Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis

  • Authors:
    • Jun Qian
    • Yuwen Jiao
    • Guangyao Wang
    • Hanyang Liu
    • Xiang Cao
    • Haojun Yang
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
    Copyright: © Qian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1541-1549
    |
    Published online on: May 30, 2020
       https://doi.org/10.3892/etm.2020.8826
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Effect of exogenous transforming growth factor‑β1 (TGF‑β1) on cholestatic mice by inhibiting Kupffer cell immune responses in liver was investigated. To induce cholestasis, BALB/c mice received a sham operation (Mock group), or underwent a bile duct ligation (BDL group) and then were subcutaneously injected with TGF‑β1 at multiple sites (TGF group). Liver functions were evaluated according to the levels of alanine aminotransferase (ALT), aspartate aminotransferase AST and γ‑glutamyltranspeptidase (γ‑GT) in serum samples. Expression of nuclear factor‑κB (NF‑κB), interleukin‑6 (IL‑6), IL‑1β and tumor necrosis factor‑α (TNF‑α) was detected. Expression of inducible nitric oxide synthase (iNOS) and arginase‑1 (Arg‑1) in Kupffer cells (KCs) of the liver was detected. The isolated KCs were divided into control group, LPS group, TGF group and Galunisertib group and western blot analysis was used to detect the expression of NF‑κB, IL‑6, IL‑1β, TNF‑α, iNOS and Arg‑1. The percentage of CD40, CD86, CD204 and CD206 as macrophage cell surface antigens were measured by flow cytometry. The indexes of liver function and liver fibrosis of the mice in the TGF group were significantly lower than those in the BDL group (P<0.05). The levels of IL‑1β, IL‑6 and TNF‑α in the liver were lower than those in the BDL group, while the level of IL‑10 was significantly increased (P<0.05). M2‑type transformation occurred in liver Kupffer cells of mice in the TGF group. In cell experiments, TGF treatment downregulated the expression of IL‑1β, IL‑6, TNF‑α and NF‑κB, increased the expression of IL‑10, and induced M2‑type transformation in macrophages (P<0.05). In conclusion, TGF‑ß1 diminished the progression of cholestasis in mice by inhibiting the inflammatory response of KCs and regulating KC polarization.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Zakharia K, Tabibian A, Lindor KD and Tabibian JH: Complications, symptoms, quality of life and pregnancy in cholestatic liver disease. Liver Int. 38:399–411. 2018.PubMed/NCBI View Article : Google Scholar

2 

Zhao S, Li N, Zhen Y, Ge M, Li Y, Yu B, He H and Shao RG: Protective effect of gastrodin on bile duct ligation-induced hepatic fibrosis in rats. Food Chem Toxicol. 86:202–207. 2015.PubMed/NCBI View Article : Google Scholar

3 

Seca AM and Pinto DC: Plant secondary metabolites as anticancer agents: Successes in clinical trials and therapeutic application. Int J Mol Sci. 19(19)2018.PubMed/NCBI View Article : Google Scholar

4 

Miyaguchi S, Ebinuma H, Imaeda H, Nitta Y, Watanabe T, Saito H and Ishii H: A novel treatment for refractory primary biliary cirrhosis? Hepatogastroenterology. 47:1518–1521. 2000.PubMed/NCBI

5 

Drivdal M, Holven KB, Retterstøl K, Aagenaes Ø and Kase BF: A nine year follow-up study of patients with lymphoedema cholestasis syndrome 1 (LCS1/Aagenaes syndrome). Scand J Clin Lab Invest. 78:566–574. 2018.PubMed/NCBI View Article : Google Scholar

6 

Paquissi FC: Immunity and fibrogenesis: The role of Th17/IL-17 axis in HBV and HCV-induced chronic hepatitis and progression to cirrhosis. Front Immunol. 8(1195)2017.PubMed/NCBI View Article : Google Scholar

7 

Burnevich ES, Popova EN, Ponomarev AB, Nekrasova TP, Lebedeva MV, Filatova AL, Shchanitcyna EM, Ponomareva LA, Beketov VD, Bondarenko IB, et al: Autoimmune liver disease (primary biliary cholangitis/autoimmune hepatitis-overlap) associated with sarcoidosis (clinical cases and literature review). Ter Arkh. 91:89–94. 2019.PubMed/NCBI View Article : Google Scholar

8 

Zhu J, Wang R, Xu T, Zhang S, Zhao Y, Li Z, Wang C, Zhou J, Gao D, Hu Y, et al: Salvianolic acid a attenuates endoplasmic reticulum stress and protects against cholestasis-induced liver fibrosis via the SIRT1/HSF1 pathway. Front Pharmacol. 9(1277)2018.PubMed/NCBI View Article : Google Scholar

9 

Mohammadi A, Blesso CN, Barreto GE, Banach M, Majeed M and Sahebkar A: Macrophage plasticity, polarization and function in response to curcumin, a diet-derived polyphenol, as an immunomodulatory agent. J Nutr Biochem. 66:1–16. 2019.PubMed/NCBI View Article : Google Scholar

10 

Cheng Z, Zhou YZ, Wu Y, Wu QY, Liao XB, Fu XM and Zhou XM: Diverse roles of macrophage polarization in aortic aneurysm: Destruction and repair. J Transl Med. 16(354)2018.PubMed/NCBI View Article : Google Scholar

11 

Sica A, Erreni M, Allavena P and Porta C: Macrophage polarization in pathology. Cell Mol Life Sci. 72:4111–4126. 2015.PubMed/NCBI View Article : Google Scholar

12 

Gong W, Huang F, Sun L, Yu A, Zhang X, Xu Y, Shen Y and Cao J: Toll-like receptor-2 regulates macrophage polarization induced by excretory-secretory antigens from Schistosoma japonicum eggs and promotes liver pathology in murine schistosomiasis. PLoS Negl Trop Dis: Dec 27, 2018 (Epub ahead of print). doi: 10.1371/journal.pntd.0007000..

13 

Cho U, Kim B, Kim S, Han Y and Song YS: Pro-inflammatory M1 macrophage enhances metastatic potential of ovarian cancer cells through NF-κB activation. Mol Carcinog. 57:235–242. 2018.PubMed/NCBI View Article : Google Scholar

14 

Wang Y, Smith W, Hao D, He B and Kong L: M1 and M2 macrophage polarization and potentially therapeutic naturally occurring compounds. Int Immunopharmacol. 70:459–466. 2019.PubMed/NCBI View Article : Google Scholar

15 

Qing L, Fu J, Wu P, Zhou Z, Yu F and Tang J: Metformin induces the M2 macrophage polarization to accelerate the wound healing via regulating AMPK/mTOR/NLRP3 inflammasome singling pathway. Am J Transl Res. 11:655–668. 2019.PubMed/NCBI

16 

Wang Y, Guo X, Jiao G, Luo L, Zhou L, Zhang J and Wang B: Splenectomy promotes macrophage polarization in a mouse model of concanavalin A- (ConA-) induced liver fibrosis. BioMed Res Int. 2019(5756189)2019.PubMed/NCBI View Article : Google Scholar

17 

Lu CH, Lai CY, Yeh DW, Liu YL, Su YW, Hsu LC, Chang CH, Catherine Jin SL and Chuang TH: Involvement of M1 macrophage polarization in endosomal Toll-like receptors activated psoriatic inflammation. Mediators Inflamm: Dec 16, 2018 (Epub ahead of print). doi: 10.1155/2018/3523642.

18 

Tsuneyama K, Harada K, Kono N, Hiramatsu K, Zen Y, Sudo Y, Gershwin ME, Ikemoto M, Arai H and Nakanuma Y: Scavenger cells with gram-positive bacterial lipoteichoic acid infiltrate around the damaged interlobular bile ducts of primary biliary cirrhosis. J Hepatol. 35:156–163. 2001.PubMed/NCBI View Article : Google Scholar

19 

Prunier C, Baker D, Ten Dijke P and Ritsma L: TGF-β family signaling pathways in cellular dormancy. Trends Cancer. 5:66–78. 2019.PubMed/NCBI View Article : Google Scholar

20 

Dragotto J, Canterini S, Del Porto P, Bevilacqua A and Fiorenza MT: The interplay between TGF-β-stimulated TSC22 domain family proteins regulates cell-cycle dynamics in medulloblastoma cells. J Cell Physiol. 234:18349–18360. 2019.PubMed/NCBI View Article : Google Scholar

21 

Derynck R and Budi EH: Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 12(12)2019.PubMed/NCBI View Article : Google Scholar

22 

Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, et al: TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget. 7:19499–19518. 2016.PubMed/NCBI View Article : Google Scholar

23 

Li MO, Wan YY, Sanjabi S, Robertson AK and Flavell RA: Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 24:99–146. 2006.PubMed/NCBI View Article : Google Scholar

24 

Kim KK, Sheppard D and Chapman HA: TGF-β1 signaling and tissue fibrosis. Cold Spring Harb Perspect Biol. 10(10)2018.PubMed/NCBI View Article : Google Scholar

25 

Tang J, Gifford CC, Samarakoon R and Higgins PJ: Deregulation of negative controls on TGF-β1 signaling in tumor progression. Cancers (Basel). 10(10)2018.PubMed/NCBI View Article : Google Scholar

26 

Zeng WQ, Zhang JQ, Li Y, Yang K, Chen YP and Liu ZJ: A new method to isolate and culture rat kupffer cells. PLoS One. 8(e70832)2013.PubMed/NCBI View Article : Google Scholar

27 

Mishra B, Tang Y, Katuri V, Fleury T, Said AH, Rashid A, Jogunoori W and Mishra L: Loss of cooperative function of transforming growth factor-beta signaling proteins, smad3 with embryonic liver fodrin, a beta-spectrin, in primary biliary cirrhosis. Liver Int. 24:637–645. 2004.PubMed/NCBI View Article : Google Scholar

28 

Neuman M, Angulo P, Malkiewicz I, Jorgensen R, Shear N, Dickson ER, Haber J, Katz G and Lindor K: Tumor necrosis factor-alpha and transforming growth factor-beta reflect severity of liver damage in primary biliary cirrhosis. J Gastroenterol Hepatol. 17:196–202. 2002.PubMed/NCBI View Article : Google Scholar

29 

Martinez OM, Villanueva JC, Gershwin ME and Krams SM: Cytokine patterns and cytotoxic mediators in primary biliary cirrhosis. Hepatology. 21:113–119. 1995.PubMed/NCBI

30 

Liu B, Zhang X, Zhang FC, Zong JB, Zhang W and Zhao Y: Aberrant TGF-β1 signaling contributes to the development of primary biliary cirrhosis in murine model. World J Gastroenterol. 19:5828–5836. 2013.PubMed/NCBI View Article : Google Scholar

31 

Hasan MS, Karim AB, Rukunuzzaman M, Haque A, Akhter MA, Shoma UK, Yasmin F and Rahman MA and Rahman MA: Role of liver biopsy in the diagnosis of neonatal cholestasis due to biliary atresia. Mymensingh Med J. 27:826–833. 2018.PubMed/NCBI

32 

Houwen R: Chapter 6.4. Diagnostic Progress in Cholestasis. J Pediatr Gastroenterol Nutr. 66 (Suppl 1):S134–S136. 2018.PubMed/NCBI View Article : Google Scholar

33 

Trauner M, Meier PJ and Boyer JL: Molecular pathogenesis of cholestasis. N Engl J Med. 339:1217–1227. 1998.PubMed/NCBI View Article : Google Scholar

34 

Virani S, Akers A, Stephenson K, Smith S, Kennedy L, Alpini G and Francis H: Comprehensive review of molecular mechanisms during cholestatic liver injury and cholangiocarcinoma. J Liver. 7(7)2018.PubMed/NCBI View Article : Google Scholar

35 

Cies JJ and Giamalis JN: Treatment of cholestatic pruritus in children. Am J Health Syst Pharm. 64:1157–1162. 2007.PubMed/NCBI View Article : Google Scholar

36 

Hirschfield GM and Heathcote EJ: Cholestasis and cholestatic syndromes. Curr Opin Gastroenterol. 25:175–179. 2009.PubMed/NCBI View Article : Google Scholar

37 

Sun X, Xie Z, Ma Y, Pan X, Wang J, Chen Z and Shi P: TGF-β inhibits osteogenesis by upregulating the expression of ubiquitin ligase SMURF1 via MAPK-ERK signaling. J Cell Physiol. 233:596–606. 2018.PubMed/NCBI View Article : Google Scholar

38 

Hu B, Xu C, Cao P, Tian Y, Zhang Y, Shi C, Xu J, Yuan W and Chen H: TGF-β stimulates expression of chondroitin polymerizing factor in nucleus pulposus cells through the Smad3, RhoA/ROCK1, and MAPK signaling pathways. J Cell Biochem. 119:566–579. 2018.PubMed/NCBI View Article : Google Scholar

39 

Du M, Chen W, Zhang W, Tian XK, Wang T, Wu J, Gu J, Zhang N, Lu ZW, Qian LX, et al: TGF-β1 regulates the ERK/MAPK pathway independent of the SMAD pathway by repressing miRNA-124 to increase MALAT1 expression in nasopharyngeal carcinoma. Biomed Pharmacother. 99:688–696. 2018.PubMed/NCBI View Article : Google Scholar

40 

Coppola N, Zampino R, Sagnelli C, Bellini G, Marrone A, Stanzione M, Capoluongo N, Boemio A, Minichini C, Adinolfi LE, et al: Cannabinoid receptor 2-63 QQ variant is associated with persistently normal aminotransferase serum levels in chronic hepatitis C. PLoS One. 9(e99450)2014.PubMed/NCBI View Article : Google Scholar

41 

Mazzella G, Salzetta A, Casanova S, Morelli MC, Villanova N, Miniero R, Sottili S, Novelli V, Cipolla A, Festi D, et al: Treatment of chronic sporadic-type non-A, non-B hepatitis with lymphoblastoid interferon: Gamma GT levels predictive for response. Dig Dis Sci. 39:866–870. 1994.PubMed/NCBI View Article : Google Scholar

42 

Van Campenhout S, Van Vlierberghe H and Devisscher L: Common bile duct ligation as model for secondary biliary cirrhosis. Methods Mol Biol. 1981:237–247. 2019.PubMed/NCBI View Article : Google Scholar

43 

Lotowska JM, Sobaniec-Lotowska ME, Lebensztejn DM, Daniluk U, Sobaniec P, Sendrowski K, Daniluk J, Reszec J, Debek W, Festi D, et al: Ultrastructural characteristics of rat hepatic oval cells and their intercellular contacts in the model of biliary fibrosis: New insights into experimental liver fibrogenesis. Gastroenterol Res Pract. 2017(2721547)2017.PubMed/NCBI View Article : Google Scholar

44 

Liu TZ, Lee KT, Chern CL, Cheng JT, Stern A and Tsai LY: Free radical-triggered hepatic injury of experimental obstructive jaundice of rats involves overproduction of proinflammatory cytokines and enhanced activation of nuclear factor kappaB. Ann Clin Lab Sci. 31:383–390. 2001.PubMed/NCBI

45 

Huang ZH, Huang X and Li Y: Changes and significance of tumor necrosis factor-alpha and interleukin-6 level in plasma and bile during the formation of acute intrahepatic cholestasis in New Zealand white rabbits. Zhonghua Gan Zang Bing Za Zhi. 11(313)2003.(In Chinese). PubMed/NCBI

46 

Sen R and Baltimore D: Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappaB by a posttranslational mechanism. Cell. 47:921–928. 1986.

47 

Ghosh S and Hayden MS: New regulators of NF-kappaB in inflammation. Nat Rev Immunol. 8:837–848. 2008.PubMed/NCBI View Article : Google Scholar

48 

Editors PO: PLOS ONE Editors: Expression of Concern: The interplay between NF-kappaB and E2F1 coordinately regulates inflammation and metabolism in human cardiac cells. PLoS One. 14(e0216434)2019.PubMed/NCBI View Article : Google Scholar

49 

Park J, Ha SH, Abekura F, Lim H, Magae J, Ha KT, Chung TW, Chang YC, Lee YC, Chung E, et al: 4-O-carboxymethyl ascochlorin inhibits expression levels of on inflammation-related cytokines and matrix metalloproteinase-9 through NF-κB/MAPK/TLR4 signaling pathway in LPS-activated RAW264.7 cells. Front Pharmacol. 10(304)2019.PubMed/NCBI View Article : Google Scholar

50 

van der Tuin SJ, Li Z, Berbée JF, Verkouter I, Ringnalda LE, Neele AE, van Klinken JB, Rensen SS, Fu J, de Winther MP, et al: Lipopolysaccharide lowers cholesteryl ester transfer protein by activating F4/80+Clec4f+Vsig4+Ly6C- Kupffer cell subsets. J Am Heart Assoc. 7(7)2018.PubMed/NCBI View Article : Google Scholar

51 

Feng P, Zhu W, Chen N, Li P, He K and Gong J: Cathepsin B in hepatic Kupffer cells regulates activation of TLR4-independent inflammatory pathways in mice with lipopolysaccharide-induced sepsis. Nan Fang Yi Ke Da Xue Xue Bao. 38:1465–1471. 2018.(In Chinese). PubMed/NCBI View Article : Google Scholar

52 

Zhang WJ, Fang ZM and Liu WQ: NLRP3 inflammasome activation from Kupffer cells is involved in liver fibrosis of Schistosoma japonicum-infected mice via NF-κB. Parasit Vectors. 12(29)2019.PubMed/NCBI View Article : Google Scholar

53 

Ohtani N and Kawada N: Role of the gut-liver axis in liver inflammation, fibrosis, and cancer: A special focus on the gut microbiota relationship. Hepatol Commun. 3:456–470. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qian J, Jiao Y, Wang G, Liu H, Cao X and Yang H: Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Exp Ther Med 20: 1541-1549, 2020.
APA
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., & Yang, H. (2020). Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Experimental and Therapeutic Medicine, 20, 1541-1549. https://doi.org/10.3892/etm.2020.8826
MLA
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., Yang, H."Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis". Experimental and Therapeutic Medicine 20.2 (2020): 1541-1549.
Chicago
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., Yang, H."Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis". Experimental and Therapeutic Medicine 20, no. 2 (2020): 1541-1549. https://doi.org/10.3892/etm.2020.8826
Copy and paste a formatted citation
x
Spandidos Publications style
Qian J, Jiao Y, Wang G, Liu H, Cao X and Yang H: Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Exp Ther Med 20: 1541-1549, 2020.
APA
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., & Yang, H. (2020). Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis. Experimental and Therapeutic Medicine, 20, 1541-1549. https://doi.org/10.3892/etm.2020.8826
MLA
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., Yang, H."Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis". Experimental and Therapeutic Medicine 20.2 (2020): 1541-1549.
Chicago
Qian, J., Jiao, Y., Wang, G., Liu, H., Cao, X., Yang, H."Mechanism of TGF‑β1 inhibiting Kupffer cell immune responses in cholestatic cirrhosis". Experimental and Therapeutic Medicine 20, no. 2 (2020): 1541-1549. https://doi.org/10.3892/etm.2020.8826
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team