCBI View Article : Google Scholar

50 

Forsythe P: Mast cells in neuroimmune interactions. Trends Neurosci. 42:43–55. 2019.PubMed/NCBI View Article : Google Scholar

51 

Theoharides TC, Kempuraj D, Tagen M, Conti P and Kalogeromitros D: Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev. 217:65–78. 2007.PubMed/NCBI View Article : Google Scholar

52 

Theoharides TC and Cochrane DE: Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol. 146:1–12. 2004.PubMed/NCBI View Article : Google Scholar

53 

Theoharides TC, Sieghart W, Greengard P and Douglas WW: Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science. 207:80–82. 1980.PubMed/NCBI View Article : Google Scholar

54 

Dvorak AM: Basophils and mast cells: Piecemeal degranulation in situ and ex vivo: A possible mechanism for cytokine-induced function in disease. Immunol Ser. 57:169–271. 1992.PubMed/NCBI

55 

Pang X, Letourneau R, Rozniecki JJ, Wang L and Theoharides TC: Definitive characterization of rat hypothalamic mast cells. Neuroscience. 73:889–902. 1996.PubMed/NCBI View Article : Google Scholar

56 

van Haaster CM, Engels W, Lemmens PJ, Hornstra G, van der Vusse GJ and Heemskerk JW: Differential release of histamine and prostaglandin D2 in rat peritoneal mast cells: Roles of cytosolic calcium and protein tyrosine kinases. Biochim Biophys Acta. 1265:79–88. 1995.PubMed/NCBI View Article : Google Scholar

57 

Lee CC, Avalos AM and Ploegh HL: Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 12:168–179. 2012.PubMed/NCBI View Article : Google Scholar

58 

McCurdy JD, Olynych TJ, Maher LH and Marshall JS: Cutting edge: Distinct Toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. J Immunol. 170:1625–1629. 2003.PubMed/NCBI View Article : Google Scholar

59 

Sismanopoulos N, Delivanis DA, Alysandratos KD, Angelidou A, Therianou A, Kalogeromitros D and Theoharides TC: Mast cells in allergic and inflammatory diseases. Curr Pharm Des. 18:2261–2277. 2012.PubMed/NCBI View Article : Google Scholar

60 

Cao J, Cetrulo CL and Theoharides TC: Corticotropin-releasing hormone induces vascular endothelial growth factor release from human mast cells via the cAMP/protein kinase A/p38 mitogen-activated protein kinase pathway. Mol Pharmacol. 69:998–1006. 2006.PubMed/NCBI View Article : Google Scholar

61 

Alysandratos KD, Asadi S, Angelidou A, Zhang B, Sismanopoulos N, Yang H, Critchfield A and Theoharides TC: Neurotensin and CRH interactions augment human mast cell activation. PLoS One. 7(e48934)2012.PubMed/NCBI View Article : Google Scholar

62 

Kandere-Grzybowska K, Letourneau R, Kempuraj D, Donelan J, Poplawski S, Boucher W, Athanassiou A and Theoharides TC: IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol. 171:4830–4836. 2003.PubMed/NCBI View Article : Google Scholar

63 

Bawazeer MA and Theoharides TC: IL-33 stimulates human mast cell release of CCL5 and CCL2 via MAPK and NF-kB, inhibited by methoxyluteolin. Eur J Pharmacol. 865(172760)2019.PubMed/NCBI View Article : Google Scholar

64 

Theoharides TC and Leeman SE: Effect of IL-33 on de novo synthesized mediators from human mast cells. J Allergy Clin Immunol. 143(451)2019.PubMed/NCBI View Article : Google Scholar

65 

Taracanova A, Tsilioni I, Conti P, Norwitz ER, Leeman SE and Theoharides TC: Substance P and IL-33 administered together stimulate a marked secretion of IL-1β from human mast cells, inhibited by methoxyluteolin. Proc Natl Acad Sci USA. 115:E9381–E9390. 2018.PubMed/NCBI View Article : Google Scholar

66 

Drube S, Kraft F, Dudeck J, Muller AL, Weber F, Gopfert C, Meininger I, Beyer M, Irmler I, Hafner N, et al: MK2/3 are pivotal for IL-33-induced and mast cell-dependent leukocyte recruitment and the resulting skin inflammation. J Immunol. 197:3662–3668. 2016.PubMed/NCBI View Article : Google Scholar

67 

Gasque P, Singhrao SK, Neal JW, Gotze O and Morgan BP: Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol. 150:31–41. 1997.PubMed/NCBI

68 

Pundir P, MacDonald CA and Kulka M: The novel receptor C5aR2 is required for C5a-mediated human mast cell adhesion, migration, and proinflammatory mediator production. J Immunol. 195:2774–2787. 2015.PubMed/NCBI View Article : Google Scholar

69 

Yuan B, Fu F, Huang S, Lin C, Yang G, Ma K, Shi H and Yang Z: C5a/C5aR pathway plays a vital role in brain inflammatory injury via initiating fgl-2 in intracerebral hemorrhage. Mol Neurobiol. 54:6187–6197. 2017.PubMed/NCBI View Article : Google Scholar

70 

Perkins DJ and Vogel SN: Inflammation: Species-specific TLR signalling-insight into human disease. Nat Rev Rheumatol. 12:198–200. 2016.PubMed/NCBI View Article : Google Scholar

71 

Skaper SD: Impact of Inflammation on the blood-neural barrier and blood-nerve interface: From review to therapeutic preview. Int Rev Neurobiol. 137:29–45. 2017.PubMed/NCBI View Article : Google Scholar

72 

Yasuoka S, Kawanokuchi J, Parajuli B, Jin S, Doi Y, Noda M, Sonobe Y, Takeuchi H, Mizuno T and Suzumura A: Production and functions of IL-33 in the central nervous system. Brain Res. 1385:8–17. 2011.PubMed/NCBI View Article : Google Scholar

73 

Burnstock G, Krugel U, Abbracchio MP and Illes P: Purinergic signalling: From normal behaviour to pathological brain function. Prog Neurobiol. 95:229–274. 2011.PubMed/NCBI View Article : Google Scholar

74 

Chakraborty S, Kaushik DK, Gupta M and Basu A: Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 88:1615–1631. 2010.PubMed/NCBI View Article : Google Scholar

75 

Kempuraj D, Thangavel R, Selvakumar GP, Ahmed ME, Zaheer S, Raikwar SP, Zahoor H, Saeed D, Dubova I, Giler G, et al: Mast cell proteases activate astrocytes and glia-neurons and release interleukin-33 by activating p38 and ERK1/2 MAPKs and NF-κB. Mol Neurobiol. 56:1681–1693. 2019.PubMed/NCBI View Article : Google Scholar

76 

Zhang S, Zeng X, Yang H, Hu G and He S: Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem. 29:931–940. 2012.PubMed/NCBI View Article : Google Scholar

77 

Pietrzak A, Wierzbicki M, Wiktorska M and Brzezinska-Blaszczyk E: Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm. 2011(427473)2011.PubMed/NCBI View Article : Google Scholar

78 

Zhang H, Lin L, Yang H, Zhang Z, Yang X, Zhang L and He S: Induction of IL-13 production and upregulation of gene expression of protease activated receptors in P815 cells by IL-6. Cytokine. 50:138–145. 2010.PubMed/NCBI View Article : Google Scholar

79 

Zhang H, Yang H and He S: TNF increases expression of IL-4 and PARs in mast cells. Cell Physiol Biochem. 26:327–336. 2010.PubMed/NCBI View Article : Google Scholar

80 

Wang X, Li C, Chen Y, Hao Y, Zhou W, Chen C and Yu Z: Hypoxia enhances CXCR4 expression favoring microglia migration via HIF-1alpha activation. Biochem Biophys Res Commun. 371:283–288. 2008.PubMed/NCBI View Article : Google Scholar

81 

Wang Y, Huang J, Li Y and Yang GY: Roles of chemokine CXCL12 and its receptors in ischemic stroke. Curr Drug Targets. 13:166–172. 2012.PubMed/NCBI View Article : Google Scholar

82 

Dong Y and Benveniste EN: Immune function of astrocytes. Glia. 36:180–190. 2001.PubMed/NCBI View Article : Google Scholar

83 

Kim DY, Hong GU and Ro JY: Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation. 8(25)2011.PubMed/NCBI View Article : Google Scholar

84 

Seeldrayers PA, Levin LA and Johnson D: Astrocytes support mast cell viability in vitro. J Neuroimmunol. 36:239–243. 1992.PubMed/NCBI View Article : Google Scholar

85 

Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S and Zhang S: Histamine induces upregulated expression of histamine receptors and increases release of inflammatory mediators from microglia. Mol Neurobiol. 49:1487–1500. 2014.PubMed/NCBI View Article : Google Scholar

86 

Mele T and Juric DM: Identification and pharmacological characterization of the histamine H3 receptor in cultured rat astrocytes. Eur J Pharmacol. 720:198–204. 2013.PubMed/NCBI

87 

Medic N, Vita F, Abbate R, Soranzo MR, Pacor S, Fabbretti E, Borelli V and Zabucchi G: Mast cell activation by myelin through scavenger receptor. J Neuroimmunol. 200:27–40. 2008.PubMed/NCBI View Article : Google Scholar

88 

Zhang S, Dong H, Zhang X, Li N, Sun J and Qian Y: Cerebral mast cells contribute to postoperative cognitive dysfunction by promoting blood brain barrier disruption. Behav Brain Res. 298(Pt B):158–166. 2016.PubMed/NCBI View Article : Google Scholar

89 

Dong H, Zhang X, Wang Y, Zhou X, Qian Y and Zhang S: Suppression of brain mast cells degranulation inhibits microglial activation and central nervous system inflammation. Mol Neurobiol. 54:997–1007. 2017.PubMed/NCBI View Article : Google Scholar

90 

Kempuraj D, Selvakumar GP, Thangavel R, Ahmed ME, Zaheer S, Kumar KK, Yelam A, Kaur H, Dubova I, Raikwar SP, et al: Glia maturation factor and mast cell-dependent expression of inflammatory mediators and proteinase activated receptor-2 in neuroinflammation. J Alzheimers Dis. 66:1117–1129. 2018.PubMed/NCBI View Article : Google Scholar

91 

Hagiyama M, Furuno T, Hosokawa Y, Iino T, Ito T, Inoue T, Nakanishi M, Murakami Y and Ito A: Enhanced nerve-mast cell interaction by a neuronal short isoform of cell adhesion molecule-1. J Immunol. 186:5983–5992. 2011.PubMed/NCBI View Article : Google Scholar

92 

Wilhelm M, Silver R and Silverman AJ: Central nervous system neurons acquire mast cell products via transgranulation. Eur J Neurosci. 22:2238–2248. 2005.PubMed/NCBI View Article : Google Scholar

93 

Kulka M, Sheen CH, Tancowny BP, Grammer LC and Schleimer RP: Neuropeptides activate human mast cell degranulation and chemokine production. Immunology. 123:398–410. 2008.PubMed/NCBI View Article : Google Scholar

94 

Masini E, Fantozzi R, Conti A, Blandina P, Brunelleschi S and Mannaioni PF: Mast cell heterogeneity in response to cholinergic stimulation. Int Arch Allergy Appl Immunol. 77:184–185. 1985.PubMed/NCBI View Article : Google Scholar

95 

Skaper SD, Facci L, Kee WJ and Strijbos PJ: Potentiation by histamine of synaptically mediated excitotoxicity in cultured hippocampal neurones: A possible role for mast cells. J Neurochem. 76:47–55. 2001.PubMed/NCBI View Article : Google Scholar

96 

Ossovskaya VS and Bunnett NW: Protease-activated receptors: Contribution to physiology and disease. Physiol Rev. 84:579–621. 2004.PubMed/NCBI View Article : Google Scholar

97 

Claes SJ: Corticotropin-releasing hormone (CRH) in psychiatry: From stress to psychopathology. Ann Med. 36:50–61. 2004.PubMed/NCBI View Article : Google Scholar

98 

Karagkouni A, Alevizos M and Theoharides TC: Effect of stress on brain inflammation and multiple sclerosis. Autoimmun Rev. 12:947–953. 2013.PubMed/NCBI View Article : Google Scholar

99 

Cao J, Papadopoulou N, Kempuraj D, Boucher WS, Sugimoto K, Cetrulo CL and Theoharides TC: Human mast cells express corticotropin-releasing hormone (CRH) receptors and CRH leads to selective secretion of vascular endothelial growth factor. J Immunol. 174:7665–7675. 2005.PubMed/NCBI View Article : Google Scholar

100 

Cao J, Boucher W, Kempuraj D, Donelan JM and Theoharides TC: Acute stress and intravesical corticotropin-releasing hormone induces mast cell dependent vascular endothelial growth factor release from mouse bladder explants. J Urol. 176:1208–1213. 2006.PubMed/NCBI View Article : Google Scholar

101 

Rozniecki JJ, Sahagian GG, Kempuraj D, Tao K, Jocobson S, Zhang B and Theoharides TC: Brain metastases of mouse mammary adenocarcinoma is increased by acute stress. Brain Res. 1366:204–210. 2010.PubMed/NCBI View Article : Google Scholar

102 

Kritas SK, Caraffa A, Antinolfi P, Saggini A, Pantalone A, Rosati M, Tei M, Speziali A, Saggini R, Pandolfi F, et al: Nerve growth factor interactions with mast cells. Int J Immunopathol Pharmacol. 27:15–19. 2014.PubMed/NCBI View Article : Google Scholar

103 

Kempuraj D, Mentor S, Thangavel R, Ahmed ME, Selvakumar GP, Raikwar SP, Dubova I, Zaheer S, Iyer SS and Zaheer A: Mast cells in stress, pain, blood-brain barrier, neuroinflammation and Alzheimer's disease. Front Cell Neurosci. 13(54)2019.PubMed/NCBI View Article : Google Scholar

104 

Papadopoulou NG, Oleson L, Kempuraj D, Donelan J, Cetrulo CL and Theoharides TC: Regulation of corticotropin-releasing hormone receptor-2 expression in human cord blood-derived cultured mast cells. J Mol Endocrinol. 35:R1–R8. 2005.PubMed/NCBI View Article : Google Scholar

105 

Ayyadurai S, Gibson AJ, D'Costa S, Overman EL, Sommerville LJ, Poopal AC, Mackey E, Li Y and Moeser AJ: Frontline science: Corticotropin-releasing factor receptor subtype 1 is a critical modulator of mast cell degranulation and stress-induced pathophysiology. J Leukoc Biol. 102:1299–1312. 2017.PubMed/NCBI View Article : Google Scholar

106 

Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassiou A and Theoharides TC: Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology. 145:43–48. 2004.PubMed/NCBI View Article : Google Scholar

107 

Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S and Zaheer A: Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci. 11(216)2017.PubMed/NCBI View Article : Google Scholar

108 

Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP and Mattson MP: Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer's disease. Neurobiol Dis. 8:492–503. 2001.PubMed/NCBI View Article : Google Scholar

109 

Morgese MG, Schiavone S and Trabace L: Emerging role of amyloid beta in stress response: Implication for depression and diabetes. Eur J Pharmacol. 817:22–29. 2017.PubMed/NCBI View Article : Google Scholar

110 

Zhang C and Rissman RA: Corticotropin-releasing factor receptor-1 modulates biomarkers of DNA oxidation in Alzheimer's disease mice. PLoS One. 12(e181367)2017.PubMed/NCBI View Article : Google Scholar

111 

Asadi S and Theoharides TC: Corticotropin-releasing hormone and extracellular mitochondria augment IgE-stimulated human mast-cell vascular endothelial growth factor release, which is inhibited by luteolin. J Neuroinflammation. 9(85)2012.PubMed/NCBI View Article : Google Scholar

112 

de Pablos RM, Herrera AJ, Espinosa-Oliva AM, Sarmiento M, Munoz MF, Machado A and Venero JL: Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation. 11(34)2014.PubMed/NCBI View Article : Google Scholar

113 

Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T and Lindsberg PJ: An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med. 41:438–450. 2009.PubMed/NCBI View Article : Google Scholar

114 

Profaci CP, Munji RN, Pulido RS and Daneman R: The blood-brain barrier in health and disease: Important unanswered questions. J Exp Med. 217(e20190062)2020.PubMed/NCBI View Article : Google Scholar

115 

Silver R and Curley JP: Mast cells on the mind: New insights and opportunities. Trends Neurosci. 36:513–521. 2013.PubMed/NCBI View Article : Google Scholar

116 

Skaper SD: Mast cell-glia dialogue in chronic pain and neuropathic pain: Blood-brain barrier implications. CNS Neurol Disord Drug Targets. 15:1072–1078. 2016.PubMed/NCBI View Article : Google Scholar

117 

Lindsberg PJ, Strbian D and Karjalainen-Lindsberg ML: Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab. 30:689–702. 2010.PubMed/NCBI View Article : Google Scholar

118 

Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M and Pejler G: A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem. 280:9291–9296. 2005.PubMed/NCBI View Article : Google Scholar

119 

Lapilover EG, Lippmann K, Salar S, Maslarova A, Dreier JP, Heinemann U and Friedman A: Peri-infarct blood-brain barrier dysfunction facilitates induction of spreading depolarization associated with epileptiform discharges. Neurobiol Dis. 48:495–506. 2012.PubMed/NCBI View Article : Google Scholar

120 

Mattila OS, Strbian D, Saksi J, Pikkarainen TO, Rantanen V, Tatlisumak T and Lindsberg PJ: Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke. 42:3600–3605. 2011.PubMed/NCBI View Article : Google Scholar

121 

Christy AL, Walker ME, Hessner MJ and Brown MA: Mast cell activation and neutrophil recruitment promotes early and robust inflammation in the meninges in EAE. J Autoimmun. 42:50–61. 2013.PubMed/NCBI View Article : Google Scholar

122 

Rochfort KD and Cummins PM: Cytokine-mediated dysregulation of zonula occludens-1 properties in human brain microvascular endothelium. Microvasc Res. 100:48–53. 2015.PubMed/NCBI View Article : Google Scholar

123 

Liu H, Luiten PG, Eisel UL, Dejongste MJ and Schoemaker RG: Depression after myocardial infarction: TNF-α-induced alterations of the blood-brain barrier and its putative therapeutic implications. Neurosci Biobehav Rev. 37:561–572. 2013.PubMed/NCBI View Article : Google Scholar

124 

Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S and Theoharides TC: Acute stress increases permeability of the blood-brain-barrier through activation of brain mast cells. Brain Res. 888:117–127. 2001.PubMed/NCBI View Article : Google Scholar

125 

Alvarez JI, Cayrol R and Prat A: Disruption of central nervous system barriers in multiple sclerosis. Biochim Biophys Acta. 1812:252–264. 2011.PubMed/NCBI View Article : Google Scholar

126 

Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R and Zlokovic BV: Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 68:409–427. 2010.PubMed/NCBI View Article : Google Scholar

127 

Henkel JS, Beers DR, Wen S, Bowser R and Appel SH: Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology. 72:1614–1616. 2009.PubMed/NCBI View Article : Google Scholar

128 

Khalil MH, Silverman AJ and Silver R: Mast cells in the rat brain synthesize gonadotropin-releasing hormone. J Neurobiol. 56:113–124. 2003.PubMed/NCBI View Article : Google Scholar

129 

Corrigan F, Mander KA, Leonard AV and Vink R: Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation. 13(264)2016.PubMed/NCBI View Article : Google Scholar

130 

Theoharides TC, Asadi S and Patel AB: Focal brain inflammation and autism. J Neuroinflammation. 10(46)2013.PubMed/NCBI View Article : Google Scholar

131 

Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T and Lindsberg PJ: Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab. 26:605–612. 2006.PubMed/NCBI View Article : Google Scholar

132 

van der Schans J, Pleiter JC, de Vries TW, Schuiling-Veninga CC, Bos JH, Hoekstra PJ and Hak E: Association between medication prescription for atopic diseases and attention-deficit/hyperactivity disorder. Ann Allergy Asthma Immunol. 117:186–191. 2016.PubMed/NCBI View Article : Google Scholar

133 

Genuneit J, Braig S, Brandt S, Wabitsch M, Florath I, Brenner H and Rothenbacher D: Infant atopic eczema and subsequent attention-deficit/hyperactivity disorder-a prospective birth cohort study. Pediatr Allergy Immunol. 25:51–56. 2014.PubMed/NCBI View Article : Google Scholar

134 

Allred EN, Dammann O, Fichorova RN, Hooper SR, Hunter SJ, Joseph RM, Kuban K, Leviton A, O'Shea TM and Scott MN: ELGAN Study ADHD symptoms writing group for the ELGAN Study Investigators: Systemic inflammation during the first postnatal month and the risk of attention deficit hyperactivity disorder characteristics among 10 year-old children born extremely preterm. J Neuroimmune Pharmacol. 12:531–543. 2017.PubMed/NCBI View Article : Google Scholar

135 

Nielsen PR, Benros ME and Dalsgaard S: Associations between autoimmune diseases and attention-deficit/hyperactivity disorder: A nationwide study. J Am Acad Child Adolesc Psychiatry. 56:234–240. 2017.PubMed/NCBI View Article : Google Scholar

136 

Hegvik TA, Instanes JT, Haavik J, Klungsoyr K and Engeland A: Associations between attention-deficit/hyperactivity disorder and autoimmune diseases are modified by sex: A population-based cross-sectional study. Eur Child Adolesc Psychiatry. 27:663–675. 2018.PubMed/NCBI View Article : Google Scholar

137 

Wang LJ, Yu YH, Fu ML, Yeh WT, Hsu JL, Yang YH, Chen WJ, Chiang BL and Pan WH: Attention deficit-hyperactivity disorder is associated with allergic symptoms and low levels of hemoglobin and serotonin. Sci Rep. 8(10229)2018.PubMed/NCBI View Article : Google Scholar

138 

Segman RH, Meltzer A, Gross-Tsur V, Kosov A, Frisch A, Inbar E, Darvasi A, Levy S, Goltser T, Weizman A and Galili-Weisstub E: Preferential transmission of interleukin-1 receptor antagonist alleles in attention deficit hyperactivity disorder. Mol Psychiatry. 7:72–74. 2002.PubMed/NCBI View Article : Google Scholar

139 

Ribases M, Hervas A, Ramos-Quiroga JA, Bosch R, Bielsa A, Gastaminza X, Fernandez-Anguiano M, Nogueira M, Gomez-Barros N, Valero S, et al: Association study of 10 genes encoding neurotrophic factors and their receptors in adult and child attention-deficit/hyperactivity disorder. Biol Psychiatry. 63:935–945. 2008.PubMed/NCBI View Article : Google Scholar

140 

Cortese S and Vincenzi B: Obesity and ADHD: Clinical and neurobiological implications. Curr Top Behav Neurosci. 9:199–218. 2012.PubMed/NCBI View Article : Google Scholar

141 

Cortese S, Angriman M, Comencini E, Vincenzi B and Maffeis C: Association between inflammatory cytokines and ADHD symptoms in children and adolescents with obesity: A pilot study. Psychiatry Res. 278:7–11. 2019.PubMed/NCBI View Article : Google Scholar

142 

Boyle CA, Boulet S, Schieve LA, Cohen RA, Blumberg SJ, Yeargin-Allsopp M, Visser S and Kogan MD: Trends in the prevalence of developmental disabilities in US children, 1997-2008. Pediatrics. 127:1034–1042. 2011.PubMed/NCBI View Article : Google Scholar

143 

Olfson M, Blanco C, Wang S, Laje G and Correll CU: National trends in the mental health care of children, adolescents, and adults by office-based physicians. JAMA Psychiatry. 71:81–90. 2014.PubMed/NCBI View Article : Google Scholar

144 

Rivera HM, Christiansen KJ and Sullivan EL: The role of maternal obesity in the risk of neuropsychiatric disorders. Front Neurosci. 9(194)2015.PubMed/NCBI View Article : Google Scholar

145 

Sullivan EL, Riper KM, Lockard R and Valleau JC: Maternal high-fat diet programming of the neuroendocrine system and behavior. Horm Behav. 76:153–161. 2015.PubMed/NCBI View Article : Google Scholar

146 

Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P and Theoharides TC: Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation Clin. Ther. 37:984–995. 2015.PubMed/NCBI View Article : Google Scholar

147 

Anand D, Colpo GD, Zeni G, Zeni CP and Teixeira AL: Attention-deficit/hyperactivity disorder and inflammation: What does current knowledge tell Us? A systematic review. Front Psychiatry. 8(228)2017.PubMed/NCBI View Article : Google Scholar

148 

Darwish AH, Elgohary TM and Nosair NA: Serum interleukin-6 level in children with attention-deficit hyperactivity disorder (ADHD). J Child Neurol. 34:61–67. 2019.PubMed/NCBI View Article : Google Scholar

149 

Donfrancesco R, Nativio P, Borrelli E, Giua E, Andriola E, Villa MP and DI Trani M: Serum cytokines in paediatric neuropsychiatric syndromes: Focus on attention deficit hyperactivity disorder. Minerva Pediatr: 2016 (Epub ahead of print).

150 

O'Shea TM, Joseph RM, Kuban KC, Allred EN, Ware J, Coster T, Fichorova RN, Dammann O and Leviton A: ELGAN Study Investigators: Elevated blood levels of inflammation-related proteins are associated with an attention problem at age 24 mo in extremely preterm infants. Pediatr Res. 75:781–787. 2014.PubMed/NCBI View Article : Google Scholar

151 

Donfrancesco R, Nativio P, Di Benedetto A, Villa MP, Andriola E, Melegari MG, Cipriano E and Di Trani M: Anti-yo antibodies in children with ADHD: First results about serum cytokines. J Atten Disord 2016 (Epub ahead of print).

152 

Oades RD, Dauvermann MR, Schimmelmann BG, Schwarz MJ and Myint AM: Attention-deficit hyperactivity disorder (ADHD) and glial integrity: S100B, cytokines and kynurenine metabolism-effects of medication. Behav Brain Funct. 6(29)2010.PubMed/NCBI View Article : Google Scholar

153 

Rand KM, Austin NC, Inder TE, Bora S and Woodward LJ: Neonatal infection and later neurodevelopmental risk in the very preterm infant. J Pediatr. 170:97–104. 2016.PubMed/NCBI View Article : Google Scholar

154 

van Tilborg E, Heijnen CJ, Benders MJ, van Bel F, Fleiss B, Gressens P and Nijboer CH: Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog Neurobiol. 136:28–49. 2016.PubMed/NCBI View Article : Google Scholar

155 

Vogel SWN, Bijlenga D, Verduijn J, Bron TI, Beekman ATF, Kooij JJS and Penninx BWJH: Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology. 79:31–39. 2017.PubMed/NCBI View Article : Google Scholar

156 

Chudal R, Brown AS, Gyllenberg D, Hinkka-Yli-Salomaki S, Sucksdorff M, Surcel HM, Upadhyaya S and Sourander A: Maternal serum C-reactive protein (CRP) and offspring attention deficit hyperactivity disorder (ADHD). Eur Child Adolesc Psychiatry. 29:239–247. 2020.PubMed/NCBI View Article : Google Scholar

157 

Kozlowska A, Wojtacha P, Rowniak M, Kolenkiewicz M and Huang ACW: ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology (Berl). 236:2937–2958. 2019.PubMed/NCBI View Article : Google Scholar

158 

Saedisomeolia A, Samadi M, Gholami F, Seyedi M, Effatpanah M, Hashemi R, Abdolahi M and Honarvar NM: Vitamin d's molecular action mechanism in attention-deficit/ hyperactivity disorder: A review of evidence. CNS Neurol Disord Drug Targets. 17:280–290. 2018.PubMed/NCBI View Article : Google Scholar

159 

Verlaet AAJ, Maasakkers CM, Hermans N and Savelkoul HFJ: Rationale for dietary antioxidant treatment of ADHD. Nutrients. 10(E405)2018.PubMed/NCBI View Article : Google Scholar

160 

Cortese S and Angriman M: Attention-deficit/hyperactivity disorder, iron deficiency, and obesity: Is there a link? Postgrad Med. 126:155–170. 2014.PubMed/NCBI View Article : Google Scholar

161 

Kean JD, Camfield D, Sarris J, Kras M, Silberstein R, Scholey A and Stough C: A randomized controlled trial investigating the effects of PCSO-524, a patented oil extract of the New Zealand green lipped mussel (Perna canaliculus), on the behaviour, mood, cognition and neurophysiology of children and adolescents (aged 6-14 years) experiencing clinical and sub-clinical levels of hyperactivity and inattention: Study protocol ACTRN12610000978066. Nutr J. 12(100)2013.PubMed/NCBI View Article : Google Scholar

162 

Ghunaim N, Gronlund H, Kronqvist M, Gronneberg R, Soderstrom L, Ahlstedt S and van Hage-Hamsten M: Antibody profiles and self-reported symptoms to pollen-related food allergens in grass pollen-allergic patients from northern Europe. Allergy. 60:185–191. 2005.PubMed/NCBI View Article : Google Scholar

163 

Zhou L, Chen L, Li X, Li T, Dong Z and Wang YT: Food allergy induces alteration in brain inflammatory status and cognitive impairments. Behav Brain Res. 364:374–382. 2019.PubMed/NCBI View Article : Google Scholar

164 

de Theije CG, Bavelaar BM, Lopes da Silva S, Korte SM, Olivier B, Garssen J and Kraneveld AD: Food allergy and food-based therapies in neurodevelopmental disorders. Pediatr Allergy Immunol. 25:218–226. 2014.PubMed/NCBI View Article : Google Scholar

165 

Sarlus H, Höglund CO, Karshikoff B, Wang X, Lekander M, Schultzberg M and Oprica M: Allergy influences the inflammatory status of the brain and enhances tau-phosphorylation. J Cell Mol Med. 16:2401–2412. 2012.PubMed/NCBI View Article : Google Scholar

166 

Niggemann B, Reibel S, Roehr CC, Felger D, Ziegert M, Sommerfeld C and Wahn U: Predictors of positive food challenge outcome in non-IgE-mediated reactions to food in children with atopic dermatitis. J Allergy Clin Immunol. 108:1053–1058. 2001.PubMed/NCBI View Article : Google Scholar

167 

Milosz M, Demkow U and Wolanczyk T: Relation between attention-deficit hyperactivity disorder and IgE-dependent allergy in pediatric patients. Adv Exp Med Biol. 1096:105–109. 2018.PubMed/NCBI View Article : Google Scholar

168 

Jiang X, Shen C, Dai Y, Jiang F, Li S, Shen X, Hu Y and Li F: Early food allergy and respiratory allergy symptoms and attention-deficit/hyperactivity disorder in Chinese children: A cross-sectional study. Pediatr Allergy Immunol. 29:402–409. 2018.PubMed/NCBI View Article : Google Scholar

169 

Boris M and Mandel FS: Foods and additives are common causes of the attention deficit hyperactive disorder in children. Ann Allergy. 72:462–468. 1994.PubMed/NCBI

170 

Verlaet AA, Noriega DB, Hermans N and Savelkoul HF: Nutrition, immunological mechanisms and dietary immunomodulation in ADHD. Eur Child Adolesc Psychiatry. 23:519–529. 2014.PubMed/NCBI View Article : Google Scholar

171 

Ritz BW and Lord RS: Case study: The effectiveness of a dietary supplement regimen in reducing IgG-mediated food sensitivity in ADHD. Altern Ther Health Med. 11:72–75. 2005.PubMed/NCBI

172 

Miyazaki C, Koyama M, Ota E, Swa T, Mlunde LB, Amiya RM, Tachibana Y, Yamamoto-Hanada K and Mori R: Allergic diseases in children with attention deficit hyperactivity disorder: A systematic review and meta-analysis. BMC Psychiatry. 17(120)2017.PubMed/NCBI View Article : Google Scholar

173 

Johnston LK, Chien KB and Bryce PJ: The immunology of food allergy. J Immunol. 192:2529–2534. 2014.PubMed/NCBI View Article : Google Scholar

174 

Pelsser LM, Buitelaar JK and Savelkoul HF: ADHD as a (non) allergic hypersensitivity disorder: A hypothesis. Pediatr Allergy Immunol. 20:107–112. 2009.PubMed/NCBI View Article : Google Scholar

175 

Suwan P, Akaramethathip D and Noipayak P: Association between allergic sensitization and attention deficit hyperactivity disorder (ADHD). Asian Pac J Allergy Immunol. 29:57–65. 2011.PubMed/NCBI

176 

Rijnierse A, Nijkamp FP and Kraneveld AD: Mast cells and nerves tickle in the tummy: Implications for inflammatory bowel disease and irritable bowel syndrome. Pharmacol Ther. 116:207–235. 2007.PubMed/NCBI View Article : Google Scholar

177 

Gui XY: Mast cells: A possible link between psychological stress, enteric infection, food allergy and gut hypersensitivity in the irritable bowel syndrome. J Gastroenterol Hepatol. 13:980–989. 1998.PubMed/NCBI View Article : Google Scholar

178 

Hirano T, Taga T, Nakano N, Yasukawa K, Kashiwamura S, Shimizu K, Nakajima K, Pyun KH and Kishimoto T: Purification to homogeneity and characterization of human B-cell differentiation factor (BCDF or BSFp-2). Proc Natl Acad Sci USA. 82:5490–5494. 1985.PubMed/NCBI View Article : Google Scholar

179 

Li X, Chauhan A, Sheikh AM, Patil S, Chauhan V, Li XM, Ji L, Brown T and Malik M: Elevated immune response in the brain of autistic patients. J Neuroimmunol. 207:111–116. 2009.PubMed/NCBI View Article : Google Scholar

180 

Needham BD, Tang W and Wu WL: Searching for the gut microbial contributing factors to social behavior in rodent models of autism spectrum disorder. Dev Neurobiol. 78:474–499. 2018.PubMed/NCBI View Article : Google Scholar

181 

Meeking MM, MacFabe DF, Mepham JR, Foley KA, Tichenoff LJ, Boon FH, Kavaliers M and Ossenkopp KP: Propionic acid induced behavioural effects of relevance to autism spectrum disorder evaluated in the hole board test with rats. Prog Neuropsychopharmacol Biol Psychiatry. 97(109794)2020.PubMed/NCBI View Article : Google Scholar

182 

Zass LJ, Hart SA, Seedat S, Hemmings SM and Malan-Muller S: Neuroinflammatory genes associated with post-traumatic stress disorder: Implications for comorbidity. Psychiatr Genet. 27:1–16. 2017.PubMed/NCBI View Article : Google Scholar

183 

Nakamura Y, Ishimaru K, Shibata S and Nakao A: Regulation of plasma histamine levels by the mast cell clock and its modulation by stress. Sci Rep. 7(39934)2017.PubMed/NCBI View Article : Google Scholar

184 

Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhaes PV, Kapczinski F and Kauer-Sant'Anna M: Inflammatory markers in post-traumatic stress disorder: A systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2:1002–1012. 2015.PubMed/NCBI View Article : Google Scholar

185 

Geracioti TD Jr, Carpenter LL, Owens MJ, Baker DG, Ekhator NN, Horn PS, Strawn JR, Sanacora G, Kinkead B, Price LH and Nemeroff CB: Elevated cerebrospinal fluid substance p concentrations in posttraumatic stress disorder and major depression. Am J Psychiatry. 163:637–643. 2006.PubMed/NCBI View Article : Google Scholar

186 

O'Donovan A, Cohen BE, Seal KH, Bertenthal D, Margaretten M, Nishimi K and Neylan TC: Elevated risk for autoimmune disorders in Iraq and afghanistan veterans with posttraumatic stress disorder. Biol Psychiatry. 77:365–374. 2015.PubMed/NCBI View Article : Google Scholar

187 

Hendriksen E, van Bergeijk D, Oosting RS and Redegeld FA: Mast cells in neuroinflammation and brain disorders. Neurosci Biobehav Rev. 79:119–133. 2017.PubMed/NCBI View Article : Google Scholar

188 

Ahmed ME, Iyer S, Thangavel R, Kempuraj D, Selvakumar GP, Raikwar SP, Zaheer S and Zaheer A: Co-localization of glia maturation factor with NLRP3 inflammasome and autophagosome markers in human Alzheimer's disease brain. J Alzheimers Dis. 60:1143–1160. 2017.PubMed/NCBI View Article : Google Scholar

189 

Xiong Z, Thangavel R, Kempuraj D, Yang E, Zaheer S and Zaheer A: Alzheimer's disease: Evidence for the expression of interleukin-33 and its receptor ST2 in the brain. J Alzheimers Dis. 40:297–308. 2014.PubMed/NCBI View Article : Google Scholar

190 

Shaik-Dasthagirisaheb YB and Conti P: The role of mast cells in Alzheimer's disease. Adv Clin Exp Med. 25:781–787. 2016.PubMed/NCBI View Article : Google Scholar

191 

Tagen M, Elorza A, Kempuraj D, Boucher W, Kepley CL, Shirihai OS and Theoharides TC: Mitochondrial uncoupling protein 2 inhibits mast cell activation and reduces histamine content. J Immunol. 183:6313–6319. 2009.PubMed/NCBI View Article : Google Scholar

192 

Nelson RB, Siman R, Iqbal MA and Potter H: Identification of a chymotrypsin-like mast cell protease in rat brain capable of generating the N-terminus of the Alzheimer amyloid beta-protein. J Neurochem. 61:567–577. 1993.PubMed/NCBI View Article : Google Scholar

193 

Ibrahim MZ, Reder AT, Lawand R, Takash W and Sallouh-Khatib S: The mast cells of the multiple sclerosis brain. J Neuroimmunol. 70:131–138. 1996.PubMed/NCBI View Article : Google Scholar

194 

Russi AE and Brown MA: The meninges: New therapeutic targets for multiple sclerosis. Transl Res. 165:255–269. 2015.PubMed/NCBI View Article : Google Scholar

195 

Theoharides TC, Asadi S, Panagiotidou S and Weng Z: The ‘missing link’ in autoimmunity and autism: Extracellular mitochondrial components secreted from activated live mast cells. Autoimmun Rev. 12:1136–1142. 2013.PubMed/NCBI View Article : Google Scholar

196 

Kawasaki H, Chang HW, Tseng HC, Hsu SC, Yang SJ, Hung CH, Zhou Y and Huang SK: A tryptophan metabolite, kynurenine, promotes mast cell activation through aryl hydrocarbon receptor. Allergy. 69:445–452. 2014.PubMed/NCBI View Article : Google Scholar

197 

Hermine O, Lortholary O, Leventhal PS, Catteau A, Soppelsa F, Baude C, Cohen-Akenine A, Palmerini F, Hanssens K, Yang Y, et al: Case-control cohort study of patients' perceptions of disability in mastocytosis. PLoS One. 3(e2266)2008.PubMed/NCBI View Article : Google Scholar

198 

Georgin-Lavialle S, Moura DS, Salvador A, Chauvet-Gelinier JC, Launay JM, Damaj G, Cote F, Soucie E, Chandesris MO, Barete S, et al: Mast cells' involvement in inflammation pathways linked to depression: Evidence in mastocytosis. Mol Psychiatry. 21:1511–1516. 2016.PubMed/NCBI View Article : Google Scholar

199 

Couturier N, Zappulla JP, Lauwers-Cances V, Uro-Coste E, Delisle MB, Clanet M, Montagne L, Van der Valk P, Bö L and Liblau RS: Mast cell transcripts are increased within and outside multiple sclerosis lesions. J Neuroimmunol. 195:176–185. 2008.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Song Y, Lu M, Yuan H, Chen T and Han X: Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 20: 714-726, 2020.
APA
Song, Y., Lu, M., Yuan, H., Chen, T., & Han, X. (2020). Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Experimental and Therapeutic Medicine, 20, 714-726. https://doi.org/10.3892/etm.2020.8789
MLA
Song, Y., Lu, M., Yuan, H., Chen, T., Han, X."Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review)". Experimental and Therapeutic Medicine 20.2 (2020): 714-726.
Chicago
Song, Y., Lu, M., Yuan, H., Chen, T., Han, X."Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review)". Experimental and Therapeutic Medicine 20, no. 2 (2020): 714-726. https://doi.org/10.3892/etm.2020.8789
Copy and paste a formatted citation
x
Spandidos Publications style
Song Y, Lu M, Yuan H, Chen T and Han X: Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Exp Ther Med 20: 714-726, 2020.
APA
Song, Y., Lu, M., Yuan, H., Chen, T., & Han, X. (2020). Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review). Experimental and Therapeutic Medicine, 20, 714-726. https://doi.org/10.3892/etm.2020.8789
MLA
Song, Y., Lu, M., Yuan, H., Chen, T., Han, X."Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review)". Experimental and Therapeutic Medicine 20.2 (2020): 714-726.
Chicago
Song, Y., Lu, M., Yuan, H., Chen, T., Han, X."Mast cell‑mediated neuroinflammation may have a role in attention deficit hyperactivity disorder (Review)". Experimental and Therapeutic Medicine 20, no. 2 (2020): 714-726. https://doi.org/10.3892/etm.2020.8789
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team