|
1
|
Yii AC, Tay TR, Choo XN, Koh MS, Tee AK
and Wang DY: Precision medicine in united airways disease: A
‘treatable traits’ approach. Allergy. 73:1964–1978. 2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Lötvall J, Akdis CA, Bacharier LB, Bjermer
L, Casale TB, Custovic A, Lemanske RF Jr, Wardlaw AJ, Wenzel SE and
Greenberger PA: Asthma endotypes: A new approach to classification
of disease entities within the asthma syndrome. J Allergy Clin
Immunol. 127:355–360. 2011.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Desai M and Oppenheimer J: Elucidating
asthma phenotypes and endotypes: Progress towards personalized
medicine. Ann Allergy Asthma Immunol. 116:394–401. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Muraro A, Lemanske RF Jr, Hellings PW,
Akdis CA, Bieber T, Casale TB, Jutel M, Ong PY, Poulsen LK,
Schmid-Grendelmeier P, et al: Precision medicine in patients with
allergic diseases: Airway diseases and atopic dermatitis-PRACTALL
document of the European Academy of Allergy and Clinical Immunology
and the American Academy of Allergy, Asthma & Immunology. J
Allergy Clin Immunol. 137:1347–1358. 2016.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Agache I and Akdis CA: Precision medicine
and phenotypes, endotypes, genotypes, regiotypes, and theratypes of
allergic diseases. J Clin Invest. 129:1493–1503. 2019.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wambre E, Bajzik V, DeLong JH, O'Brien K,
Nguyen QA, Speake C, Gersuk VHH, DeBerg HA, Whalen E, Ni C, et al:
A phenotypically and functionally distinct human TH2 cell
subpopulation is associated with allergic disorders. Sci Transl
Med. 9(eaam9171)2017.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Velez TE, Swartzendruber JA, Hulse KE and
Bryce PJ: Regulation of B cell responses in allergy by histamine
receptors. J Immunol. 196(123.13)2016.
|
|
8
|
Kiniwa T, Enomoto Y, Terazawa N, Omi A,
Miyata N, Ishiwata K and Miyajima A: NK cells activated by
interleukin-4 in cooperation with interleukin-15 exhibit
distinctive characteristics. Proc Natl Acad Sci USA.
113:10139–10144. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Singh AK, Rhost S, Löfbom L and Cardell
SL: Defining a novel subset of CD1d-dependent type II natural
killer T cells using natural killer cell-associated markers. Scand
J Immunol. 90(e12794)2019.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chen F, Hong H, Sun Y, Hu X, Zhang J, Xu
G, Zhao W, Li H and Shi J: Nasal interleukin 25 as a novel
biomarker for patients with chronic rhinosinusitis with nasal
polyps and airway hypersensitiveness: A pilot study. Ann Allergy
Asthma Immunol. 119:310–316.e2. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Baumann R, Rabaszowski M, Stenin I,
Gaertner-Akerboom M, Scheckenbach K, Wiltfang J, Schipper J and
Wagenmann M: The release of IL-31 and IL-13 after nasal allergen
challenge and their relation to nasal symptoms. Clin Transl
Allergy. 2(13)2012.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Nechama M, Kwon J, Wei S, Kyi AT, Welner
RS, Ben-Dov IZ, Arredouani MS, Asara JM, Chen CH, Tsai CY, et al:
The IL-33-PIN1-IRAK-M axis is critical for type 2 immunity in
IL-33-induced allergic airway inflammation. Nat Commun.
9(1603)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Meng Q, Liu X, Li P, He L, Xie J, Gao X,
Wu X, Su F and Liang Y: The influence of house dust mite sublingual
immunotherapy on the TSLP-OX40L signaling pathway in patients with
allergic rhinitis. Int Forum Allergy Rhinol. 6:862–870.
2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fahy JV: Type 2 inflammation in asthma -
present in most, absent in many. Nat Rev Immunol. 15:57–65.
2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ciebiada M, Barylski M and Gorska Ciebiada
M: Nasal eosinophilia and serum soluble intercellular adhesion
molecule 1 in patients with allergic rhinitis treated with
montelukast alone or in combination with desloratadine or
levocetirizine. Am J Rhinol Allergy. 27:e58–e62. 2013.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kralimarkova TZ, Popov TA, Staevska M,
Mincheva R, Lazarova C, Racheva R, Mustakov TB, Filipova V, Koleva
M, Bacheva K, et al: Objective approach for fending off the
sublingual immunotherapy placebo effect in subjects with
pollenosis: Double-blinded, placebo-controlled trial. Ann Allergy
Asthma Immunol. 113:108–113. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Diamant Z and Hanania NA: Editorial: The
new look on asthma: linking phenotypes, endotypes and biomarkers to
asthma management. Curr Opin Pulm Med. 22:1–2. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chakir J, Shannon J, Molet S, Fukakusa M,
Elias J, Laviolette M, Boulet LP and Hamid Q: Airway
remodeling-associated mediators in moderate to severe asthma:
Effect of steroids on TGF-beta, IL-11, IL-17, and type I and type
III collagen expression. J Allergy Clin Immunol. 111:1293–1298.
2003.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Barczyk A, Pierzchala W and Sozañska E:
Interleukin-17 in sputum correlates with airway hyperresponsiveness
to methacholine. Respir Med. 97:726–733. 2003.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Staton TL, Peng K, Owen R, Choy DF,
Cabanski CR, Fong A, Brunstein F, Alatsis KR and Chen H: A phase I,
randomized, observer-blinded, single and multiple ascending-dose
study to investigate the safety, pharmacokinetics, and
immunogenicity of BITS7201A, a bispecific antibody targeting IL-13
and IL-17, in healthy volunteers. BMC Pulm Med.
19(5)2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Al-Kufaidy R, Vazquez-Tello A, BaHammam
AS, Al-Muhsen S, Hamid Q and Halwani R: IL-17 enhances the
migration of B cells during asthma by inducing CXCL13 chemokine
production in structural lung cells. J Allergy Clin Immunol.
139:696–699.e5. 2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chambers ES, Nanzer AM, Pfeffer PE,
Richards DF, Timms PM, Martineau AR, Griffiths CJ, Corrigan CJ and
Hawrylowicz CM: Distinct endotypes of steroid-resistant asthma
characterized by IL-17A(high) and IFN-γ(high) immunophenotypes:
Potential benefits of calcitriol. J Allergy Clin Immunol.
136:628–637.e4. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Berry MA, Hargadon B, Shelley M, Parker D,
Shaw DE, Green RH, Bradding P, Brightling CE, Wardlaw AJ and Pavord
ID: Evidence of a role of tumor necrosis factor alpha in refractory
asthma. N Engl J Med. 354:697–708. 2006.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Widegren H, Erjefält J, Korsgren M,
Andersson M and Greiff L: Effects of intranasal TNFalpha on
granulocyte recruitment and activity in healthy subjects and
patients with allergic rhinitis. Respir Res. 9(15)2008.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Hew KM, Walker AI, Kohli A, Garcia M, Syed
A, McDonald-Hyman C, Noth EM, Mann JK, Pratt B, Balmes J, et al:
Childhood exposure to ambient polycyclic aromatic hydrocarbons is
linked to epigenetic modifications and impaired systemic immunity
in T cells. Clin Exp Allergy. 45:238–248. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Irvin C, Zafar I, Good J, Rollins D,
Christianson C, Gorska MM, Martin RJ and Alam R: Increased
frequency of dual-positive TH2/TH17 cells in bronchoalveolar lavage
fluid characterizes a population of patients with severe asthma. J
Allergy Clin Immunol. 134:1175–1186.e7. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Farahani R, Sherkat R, Hakemi MG,
Eskandari N and Yazdani R: Cytokines (interleukin-9, IL-17, IL-22,
IL-25 and IL-33) and asthma. Adv Biomed Res. 3(127)2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Kearley J, Erjefalt JS, Andersson C,
Benjamin E, Jones CP, Robichaud A, Pegorier S, Brewah Y, Burwell
TJ, Bjermer L, et al: IL-9 governs allergen-induced mast cell
numbers in the lung and chronic remodeling of the airways. Am J
Respir Crit Care Med. 183:865–875. 2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Tang J, Xiao P, Luo X, Bai J, Xia W, Chen
W, Li J, Yu Q, Shi S, Xu Y, et al: Increased IL-22 level in
allergic rhinitis significantly correlates with clinical severity.
Am J Rhinol Allergy. 28:197–201. 2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Besnard AG, Sabat R, Dumoutier L, Renauld
JC, Willart M, Lambrecht B, Teixeira MM, Charron S, Fick L, Erard
F, et al: Dual Role of IL-22 in allergic airway inflammation and
its cross-talk with IL-17A. Am J Respir Crit Care Med.
183:1153–1163. 2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Linden M, Svensson C, Andersson M, Greiff
L, Andersson E, Denburg JA and Persson CG: Circulating
eosinophil/basophil progenitors and nasal mucosal cytokines in
seasonal allergic rhinitis. Allergy. 54:212–219. 1999.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Gong F, Zheng T and Zhou P: T follicular
helper cell subsets and the associated cytokine IL-21 in the
pathogenesis and therapy of asthma. Front Immunol.
10(2918)2019.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Gong F, Qian C, Zhu H, Zhu J, Pan Y, Dong
Q and Jiang D: Circulating follicular T-helper cell subset
distribution in patients with asthma. Allergy Asthma Proc.
37:154–161. 2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Gong F, Zhu HY, Zhu J, Dong QJ, Huang X
and Jiang DJ: Circulating CXCR5+CD4+ T cells
participate in the IgE accumulation in allergic asthma. Immunol
Lett. 197:9–14. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Lezmi G and Leite-de-Moraes M: Invariant
natural killer T and mucosal-associated invariant T cells in
asthmatic patients. Front Immunol. 9(1766)2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kurioka A, Jahun AS, Hannaway RF, Walker
LJ, Fergusson JR, Sverremark-Ekström E, Corbett AJ, Ussher JE,
Willberg CB and Klenerman P: Shared and distinct phenotypes and
functions of human CD161++ v alpha 7.2+ T
cell subsets. Front Immunol. 8(1031)2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Lezmi G, Abou Taam R, Dietrich C,
Chatenoud L, de Blic J and Leite-de-Moraes M: Circulating
IL-17-producing mucosal-associated invariant T cells (MAIT) are
associated with symptoms in children with asthma. Clin Immunol.
188:7–11. 2018.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Krawczyk CM, Shen H and Pearce EJ:
Functional plasticity in memory T helper cell responses. J Immunol.
178:4080–4088. 2007.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Filì L, Ferri S, Guarna F, Sampognaro S,
Manuelli C, Liotta F, Cosmi L, Matucci A, Vultaggio A and
Annunziato F: Redirection of allergen-specific TH2 responses by a
modified adenine through Toll-like receptor 7 interaction and
IL-12/IFN release. J Allergy Clin Immunol. 118:511–517.
2006.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Veldhoen M, Uyttenhove C, van Snick J,
Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C and Stockinger
B: Transforming growth factor-beta ‘reprograms’ the differentiation
of T helper 2 cells and promotes an interleukin 9-producing subset.
Nat Immunol. 9:1341–1346. 2008.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Hegazy AN, Peine M, Helmstetter C, Panse
I, Fröhlich A, Bergthaler A, Flatz L, Pinschewer DD, Radbruch A and
Löhning M: Interferons direct Th2 cell reprogramming to generate a
stable GATA-3(+)T-bet(+) cell subset with combined Th2 and Th1 cell
functions. Immunity. 32:116–128. 2010.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Panzer M, Sitte S, Wirth S, Drexler I,
Sparwasser T and Voehringer D: Rapid in vivo conversion of effector
T cells into Th2 cells during helminth infection. J Immunol.
188:615–623. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Adkinson NF, Bochner BS, Burks AW, Busse
WW, Holgate ST, Lemanske RF and O'Hehir RE: Chapter 7. Chemokines
in Middleton's Allergy. In: Principles and Practice. Vol. 1. 8th
edition. Elsevier Saunders, Philadelphia. pp98–112. 2014.
|
|
44
|
Montes-Vizuet R, Vega-Miranda A,
Valencia-Maqueda E, Negrete-García MC, Velásquez JR and Teran LM:
CC chemokine ligand 1 is released into the airways of atopic
asthmatics. Eur Respir J. 28:59–67. 2006.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gonzalo JA, Qiu Y, Lora JM, Al-Garawi A,
Villeval JL, Boyce JA, Martinez-A C, Marquez G, Goya I, Hamid Q, et
al: Coordinated involvement of mast cells and T cells in allergic
mucosal inflammation: Critical role of the CC chemokine ligand
1:CCR8 axis. J Immunol. 179:1740–1750. 2007.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Islam SA and Luster AD: T cell homing to
epithelial barriers in allergic disease. Nat Med. 18:705–715.
2012.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Mutalithas K, Guillen C, Raport C, Kolbeck
R, Soler D, Brightling CE, Pavord ID and Wardlaw AJ: Expression of
CCR8 is increased in asthma. Clin Exp Allergy. 40:1175–1185.
2010.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Lin YC, Huang MY, Lee MS, Hsieh CC, Kuo
HF, Kuo CH and Hung CH: Effects of montelukast on M2-related
cytokine and chemokine in M2 macrophages. J Microbiol Immunol
Infect. 51:18–26. 2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Chhiba KD, Hsu CL, Berdnikovs S and Bryce
PJ: Transcriptional heterogeneity of mast cells and basophils upon
activation. J Immunol. 198:4868–4878. 2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Takeuchi H, Yamamoto Y, Kitano H and
Enomoto T: Changes in thymus- and activation-regulated chemokine
(TARC) associated with allergen immunotherapy in patients with
perennial allergic rhinitis. J Investig Allergol Clin Immunol.
15:172–176. 2005.PubMed/NCBI
|
|
51
|
Teplyakov A, Obmolova G and Gilliland GL:
Structural insights into chemokine CCL17 recognition by antibody
M116. Biochem Biophys Rep. 13:27–31. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Staples KJ, Hinks TS, Ward JA, Gunn V,
Smith C and Djukanović R: Phenotypic characterization of lung
macrophages in asthmatic patients: Overexpression of CCL17. J
Allergy Clin Immunol. 130:1404–12.e7. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ying S, O'Connor B, Ratoff J, Meng Q,
Mallett K, Cousins D, Robinson D, Zhang G, Zhao J, Lee TH, et al:
Thymic stromal lymphopoietin expression is increased in asthmatic
airways and correlates with expression of Th2-attracting chemokines
and disease severity. J Immunol. 174:8183–8190. 2005.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chen YL and Chiang BL: Targeting TSLP with
shRNA alleviates airway inflammation and decreases epithelial CCL17
in a murine model of asthma. Mol Ther Nucleic Acids.
5(e316)2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Xiao JZ, Kondo S, Takahashi N, Odamaki T,
Iwabuchi N, Miyaji K, Iwatsuki K and Enomoto T: Changes in plasma
TARC levels during Japanese cedar pollen season and relationships
with symptom development. Int Arch Allergy Immunol. 144:123–127.
2007.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Sun J, Wong B, Cundall M, Goncharova S,
Conway M, Dalrymple A, Coyle AJ, Waserman S and Jordana M:
Immunoreactivity profile of peripheral blood mononuclear cells from
patients with ragweed-induced allergic rhinitis. Clin Exp Allergy.
37:901–908. 2007.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tsybikov NN, Egorova EV, Kuznik BI,
Fefelova EV and Magen E: Biomarker assessment in chronic rhinitis
and chronic rhinosinusitis: Endothelin-1, TARC/CCL17, neopterin,
and α-defensins. Allergy Asthma Proc. 37:35–42. 2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Chenivesse C and Tsicopoulos A: CCL18 -
Beyond chemotaxis. Cytokine. 109:52–56. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Gavala ML, Kelly EA, Esnault S, Kukreja S,
Evans MD, Bertics PJ, Chupp GL and Jarjour NN: Segmental allergen
challenge enhances chitinase activity and levels of CCL18 in mild
atopic asthma. Clin Exp Allergy. 43:187–197. 2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Kim HB, Kim CK, Iijima K, Kobayashi T and
Kita H: Protein microarray analysis in patients with asthma:
Elevation of the chemokine PARC/CCL18 in sputum. Chest.
135:295–302. 2009.PubMed/NCBI View Article : Google Scholar
|
|
61
|
de Nadaï P, Charbonnier AS, Chenivesse C,
Sénéchal S, Fournier C, Gilet J, Vorng H, Chang Y, Gosset P,
Wallaert B, et al: Involvement of CCL18 in allergic asthma. J
Immunol. 176:6286–6293. 2006.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Peterson S, Poposki JA, Nagarkar DR,
Chustz RT, Peters AT, Suh LA, Carter R, Norton J, Harris KE,
Grammer LC, et al: Increased expression of CC chemokine ligand 18
in patients with chronic rhinosinusitis with nasal polyps. J
Allergy Clin Immunol. 129:119–27.e1, 9. 2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Yanai M, Sato K, Aoki N, Takiyama Y,
Oikawa K, Kobayashi H, Kimura S, Harabuchi Y and Tateno M: The role
of CCL22/macrophage-derived chemokine in allergic rhinitis. Clin
Immunol. 125:291–298. 2007.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Holgate ST and Davies DE: Rethinking the
pathogenesis of asthma. Immunity. 31:362–367. 2009.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kim CK, Kita H, Callaway Z, Kim HB, Choi
J, Fujisawa T, Shin BM and Koh YY: The roles of a Th2 cytokine and
CC chemokine in children with stable asthma: Potential implication
in eosinophil degranulation. Pediatr Allergy Immunol. 21:e697–e704.
2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Rojas-Ramos E, Avalos AF, Pérez-Fernandez
L, Cuevas-Schacht F, Valencia-Maqueda E and Terán LM: Role of the
chemokines RANTES, monocyte chemotactic proteins-3 and -4, and
eotaxins-1 and -2 in childhood asthma. Eur Respir J. 22:310–316.
2003.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Semik-Orzech A, Barczyk A, Wiaderkiewicz R
and Pierzchała W: Eotaxin, but not IL-8, is increased in upper and
lower airways of allergic rhinitis subjects after nasal allergen
challenge. Allergy Asthma Proc. 32:230–238. 2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Paplińska-Goryca M, Nejman-Gryz P, Górska
K, Białek1-Gosk K, Hermanowicz-Salamon J and Krenke R: Expression
of inflammatory mediators in induced sputum: Comparative study in
asthma and COPD. Adv Exp Med Biol. 1040:101–112. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Schuh JM, Blease K, Kunkel SL and Hogaboam
CM: Eotaxin/CCL11 is involved in acute, but not chronic, allergic
airway responses to Aspergillus fumigatus. Am J Physiol Lung
Cell Mol Physiol. 283:L198–L204. 2002.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mori A, Ogawa K, Kajiyama Y, Suko M and
Kaminuma O: Th2-cell-mediated chemokine synthesis is involved in
allergic airway inflammation in mice. Int Arch Allergy Immunol. 140
(Suppl 1):55–58. 2006.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Arizmendi NG, Abel M, Puttagunta L,
Asaduzzaman M, Davidson C, Karimi K, Forsythe P and Vliagoftis H:
Mucosal exposure to cockroach extract induces allergic
sensitization and allergic airway inflammation. Allergy Asthma Clin
Immunol. 7(22)2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Wu D, Zhou J, Bi H, Li L, Gao W, Huang M,
Adcock IM, Barnes PJ and Yao X: CCL11 as a potential diagnostic
marker for asthma? J Asthma. 51:847–854. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Špadijer Mirković C, Perić A, Vukomanović
Đurđević B and Vojvodić D: Effects of fluticasone furoate nasal
spray on parameters of eosinophilic inflammation in patients with
nasal polyposis and perennial allergic rhinitis. Ann Otol Rhinol
Laryngol. 126:573–580. 2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Thornton MA, Akasheh N, Walsh MT, Moloney
M, Sheahan PO, Smyth CM, Walsh RM, Morgan RM, Curran DR, Walsh MT,
et al: Eosinophil recruitment to nasal nerves after allergen
challenge in allergic rhinitis. Clin Immunol. 147:50–57.
2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Chae SC, Park YR, Oh GJ, Lee JH and Chung
HT: The suggestive association of eotaxin-2 and eotaxin-3 gene
polymorphisms in Korean population with allergic rhinitis.
Immunogenetics. 56:760–764. 2005.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Singh SR, Sutcliffe A, Kaur D, Gupta S,
Desai D, Saunders R and Brightling CE: CCL2 release by airway
smooth muscle is increased in asthma and promotes fibrocyte
migration. Allergy. 69:1189–1197. 2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Little FF, Delgado DM, Wexler PJ,
Oppenheim FG, Mitchell P, Feldman JA, Walt DR, Peng RD and Matsui
EC: Salivary inflammatory mediator profiling and correlation to
clinical disease markers in asthma. PLoS One.
9(e84449)2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Simons B, Ferrini ME, Carvalho S, Bassett
DJ, Jaffar Z and Roberts K: PGI2 controls pulmonary NK cells that
prevent airway sensitization to house dust mite allergen. J
Immunol. 198:461–471. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Mellado M, Martín de Ana A, Gómez L,
Martínez C and Rodríguez-Frade JM: Chemokine receptor 2 blockade
prevents asthma in a cynomolgus monkey model. J Pharmacol Exp Ther.
324:769–775. 2008.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Batra J, Das S, Chatterjee R, Chandra S
and Ghosh B: Monocyte chemotactic protein (MCP3) promoter
polymorphism is associated with atopic asthma in the Indian
population. J Allergy Clin Immunol. 128:239–242.e3. 2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Zhang YL, Han DH, Kim DY, Lee CH and Rhee
CS: Role of Interleukin-17A on the chemotactic responses to CCL7 in
a murine allergic rhinitis model. PLoS One.
12(e0169353)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Saad-El-Din Bessa S, Abo El-Magd GH and
Mabrouk MM: Serum chemokines RANTES and monocyte chemoattractant
protein-1 in Egyptian patients with atopic asthma: Relationship to
disease severity. Arch Med Res. 43:36–41. 2012.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Keskin O, Keskin M, Kucukosmanoglu E,
Ozkars MY, Gogebakan B, Kul S, Bayram H and Coskun Y: Exhaled
RANTES and interleukin 4 levels after exercise challenge in
children with asthma. Ann Allergy Asthma Immunol. 109:303–308.
2012.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Marcella R, Croce A, Moretti A, Barbacane
RC, Di Giocchino M and Conti P: Transcription and translation of
the chemokines RANTES and MCP-1 in nasal polyps and mucosa in
allergic and non-allergic rhinopathies. Immunol Lett. 90:71–75.
2003.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Xie ZK, Zhao H, Huang J and Xie ZF: The
regulated upon activation normal T-cell expressed and secreted
(RANTES) -28C/G and -403G/A polymorphisms and asthma risk: A
meta-analysis. Mol Diagn Ther. 18:523–531. 2014.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Kalayci O, Sonna LA, Woodruff PG, Camargo
CA Jr, Luster AD and Lilly CM: Monocyte chemotactic protein-4
(MCP-4; CCL-13): A biomarker of asthma. J Asthma. 41:27–33.
2004.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Odaka M, Matsukura S, Kuga H, Kokubu F,
Kasama T, Kurokawa M, Kawaguchi M, Ieki K, Suzuki S, Watanabe S, et
al: Differential regulation of chemokine expression by Th1 and Th2
cytokines and mechanisms of eotaxin/CCL-11 expression in human
airway smooth muscle cells. Int Arch Allergy Immunol. 143 (Suppl
1):84–88. 2007.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Baumann R, Rabaszowski M, Stenin I,
Tilgner L, Scheckenbach K, Wiltfang J, Schipper J, Chaker A and
Wagenmann M: Comparison of the nasal release of IL-4, IL-10, IL-17,
CCL13/MCP-4, and CCL26/eotaxin-3 in allergic rhinitis during season
and after allergen challenge. Am J Rhinol Allergy. 27:266–272.
2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Rimaniol AC, Till SJ, Garcia G, Capel F,
Godot V, Balabanian K, Durand-Gasselin I, Varga EM, Simonneau G,
Emilie D, et al: The CX3C chemokine fractalkine in allergic asthma
and rhinitis. J Allergy Clin Immunol. 112:1139–1146.
2003.PubMed/NCBI View Article : Google Scholar
|
|
90
|
El-Shazly A, Berger P, Girodet PO, Ousova
O, Fayon M, Vernejoux JM, Marthan R and Tunon-de-Lara JM:
Fraktalkine produced by airway smooth muscle cells contributes to
mast cell recruitment in asthma. J Immunol. 176:1860–1868.
2006.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Mionnet C, Buatois V, Kanda A, Milcent V,
Fleury S, Lair D, Langelot M, Lacoeuille Y, Hessel E, Coffman R, et
al: CX3CR1 is required for airway inflammation by promoting T
helper cell survival and maintenance in inflamed lung. Nat Med.
16:1305–1312. 2010.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kaplan AP: Chemokines, chemokine receptors
and allergy. Int Arch Allergy Immunol. 124:423–431. 2001.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Liu LY, Bates ME, Jarjour NN, Busse WW,
Bertics PJ and Kelly EA: Generation of Th1 and Th2 chemokines by
human eosinophils: Evidence for a critical role of TNF-α. J
Immunol. 179:4840–4848. 2007.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Liu L, Jarjour NN, Busse WW and Kelly EA:
Enhanced generation of helper T type 1 and 2 chemokines in
allergen-induced asthma. Am J Respir Crit Care Med. 169:1118–1124.
2004.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Lun SW, Wong CK, Ko FW, Ip WK, Hui DS and
Lam CW: Aberrant expression of CC and CXC chemokines and their
receptors in patients with asthma. J Clin Immunol. 26:145–152.
2006.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Lai ST, Hung CH, Hua YM, Hsu SH, Jong YJ
and Suen JL: T-helper 1-related chemokines in the exacerbation of
childhood asthma. Pediatr Int. 50:99–102. 2008.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ragusa F and Fallahi P: IP-10 in
occupational asthma: Review of the literature and case-control
study. Clin Ter. 168:e151–e157. 2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Tworek D, Kuna P, Młynarski W, Górski P,
Pietras T and Antczak A: MIG (CXCL9), IP-10 (CXCL10) and I-TAC
(CXCL11) concentrations after nasal allergen challenge in patients
with allergic rhinitis. Arch Med Sci. 9:849–853. 2013.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Romagnani P, Maggi L, Mazzinghi B, Cosmi
L, Lasagni L, Liotta F, Lazzeri E, Angeli R, Rotondi M and Filì L:
CXCR3-mediated opposite effects of CXCL10 and CXCL4 on TH1 or TH2
cytokine production. J Allergy Clin Immunol. 116:1372–1379.
2005.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Ko FW, Lun SW, Wong CK, Szeto CC, Lam CW,
Leung TF and Hui DS: Decreased T-bet expression and changes in
chemokine levels in adults with asthma. Clin Exp Immunol.
147:526–532. 2007.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Lun SW, Wong CK, Ko FW, Ip WK, Hui DS and
Lam CW: Aberrant expression of CC and CXC chemokines and their
receptors in patients with asthma. J Clin Immunol. 26:145–152.
2006.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Sawant KV, Poluri KM, Dutta AK, Sepuru KM,
Troshkina A, Garofalo RP and Rajarathnam K: Chemokine CXCL1
mediated neutrophil recruitment: Role of glycosaminoglycan
interactions. Sci Rep. 6(33123)2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Cho MK, Park MK, Kang SA, Caballero ML,
Perez-Pinar T, Rodriguez-Perez R, Ock MS, Cha HJ, Hong YC and Yu
HS: Allergenicity of two Anisakis simplex allergens evaluated in
vivo using an experimental mouse model. Exp Parasitol. 146:71–77.
2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Kim EH, Kim JH, Samivel R, Bae JS, Chung
YJ, Chung PS, Lee SE and Mo JH: Intralymphatic treatment of
flagellin-ovalbumin mixture reduced allergic inflammation in murine
model of allergic rhinitis. Allergy. 71:629–639. 2016.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Chenuet P, Fauconnier L, Madouri F,
Marchiol T, Rouxel N, Ledru A, Mauny P, Lory R, Uttenhove C, van
Snick J, et al: Neutralization of either IL-17A or IL-17F is
sufficient to inhibit house dust mite induced allergic asthma in
mice. Clin Sci (Lond). 131:2533–2548. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Al-Alwan LA, Chang Y, Mogas A, Halayko AJ,
Baglole CJ, Martin JG, Rousseau S, Eidelman DH and Hamid Q:
Differential roles of CXCL2 and CXCL3 and their receptors in
regulating normal and asthmatic airway smooth muscle cell
migration. J Immunol. 191:2731–2741. 2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Dixit N and Simon SI: Chemokines,
selectins and intracellular calcium flux: Temporal and spatial cues
for leukocyte arrest. Front Immunol. 3(188)2012.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Baos S, Calzada D, Cremades L, Sastre J,
Quiralte J, Florido F, Lahoz C and Cárdaba B: Biomarkers associated
with disease severity in allergic and nonallergic asthma. Mol
Immunol. 82:34–45. 2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Charrad R, Kaabachi W, Rafrafi A, Berraies
A, Hamzaoui K and Hamzaoui A: IL-8 gene variants and expression in
childhood asthma. Lung. 195:749–757. 2017.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Lee MF, Song PP, Hwang GY, Lin SJ and Chen
YH: Sensitization to Per a 2 of the American cockroach correlates
with more clinical severity among airway allergic patients in
Taiwan. Ann Allergy Asthma Immunol. 108:243–248. 2012.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Yang T, Li Y, Lyu Z, Huang K, Corrigan CJ,
Ying S, Wang W and Wang C: Characteristics of proinflammatory
cytokines and chemokines in airways of asthmatics: Relationships
with disease severity and infiltration of inflammatory cells. Chin
Med J (Engl). 130:2033–2040. 2017.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Wang X, Zhang N, Bo M, Holtappels G, Zheng
M, Lou H, Wang H, Zhang L and Bachert C: Diversity of TH cytokine
profiles in patients with chronic rhinosinusitis: A multicenter
study in Europe, Asia, and Oceania. J Allergy Clin Immunol.
138:1344–1353. 2016.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Tomassen P, Vandeplas G, Van Zele T,
Cardell LO, Arebro J, Olze H, Förster-Ruhrmann U, Kowalski ML,
Olszewska-Ziąber A, Holtappels G, et al: Inflammatory endotypes of
chronic rhinosinusitis based on cluster analysis of biomarkers. J
Allergy Clin Immunol. 137:1449–1456.e4. 2016.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Cui XY, Chen X, Yu CJ, Yang J, Lin ZP, Yin
M and Cheng L: Increased expression of toll-like receptors 2 and 4
and related cytokines in persistent allergic rhinitis. Otolaryngol
Head Neck Surg. 152:233–238. 2015.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Pelikan Z: Cytokines in tears during the
secondary keratoconjunctival responses induced by allergic reaction
in the nasal mucosa. Ophthalmic Res. 52:32–42. 2014.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Pelikan Z: Cytokine profiles in tears
accompanying the secondary conjunctival responses induced by nasal
allergy. Curr Eye Res. 39:120–132. 2014.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Kim JA, Cho JH, Park IH, Shin JM, Lee SA
and Lee HM: Diesel exhaust particles upregulate interleukins IL-6
and IL-8 in nasal fibroblasts. PLoS One.
11(e0157058)2016.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Ozturk AB, Bayraktar R, Gogebakan B,
Mumbuc S and Bayram H: Comparison of inflammatory cytokine release
from nasal epithelial cells of non-atopic non-rhinitic, allergic
rhinitic and polyp subjects and effects of diesel exhaust particles
in vitro. Allergol Immunopathol (Madr). 45:473–481. 2017.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Hastie AT, Steele C, Dunaway CW, Moore WC,
Rector BM, Ampleford E, Li H, Denlinger LC, Jarjour N, Meyers DA,
et al: NHLBI Severe Asthma Research Program (SARP): Complex
association patterns for inflammatory mediators in induced sputum
from subjects with asthma. Clin Exp Allergy. 48:787–797.
2018.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Miyajima S, Shigehara K, Kamekura R,
Takaki H, Yabe H, Ikegami I, Asai Y, Nishikiori H, Chiba H, Uno E,
et al: Activated circulating T follicular helper cells and skewing
of T follicular helper 2 cells are down-regulated by treatment
including an inhaled corticosteroid in patients with allergic
asthma. Allergol Int. 69:66–77. 2020.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Fujita K, Kobayashi M, Brutkiewicz RR,
Hanafusa T, Herndon DN and Suzuki F: Role for IL-4 nonproducing NKT
cells in CC-chemokine ligand 2-induced Th2 cell generation. Immunol
Cell Biol. 84:44–50. 2006.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Bilenki L, Yang J, Fan Y, Wang S and Yang
X: Natural killer T cells contribute to airway inflammation induced
eosinophilic by ragweed through enhanced IL-4 and eotaxin
production. Eur J Immunol. 34:345–354. 2004.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Hong GU, Kim NG, Kim TJ and Ro JY: CD1d
expressed in mast cell surface enhances IgE production in B cells
by up-regulating CD40L expression and mediator release in allergic
asthma in mice. Cell Signal. 26:1105–1117. 2014.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Karisola P, Lehto M, Kinaret P, Ahonen N,
Haapakoski R, Anthoni M, Taniguchi M, Wolff H, Puustinen A and
Alenius H: Invariant natural killer T cells play a role in
chemotaxis, complement activation and mucus production in a mouse
model of airway hyperreactivity and inflammation. PLoS One.
10(e0129446)2015.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Woo YD, Koh J, Kang HR, Kim HY and Chung
DH: The invariant natural killer T cell-mediated chemokine X-C
motif chemokine ligand 1-X-C motif chemokine receptor 1 axis
promotes allergic airway hyperresponsiveness by recruiting
CD103+ dendritic cells. J Allergy Clin Immunol.
142:1781–1792.e12. 2018.PubMed/NCBI View Article : Google Scholar
|