|
1
|
American Psychiatric Association:
Schizophrenia Spectrum and Other Psychotic Disorders In Diagnostic
and statistical manual of mental disorders. 5th edition.
Washington, DC, 2013.
|
|
2
|
Trifu S, Delcuescu C and Boer CM:
Psychosomatics and psychical tension (clinical research). Procedia
Soc Behav Sci. 33:128–132. 2012.
|
|
3
|
Lieberman JA, Perkins D, Belger A, Chakos
M, Jarskog F, Boteva K and Gilmore J: The early stages of
schizophrenia: Speculations on pathogenesis, pathophysiology, and
therapeutic approaches. Biol Psychiatry. 50:884–897.
2001.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Perkins DO, Gu H, Boteva K and Lieberman
JA: Relationship between duration of untreated psychosis and
outcome in first-episode schizophrenia: A critical review and
meta-analysis. Am J Psychiatry. 162:1785–1804. 2005.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Saha S, Chant D, Welham J and McGrath J: A
systematic review of the prevalence of schizophrenia. PLoS Med.
2(e141)2005.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Sullivan PF, Kendler KS and Neale MC:
Schizophrenia as a complex trait: Evidence from a meta-analysis of
twin studies. Arch Gen Psychiatry. 60:1187–1192. 2003.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Trifu S: Dissociative Identity Disorder
Psychotic functioning and impairment of growing-up processes. J
Educ Sci Psychol. 9:102–108. 2019.
|
|
8
|
Karayiorgou M and Gogos JA: A turning
point in schizophrenia genetics. Neuron. 19:967–979.
1997.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Kirov G, Pocklington AJ, Holmans P, Ivanov
D, Ikeda M, Ruderfer D, Moran J, Chambert K, Toncheva D, Georgieva
L, et al: De novo CNV analysis implicates specific abnormalities of
postsynaptic signalling complexes in the pathogenesis of
schizophrenia. Mol Psychiatry. 17:142–153. 2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ripke S, O'Dushlaine C, Chambert K, Moran
JL, Kähler AK, Akterin S, Bergen SE, Collins AL, Crowley JJ, Fromer
M, et al: Multicenter Genetic Studies of Schizophrenia Consortium;
Psychosis endophenotypes international consortium; Wellcome trust
case control consortium 2: Genome-wide association analysis
identifies 13 new risk loci for schizophrenia. Nat Genet.
45:1150–1159. 2013.PubMed/NCBI View
Article : Google Scholar
|
|
11
|
Schizophrenia Psychiatric Genome-Wide
Association Study (GWAS) Consortium. Genome-wide association study
identifies five new schizophrenia loci. Nat Genet. 43:969–976.
2011.PubMed/NCBI View
Article : Google Scholar
|
|
12
|
Walsh T, McClellan JM, McCarthy SE,
Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda M, Malhotra D,
Bhandari A, et al: Rare structural variants disrupt multiple genes
in neurodevelopmental pathways in schizophrenia. Science.
320:539–543. 2008.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Gulsuner S, Walsh T, Watts AC, Lee MK,
Thornton AM, Casadei S, Rippey C, Shahin H, Nimgaonkar VL, Go RC,
et al: Consortium on the Genetics of Schizophrenia (COGS);
PAARTNERS Study Group: Spatial and temporal mapping of de novo
mutations in schizophrenia to a fetal prefrontal cortical network.
Cell. 154:518–529. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Trifu S, Vladuti A and Popescu A:
Neuroendocrine aspects of pregnancy and postpartum depression. Acta
Endocrinol (Bucur). 15:410–415. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ng MY, Levinson DF, Faraone SV, Suarez BK,
DeLisi LE, Arinami T, Riley B, Paunio T, Pulver AE, Irmansyah, et
al: Meta-analysis of 32 genome-wide linkage studies of
schizophrenia. Mol Psychiatry. 14:774–785. 2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Shih RA, Belmonte PL and Zandi PP: A
review of the evidence from family, twin and adoption studies for a
genetic contribution to adult psychiatric disorders. Int Rev
Psychiatry. 16:260–283. 2004.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Rujescu D: Search for risk genes in
schizophrenia. Nervenarzt. 88:751–754. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Davis JO and Phelps JA: Twins with
schizophrenia: Genes or germs? Schizophr Bull. 21:13–18.
1995.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Waller NG, Kojetin BA, Bouchard TJ Jr,
Lykken DT and Tellegen A: Genetic and environmental influences on
religious interests, attitudes, and values: A study of twins reared
apart and together. Psychol Sci. 1:138–142. 1990.
|
|
20
|
Torrey EF, Bowler AE, Taylor EH and
Gottesman II: Schizophrenia and Manic Depression Disorder: The
Biological Roots of Mental Illness as Revealed by the Landmark
Study of Identical Twins. Basic Books, New York, NY, p274,
1994.
|
|
21
|
Bracha HS, Torrey EF, Gottesman II,
Bigelow LB and Cuniff C: Second trimester markers of fetal size in
schizophrenia: A study of monozygotic twins. Am J Hum Genet.
28:433–441. 1976.
|
|
22
|
Pulver AE, Liang KY, Brown CH, Wolyniec P,
McGrath J, Adler L, Tam D, Carpenter WT Jr and Childs B: Risk
factors in schizophrenia. Season of birth, gender, and familial
risk. Br J Psychiatry. 160:65–71. 1992.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Bulmer M (ed): The Biology of Twinning in
Man. Clarendon Press, Oxford, p205, 1970.
|
|
24
|
Macgillivray I, Nylander P and Corney G
(eds): Mythology and customs associated with twins. In: Human
Multiple Reproduction. WB Saunders Company, London, 1975.
|
|
25
|
Springer SP and Deutsch G: Left Brain,
Right Brain. Freeman & Company, San Francisco, CA, p243,
1981.
|
|
26
|
Greenwood TA, Swerdlow NR, Gur RE,
Cadenhead KS, Calkins ME, Dobie DJ, Freedman R, Green MF, Gur RC,
Lazzeroni LC, et al: Genome-wide linkage analyses of 12
endophenotypes for schizophrenia from the Consortium on the
Genetics of Schizophrenia. Am J Psychiatry. 170:521–532.
2013.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Vieland VJ, Walters KA, Lehner T, Azaro M,
Tobin K, Huang Y and Brzustowicz LM: Revisiting schizophrenia
linkage data in the NIMH Repository: Reanalysis of regularized data
across multiple studies. Am J Psychiatry. 171:350–359.
2014.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Karayiorgou M and Gogos JA: Schizophrenia
genetics: Uncovering positional candidate genes. Eur J Hum Genet.
14:512–519. 2006.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Levinson DF, Holmans P, Straub RE, Owen
MJ, Wildenauer DB, Gejman PV, Pulver AE, Laurent C, Kendler KS,
Walsh D, et al: Multicenter linkage study of schizophrenia
candidate regions on chromosomes 5q, 6q, 10p, and 13q:
Schizophrenia linkage collaborative group III. Am J Hum Genet.
67:652–663. 2000.PubMed/NCBI View
Article : Google Scholar
|
|
30
|
Campbell CD, Ogburn EL, Lunetta KL, Lyon
HN, Freedman ML, Groop LC, Altshuler D, Ardlie KG and Hirschhorn
JN: Demonstrating stratification in a European American population.
Nat Genet. 37:868–872. 2005.PubMed/NCBI View
Article : Google Scholar
|
|
31
|
Liu H, Heath SC, Sobin C, Roos JL, Galke
BL, Blundell ML, Lenane M, Robertson B, Wijsman EM, Rapoport JL, et
al: Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an
unusual pattern and increases susceptibility to schizophrenia. Proc
Natl Acad Sci USA. 99:3717–3722. 2002.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Renick SE, Kleven DT, Chan J, Stenius K,
Milner TA, Pickel VM and Fremeau RT Jr: The mammalian brain
high-affinity L-proline transporter is enriched preferentially in
synaptic vesicles in a subpopulation of excitatory nerve terminals
in rat forebrain. J Neurosci. 19:21–33. 1999.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Trifu S: Neuroendocrine insights into
burnout syndrome. Acta Endocrinol (Bucur). 15:404–405.
2019.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Liu H, Abecasis GR, Heath SC, Knowles A,
Demars S, Chen YJ, Roos JL, Rapoport JL, Gogos JA and Karayiorgou
M: Genetic variation in the 22q11 locus and susceptibility to
schizophrenia. Proc Natl Acad Sci USA. 99:16859–16864.
2002.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Li T, Ma X, Sham PC, Sun X, Hu X, Wang Q,
Meng H, Deng W, Liu X, Murray RM, et al: Evidence for association
between novel polymorphisms in the PRODH gene and schizophrenia in
a Chinese population. Am J Med Genet B Neuropsychiatr Genet.
129B:13–15. 2004.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Fallin MD, Lasseter VK, Avramopoulos D,
Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang
KY, Huganir RL, et al: Bipolar I disorder and schizophrenia: A
440-single-nucleotide polymorphism screen of 64 candidate genes
among Ashkenazi Jewish case-parent trios. Am J Hum Genet.
77:918–936. 2005.PubMed/NCBI View
Article : Google Scholar
|
|
37
|
Williams HJ, Williams N, Spurlock G,
Norton N, Ivanov D, McCreadie RG, Preece A, Sharkey V, Jones S,
Zammit S, et al: Association between PRODH and schizophrenia is not
confirmed. Mol Psychiatry. 8:644–645. 2003.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ghasemvand F, Omidinia E, Salehi Z and
Rahmanzadeh S: Relationship between polymorphisms in the proline
dehydrogenase gene and schizophrenia risk. Genet Mol Res.
14:11681–11691. 2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Gogos JA, Santha M, Takacs Z, Beck KD,
Luine V, Lucas LR, Nadler JV and Karayiorgou M: The gene encoding
proline dehydrogenase modulates sensorimotor gating in mice. Nat
Genet. 21:434–439. 1999.PubMed/NCBI View
Article : Google Scholar
|
|
40
|
Paterlini M, Zakharenko SS, Lai WS, Qin J,
Zhang H, Mukai J, Westphal KG, Olivier B, Sulzer D, Pavlidis P, et
al: Transcriptional and behavioral interaction between 22q11.2
orthologs modulates schizophrenia-related phenotypes in mice. Nat
Neurosci. 8:1586–1594. 2005.PubMed/NCBI View
Article : Google Scholar
|
|
41
|
Mukai J, Liu H, Burt RA, Swor DE, Lai WS,
Karayiorgou M and Gogos JA: Evidence that the gene encoding ZDHHC8
contributes to the risk of schizophrenia. Nat Genet. 36:725–731.
2004.PubMed/NCBI View
Article : Google Scholar
|
|
42
|
Shifman S, Bronstein M, Sternfeld M,
Pisanté-Shalom A, Lev-Lehman E, Weizman A, Reznik I, Spivak B,
Grisaru N, Karp L, et al: A highly significant association between
a COMT haplotype and schizophrenia. Am J Hum Genet. 71:1296–1302.
2002.PubMed/NCBI View
Article : Google Scholar
|
|
43
|
Tsai SJ, Hong CJ, Hou SJ and Yen FC: Lack
of association of catechol-O-methyltransferase gene Val108/158Met
polymorphism with schizophrenia: A family-based association study
in a Chinese population. Mol Psychiatry. 11:2–3. 2006.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Egan MF, Goldberg TE, Kolachana BS,
Callicott JH, Mazzanti CM, Straub RE, Goldman D and Weinberger DR:
Effect of COMT Val108/158 Met genotype on frontal lobe function and
risk for schizophrenia. Proc Natl Acad Sci USA. 98:6917–6922.
2001.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ho BC, Wassink TH, O'Leary DS, Sheffield
VC and Andreasen NC: Catechol-O-methyl transferase Val158Met gene
polymorphism in schizophrenia: Working memory, frontal lobe MRI
morphology and frontal cerebral blood flow. Mol Psychiatry. 10:
229:287–298. 2005.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Williams HJ, Owen MJ and O'Donovan MC: Is
COMT a susceptibility gene for schizophrenia? Schizophr Bull.
33:635–641. 2007.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Gothelf D, Eliez S, Thompson T, Hinard C,
Penniman L, Feinstein C, Kwon H, Jin S, Jo B, Antonarakis SE, et
al: COMT genotype predicts longitudinal cognitive decline and
psychosis in 22q11.2 deletion syndrome. Nat Neurosci. 8:1500–1502.
2005.PubMed/NCBI View
Article : Google Scholar
|
|
48
|
Benson MA, Newey SE, Martin-Rendon E,
Hawkes R and Blake DJ: Dysbindin, a novel coiled-coil-containing
protein that interacts with the dystrobrevins in muscle and brain.
J Biol Chem. 276:24232–24241. 2001.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Li W, Zhang Q, Oiso N, Novak EK, Gautam R,
O'Brien EP, Tinsley CL, Blake DJ, Spritz RA, Copeland NG, et al:
Hermansky-Pudlak syndrome type 7 (HPS-7) results from mutant
dysbindin, a member of the biogenesis of lysosome-related
organelles complex 1 (BLOC-1). Nat Genet. 35:84–89. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Talbot K, Eidem WL, Tinsley CL, Benson MA,
Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE,
et al: Dysbindin-1 is reduced in intrinsic, glutamatergic terminals
of the hippocampal formation in schizophrenia. J Clin Invest.
113:1353–1363. 2004.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Weickert CS, Straub RE, McClintock BW,
Matsumoto M, Hashimoto R, Hyde TM, Herman MM, Weinberger DR and
Kleinman JE: Human dysbindin (DTNBP1) gene expression in normal
brain and in schizophrenic prefrontal cortex and midbrain. Arch Gen
Psychiatry. 61:544–555. 2004.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li T, Stefansson H, Gudfinnsson E, Cai G,
Liu X, Murray RM, Steinthorsdottir V, Januel D, Gudnadottir VG,
Petursson H, et al: Identification of a novel neuregulin 1 at-risk
haplotype in Han schizophrenia Chinese patients, but no association
with the Icelandic/Scottish risk haplotype. Mol Psychiatry.
9:698–704. 2004.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhao X, Shi Y, Tang J, Tang R, Yu L, Gu N,
Feng G, Zhu S, Liu H, Xing Y, et al: A case control and family
based association study of the neuregulin1 gene and schizophrenia.
J Med Genet. 41:31–34. 2004.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Rimer M, Barrett DW, Maldonado MA, Vock VM
and Gonzalez-Lima F: Neuregulin-1 immunoglobulin-like domain mutant
mice: Clozapine sensitivity and impaired latent inhibition.
Neuroreport. 16:271–275. 2005.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yang X, Kuo Y, Devay P, Yu C and Role L: A
cysteine-rich isoform of neuregulin controls the level of
expression of neuronal nicotinic receptor channels during
synaptogenesis. Neuron. 20:255–270. 1998.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Falola O, Osamor VC, Adebiyi M and Adebiyi
E: Analyzing a single nucleotide polymorphism in schizophrenia: A
meta-analysis approach. Neuropsychiatr Dis Treat. 13:2243–2250.
2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Hennah W, Varilo T, Kestilä M, Paunio T,
Arajärvi R, Haukka J, Parker A, Martin R, Levitzky S, Partonen T,
et al: Haplotype transmission analysis provides evidence of
association for DISC1 to schizophrenia and suggests sex-dependent
effects. Hum Mol Genet. 12:3151–3159. 2003.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hodgkinson CA, Goldman D, Jaeger J,
Persaud S, Kane JM, Lipsky RH and Malhotra AK: Disrupted in
schizophrenia 1 (DISC1): Association with schizophrenia,
schizoaffective disorder, and bipolar disorder. Am J Hum Genet.
75:862–872. 2004.PubMed/NCBI View
Article : Google Scholar
|
|
59
|
Callicott JH, Straub RE, Pezawas L, Egan
MF, Mattay VS, Hariri AR, Verchinski BA, Meyer-Lindenberg A,
Balkissoon R, Kolachana B, et al: Variation in DISC1 affects
hippocampal structure and function and increases risk for
schizophrenia. Proc Natl Acad Sci USA. 102:8627–8632.
2005.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hennah W, Tuulio-Henriksson A, Paunio T,
Ekelund J, Varilo T, Partonen T, Cannon TD, Lönnqvist J and
Peltonen L: A haplotype within the DISC1 gene is associated with
visual memory functions in families with a high density of
schizophrenia. Mol Psychiatry. 10:1097–1103. 2005.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sawa A and Snyder SH: Genetics Two genes
link two distinct psychoses. Science. 310:1128–1129.
2005.PubMed/NCBI View Article : Google Scholar
|
|
62
|
el-Husseini AD and Bredt DS: Protein
palmitoylation: A regulator of neuronal development and function.
Nat Rev Neurosci. 3:791–802. 2002.PubMed/NCBI View
Article : Google Scholar
|
|
63
|
Borowsky B, Adham N, Jones KA, Raddatz R,
Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA,
Pathirana S, et al: Trace amines: Identification of a family of
mammalian G protein-coupled receptors. Proc Natl Acad Sci USA.
98:8966–8971. 2001.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Chumakov I, Blumenfeld M, Guerassimenko O,
Cavarec L, Palicio M, Abderrahim H, Bougueleret L, Barry C, Tanaka
H, La Rosa P, et al: Genetic and physiological data implicating the
new human gene G72 and the gene for D-amino acid oxidase in
schizophrenia. Proc Natl Acad Sci USA. 99:13675–13680.
2002.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mulle JG, Chowdari KV, Nimgaonkar V and
Chakravarti A: No evidence for association to the G72/G30 locus in
an independent sample of schizophrenia families. Mol Psychiatry.
10:431–433. 2005.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Jaffrey SR, Snowman AM, Eliasson MJ, Cohen
NA and Snyder SH: CAPON: A protein associated with neuronal nitric
oxide synthase that regulates its interactions with PSD95. Neuron.
20:115–124. 1998.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Pimm J, McQuillin A, Thirumalai S,
Lawrence J, Quested D, Bass N, Lamb G, Moorey H, Datta SR, Kalsi G,
et al: The Epsin 4 gene on chromosome 5q, which encodes the
clathrin-associated protein enthoprotin, is involved in the genetic
susceptibility to schizophrenia. Am J Hum Genet. 76:902–907.
2005.PubMed/NCBI View
Article : Google Scholar
|
|
68
|
Lewis DA, Hashimoto T and Volk DW:
Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci.
6:312–324. 2005.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Badner JA and Gershon ES: Meta-analysis of
whole-genome linkage scans of bipolar disorder and schizophrenia.
Mol Psychiatry. 7:405–411. 2002.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Lewis CM, Levinson DF, Wise LH, DeLisi LE,
Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone
SV, et al: Genome scan meta-analysis of schizophrenia and bipolar
disorder, part II: Schizophrenia. Am J Hum Genet. 73:34–48.
2003.PubMed/NCBI View
Article : Google Scholar
|
|
71
|
O'Donovan MC, Craddock N, Norton N,
Williams H, Peirce T, Moskvina V, Nikolov I, Hamshere M, Carroll L,
Georgieva L, et al: Molecular genetics of schizophrenia
collaboration: Identification of loci associated with schizophrenia
by genome-wide association and follow-up. Nat Genet. 40:1053–1055.
2008.PubMed/NCBI View
Article : Google Scholar
|
|
72
|
Stefansson H, Ophoff RA, Steinberg S,
Andreassen OA, Cichon S, Rujescu D, Werge T, Pietiläinen OP, Mors
O, Mortensen PB, et al: Genetic Risk and Outcome in Psychosis
(GROUP): Common variants conferring risk of schizophrenia. Nature.
460:744–747. 2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Purcell SM, Wray NR, Stone JL, Visscher
PM, O'Donovan MC, Sullivan PF and Sklar P: International
Schizophrenia Consortium. Common polygenic variation contributes to
risk of schizophrenia and bipolar disorder. Nature. 460:748–752.
2009.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Richards AL, Pardiñas AF, Frizzati A,
Tansey KE, Lynham AJ, Holmans P, Legge SE, Savage JE, Agartz I,
Andreassen OA, et al: GROUP Investigators; EUGEI WP2 Group;
Schizophrenia Working Group of the Psychiatric Genomics Consortium:
The relationship between polygenic risk scores and cognition in
schizophrenia. Schizophr Bull. 46:336–344. 2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Schizophrenia Working Group of the
Psychiatric Genomics Consortium. Biological insights from 108
schizophrenia-associated genetic loci. Nature. 511:421–427.
2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gatt JM, Burton KL, Williams LM and
Schofield PR: Specific and common genes implicated across major
mental disorders: A review of meta-analysis studies. J Psychiatr
Res. 60:1–13. 2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Crow TJ: ‘The missing genes: What happened
to the heritability of psychiatric disorders?’. Mol Psychiatry.
16:362–364. 2011.PubMed/NCBI View Article : Google Scholar
|
|
78
|
McClellan JM, Susser E and King MC:
Schizophrenia: A common disease caused by multiple rare alleles. Br
J Psychiatry. 190:194–199. 2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Luo X, Huang L, Han L, Luo Z, Hu F, Tieu R
and Gan L: Systematic prioritization and integrative analysis of
copy number variations in schizophrenia reveal key schizophrenia
susceptibility genes. Schizophr Bull. 40:1285–1299. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Murphy KC, Jones LA and Owen MJ: High
rates of schizophrenia in adults with velo-cardio-facial syndrome.
Arch Gen Psychiatry. 56:940–945. 1999.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Kobrynski LJ and Sullivan KE:
Velocardiofacial syndrome, DiGeorge syndrome: The chromosome
22q11.2 deletion syndromes. Lancet. 370:1443–1452. 2007.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Giegling I, Hosak L, Mössner R, Serretti
A, Bellivier F, Claes S, Collier DA, Corrales A, DeLisi LE, Gallo
C, et al: Genetics of schizophrenia: A consensus paper of the WFSBP
Task Force on Genetics. World J Biol Psychiatry. 18:492–505.
2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Fromer M, Pocklington AJ, Kavanagh DH,
Williams HJ, Dwyer S, Gormley P, Georgieva L, Rees E, Palta P,
Ruderfer DM, et al: De novo mutations in schizophrenia implicate
synaptic networks. Nature. 506:179–184. 2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Purcell SM, Moran JL, Fromer M, Ruderfer
D, Solovieff N, Roussos P, O'Dushlaine C, Chambert K, Bergen SE,
Kähler A, et al: A polygenic burden of rare disruptive mutations in
schizophrenia. Nature. 506:185–190. 2014.PubMed/NCBI View Article : Google Scholar
|