Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2020 Volume 20 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Artificial intelligence and deep learning in ophthalmology - present and future (Review)

  • Authors:
    • Andreea Dana Moraru
    • Danut Costin
    • Radu Lucian Moraru
    • Daniel Constantin Branisteanu
  • View Affiliations / Copyright

    Affiliations: Department of Ophthalmology, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania, Department of Otorhinolaryngology, Transmed Expert, 700011 Iași; 4‘Retina Center’ Eye Clinic, 700126 Iași, Romania
    Copyright: © Moraru et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3469-3473
    |
    Published online on: August 12, 2020
       https://doi.org/10.3892/etm.2020.9118
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Since its introduction in 1959, artificial intelligence technology has evolved rapidly and helped benefit research, industries and medicine. Deep learning, as a process of artificial intelligence (AI) is used in ophthalmology for data analysis, segmentation, automated diagnosis and possible outcome predictions. The association of deep learning and optical coherence tomography (OCT) technologies has proven reliable for the detection of retinal diseases and improving the diagnostic performance of the eye's posterior segment diseases. This review explored the possibility of implementing and using AI in establishing the diagnosis of retinal disorders. The benefits and limitations of AI in the field of retinal disease medical management were investigated by analyzing the most recent literature data. Furthermore, the future trends of AI involvement in ophthalmology were analyzed, as AI will be part of the decision‑making regarding the scientific investigation, diagnosis and therapeutic management.
View Figures
View References

1 

McCarthy J, Minsky ML, Rochester N and Shannon CE: A proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Mag. 27:12. 2006.

2 

Samuel AL: Some studies in machine learning using the game of checkers. IBM J Res Develop. 3:210–229. 1959.

3 

Lee A, Taylor P, Kalpathy-Cramer J and Tufail A: Machine learning has arrived! Ophthalmology. 124:1726–1728. 2017.PubMed/NCBI View Article : Google Scholar

4 

LeCun Y, Bengio Y and Hinton G: Deep learning. Nature. 521:436–444. 2015.PubMed/NCBI View Article : Google Scholar

5 

Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM and Bogunović H: Artificial intelligence in retina. Prog Retin Eye Res. 67:1–29. 2018.PubMed/NCBI View Article : Google Scholar

6 

De Fauw J, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O'Donoghue B, Visentin D, et al: Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 24:1342–1350. 2018.PubMed/NCBI View Article : Google Scholar

7 

Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A and Lee AY: Deep-learning based, automated segmentation of macular edema in optical coherence tomography. Biomed Opt Express. 8:3440–3448. 2017.PubMed/NCBI View Article : Google Scholar

8 

Kermany DS, Goldbaum M, Cai W, Valentim CCS, Liang H, Baxter SL, McKeown A, Yang G, Wu X, Yan F, et al: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell. 172:1122–1131.e9. 2018.PubMed/NCBI View Article : Google Scholar

9 

Sayres R, Taly A, Rahimy E, Blumer K, Coz D, Hammel N, Krause J, Narayanaswamy A, Rastegar Z, Wu D, et al: Using a deep learning algorithm and integrated gradients explanation to assist grading for diabetic retinopathy. Ophthalmology. 126:552–564. 2019.PubMed/NCBI View Article : Google Scholar

10 

Hussain MA, Bhuiyan A, Turpin A, Luu CD, Smith RT, Guymer RH and Kotagiri R: Automatic identification of pathology distorted retinal layer boundaries using SD-OCT imaging. IEEE Trans Biomed Eng. 64:1638–1649. 2017.PubMed/NCBI View Article : Google Scholar

11 

Fabritius T, Makita S, Miura M, Myllylä R and Yasuno Y: Automated segmentation of the macula by optical coherence tomography. Opt Express. 17:15659–15669. 2009.PubMed/NCBI View Article : Google Scholar

12 

Yazdanpanah A, Hamarneh G, Smith B and Sarunic M: Intra-retinal layer segmentation in optical coherence tomography using an active contour approach. Med Image Comput Comput Assist Interv. 12:649–656. 2009.PubMed/NCBI View Article : Google Scholar

13 

Liu YY, Ishikawa H, Chen M, Wollstein G, Duker JS, Fujimoto JG, Schuman JS and Rehg JM: Computerized macular pathology diagnosis in spectral domain optical coherence tomography scans based on multiscale texture and shape features. Invest Ophthalmol Vis Sci. 52:8316–8322. 2011.PubMed/NCBI View Article : Google Scholar

14 

Fang L, Cunefare D, Wang C, Guymer RH, Li S and Farsiu S: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed Opt Express. 8:2732–2744. 2017.PubMed/NCBI View Article : Google Scholar

15 

Prahs P, Radeck V, Mayer C, Cvetkov Y, Cvetkova N, Helbig H and Märker D: OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefes Arch Clin Exp Ophthalmol. 256:91–98. 2018.PubMed/NCBI View Article : Google Scholar

16 

Chakravarthy U, Goldenberg D, Young G, Havilio M, Rafaeli O, Benyamini G and Loewenstein A: Automated identification of lesion activity in neovascular age-related macular degeneration. Ophthalmology. 123:1731–1736. 2016.PubMed/NCBI View Article : Google Scholar

17 

Treder M, Lauermann JL and Eter N: Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Arch Clin Exp Ophthalmol. 256:259–265. 2018.PubMed/NCBI View Article : Google Scholar

18 

Syed AM, Hassan T, Akram MU, Naz S and Khalid S: Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces. Comput Methods Programs Biomed. 137:1–10. 2016.PubMed/NCBI View Article : Google Scholar

19 

Xu Y, Yan K, Kim J, Wang X, Li C, Su L, Yu S, Xu X and Feng DD: Dual-stage deep learning framework for pigment epithelium detachment segmentation in polypoidal choroidal vasculopathy. Biomed Opt Express. 8:4061–4076. 2017.PubMed/NCBI View Article : Google Scholar

20 

Gilbert C and Foster A: Childhood blindness in the context of VISION 2020 - the right to sight. Bull World Health Organ. 79:227–232. 2001.PubMed/NCBI

21 

No authors listed. Cryotherapy for retinopathy of prematurity cooperative group: Multicenter trial of cryotherapy for retinopathy of prematurity. Preliminary results. Arch Ophthalmol. 106:471–479. 1988.PubMed/NCBI View Article : Google Scholar

22 

International Committee for the Classification of Retinopathy of Prematurity. The International Classification of Retinopathy of Prematurity Revisited. Arch Ophthalmol. 123:991–999. 2005.PubMed/NCBI View Article : Google Scholar

23 

Reynolds JD, Dobson V, Quinn GE, Fielder AR, Palmer EA, Saunders RA, Hardy RJ, Phelps DL, Baker JD, Trese MT, et al: CRYO-ROP and LIGHT-ROP Cooperative Study Groups: Evidence-based screening criteria for retinopathy of prematurity: Natural history data from the CRYO-ROP and LIGHT-ROP studies. Arch Ophthalmol. 120:1470–1476. 2002.PubMed/NCBI View Article : Google Scholar

24 

Chiang MF, Jiang L, Gelman R, Du YE and Flynn JT: Interexpert agreement of plus disease diagnosis in retinopathy of prematurity. Arch Ophthalmol. 125:875–880. 2007.PubMed/NCBI View Article : Google Scholar

25 

Chernyshov PV, Sampogna F, Pustišek N, Marinovic B, Manolache L, Suru A, Salavastru CM, Tiplica GS, Stoleriu G, Kakourou T, et al: Validation of the dermatology-specific proxy instrument the infants and toddlers dermatology quality of life. J Eur Acad Dermatol Venereol. 33:1405–1411. 2019.PubMed/NCBI View Article : Google Scholar

26 

Bajwa A, Aman R and Reddy AK: A comprehensive review of diagnostic imaging technologies to evaluate the retina and the optic disk. Int Ophthalmol. 35:733–755. 2015.PubMed/NCBI View Article : Google Scholar

27 

Gelman R, Jiang L, Du YE, Martinez-Perez ME, Flynn JT and Chiang MF: Plus disease in retinopathy of prematurity: Pilot study of computer-based and expert diagnosis. J AAPOS. 11:532–540. 2007.PubMed/NCBI View Article : Google Scholar

28 

Ataer-Cansizoglu E, Bolon-Canedo V, Campbell JP, Bozkurt A, Erdogmus D, Kalpathy-Cramer J, Patel S, Jonas K, Chan RV, Ostmo S, et al: i-ROP Research Consortium: i-ROP Research Consortium. Computer-based image analysis for plus disease diagnosis in retinopathy of prematurity: Performance of the ‘i-ROP’ system and image features associated with expert diagnosis. Transl Vis Sci Technol. 4(5)2015.PubMed/NCBI View Article : Google Scholar

29 

Brown JM, Campbell JP, Beers A, Chang K, Ostmo S, Chan RV, Dy J, Erdogmus D, Ioannidis S, Kalpathy-Cramer J, et al: Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium: Imaging and Informatics in Retinopathy of Prematurity (i-ROP) Research Consortium. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 136:803–810. 2018.PubMed/NCBI View Article : Google Scholar

30 

Safi H, Safi S, Hafezi-Moghadam A and Ahmadieh H: Early detection of diabetic retinopathy. Surv Ophthalmol. 63:601–608. 2018.PubMed/NCBI View Article : Google Scholar

31 

Schaas BA, Ivan S, Titianu M, Condratovici CP, Maier A and Schaas CM: Biochemical markers predicting the risk of gestational diabetes mellitus. Mater Plast. 54:133–136. 2017.

32 

Alexe O, Gainaru C, Serafinceanu C, Pleseacondratovici A, Danciulescu-Miulescu R and Pleseacondratovici C: Patient- Reported Outcomes (PROs) in Romanian type 2 diabetic patients - Results from a Multicentre National Registry. In: Interdisciplinary Approaches In Diabetic Chronic Kidney Disease. Bucuresti, pp76-88, 2015.

33 

Abbas Q, Fondon I, Sarmiento A, Jiménez S and Alemany P: Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput. 55:1959–1974. 2017.PubMed/NCBI View Article : Google Scholar

34 

Raju M, Pagidimarri V, Barreto R, Kadam A, Kasivajjala V and Aswath A: Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy. Stud Health Technol Inform. 245:559–563. 2017.PubMed/NCBI

35 

Xu K, Feng D and Mi H: Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules. 22(2054)2017.PubMed/NCBI View Article : Google Scholar

36 

Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, et al: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 316:2402–2410. 2016.PubMed/NCBI View Article : Google Scholar

37 

Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, et al: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 318:2211–2223. 2017.PubMed/NCBI View Article : Google Scholar

38 

Gargeya R and Leng T: Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 124:962–969. 2017.PubMed/NCBI View Article : Google Scholar

39 

Schmidt-Erfurth U, Bogunovic H, Sadeghipour A, Schlegl T, Langs G, Gerendas BS, Osborne A and Waldstein SM: Machine learning to analyze the prognostic value of current imaging biomarkers in neovascular age-related macular degeneration. Ophthalmol Retina. 2:24–30. 2018.PubMed/NCBI View Article : Google Scholar

40 

Lee CS, Baughman DM and Lee AY: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol Retina. 1:322–327. 2017.PubMed/NCBI View Article : Google Scholar

41 

Aslam TM, Zaki HR, Mahmood S, Ali ZC, Ahmad NA, Thorell MR and Balaskas K: Use of a neural net to model the impact of optical coherence tomography abnormalities on vision in age-related macular degeneration. Am J Ophthalmol. 185:94–100. 2018.PubMed/NCBI View Article : Google Scholar

42 

Burlina P, Pacheco KD, Joshi N, Freund DE and Bressler NM: Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med. 82:80–86. 2017.PubMed/NCBI View Article : Google Scholar

43 

Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE and Bressler NM: Automated grading of age related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 135:1170–1176. 2017.PubMed/NCBI View Article : Google Scholar

44 

Prahs P, Märker D, Mayer C and Helbig H: Deep learning to support therapy decisions for intravitreal injections. Ophthalmologe. 115:722–727. 2018.PubMed/NCBI View Article : Google Scholar : (In German).

45 

Schlegl T, Waldstein SM, Bogunovic H, Endstrasser F, Sadeghipour A, Philip AM, Podkowinski D, Gerendas BS, Langs G and Schmidt-Erfurth U: Fully automated detection and quantification of macular fluid in OCT using deep learning. Ophthalmology. 125:549–558. 2018.PubMed/NCBI View Article : Google Scholar

46 

Bogunovic H, Waldstein SM, Schlegl T, Langs G, Sadeghipour A, Liu X, Gerendas BS, Osborne A and Schmidt-Erfurth U: Prediction of anti-VEGF treatment requirements in neovascular AMD using a machine learning approach. Invest Ophthalmol Vis Sci. 58:3240–3248. 2017.PubMed/NCBI View Article : Google Scholar

47 

Schmidt-Erfurth U and Waldstein SM: A paradigm shift in imaging biomarkers in neovascular age-related macular degeneration. Prog Retin Eye Res. 50:1–24. 2016.PubMed/NCBI View Article : Google Scholar

48 

Bogunovic H, Montuoro A, Baratsits M, Karantonis MG, Waldstein SM, Schlanitz F and Schmidt-Erfurth U: Machine learning of the progression of intermediate age-related macular degeneration based on OCT imaging. Invest Ophthalmol Vis Sci. 58:BIO141–BIO150. 2017.PubMed/NCBI View Article : Google Scholar

49 

Stanca HT, Petrović Z and Munteanu M: Transluminal Nd:YAG laser embolysis - A reasonable method to reperfuse occluded branch retinal arteries. Vojnosanit Pregl. 71:1072–1077. 2014.PubMed/NCBI View Article : Google Scholar

50 

Munteanu M, Rosca C and Stanca H: Sub-inner limiting membrane hemorrhage in a patient with Terson syndrome. Int Ophthalmol. 39:461–464. 2019.PubMed/NCBI View Article : Google Scholar

51 

Stanca HT, Stanca S, Tabacaru B, Boruga M and Balta F: Bevacizumab in Wet AMD treatment: A tribute to the thirteen years of experience from the beginning of the anti-VEGF era in Romania. Exp Ther Med. 18:4993–5000. 2019.PubMed/NCBI View Article : Google Scholar

52 

Danielescu C, Stanca HT and Balta F: The Management of lamellar macular holes: A review. J Ophthalmol. 2020(3526316)2020.PubMed/NCBI View Article : Google Scholar

53 

Keel S, Lee PY, Scheetz J, Li Z, Kotowicz MA, MacIsaac RJ and He M: Feasibility and patient acceptability of a novel artificial intelligence-based screening model for diabetic retinopathy at endocrinology outpatient services: A pilot study. Sci Rep. 8(4330)2018.PubMed/NCBI View Article : Google Scholar

54 

Armstrong GW and Lorch AC: A(eye): A review of current applications of artificial intelligence and machine learning in ophthalmology. Int Ophthalmol Clin. 60:57–71. 2020.PubMed/NCBI View Article : Google Scholar

55 

Consejo A, Melcer T and Rozema JJ: Introduction to machine learning for ophthalmologists. Semin Ophthalmol. 34:19–41. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Moraru AD, Costin D, Moraru RL and Branisteanu DC: Artificial intelligence and deep learning in ophthalmology - present and future (Review). Exp Ther Med 20: 3469-3473, 2020.
APA
Moraru, A.D., Costin, D., Moraru, R.L., & Branisteanu, D.C. (2020). Artificial intelligence and deep learning in ophthalmology - present and future (Review). Experimental and Therapeutic Medicine, 20, 3469-3473. https://doi.org/10.3892/etm.2020.9118
MLA
Moraru, A. D., Costin, D., Moraru, R. L., Branisteanu, D. C."Artificial intelligence and deep learning in ophthalmology - present and future (Review)". Experimental and Therapeutic Medicine 20.4 (2020): 3469-3473.
Chicago
Moraru, A. D., Costin, D., Moraru, R. L., Branisteanu, D. C."Artificial intelligence and deep learning in ophthalmology - present and future (Review)". Experimental and Therapeutic Medicine 20, no. 4 (2020): 3469-3473. https://doi.org/10.3892/etm.2020.9118
Copy and paste a formatted citation
x
Spandidos Publications style
Moraru AD, Costin D, Moraru RL and Branisteanu DC: Artificial intelligence and deep learning in ophthalmology - present and future (Review). Exp Ther Med 20: 3469-3473, 2020.
APA
Moraru, A.D., Costin, D., Moraru, R.L., & Branisteanu, D.C. (2020). Artificial intelligence and deep learning in ophthalmology - present and future (Review). Experimental and Therapeutic Medicine, 20, 3469-3473. https://doi.org/10.3892/etm.2020.9118
MLA
Moraru, A. D., Costin, D., Moraru, R. L., Branisteanu, D. C."Artificial intelligence and deep learning in ophthalmology - present and future (Review)". Experimental and Therapeutic Medicine 20.4 (2020): 3469-3473.
Chicago
Moraru, A. D., Costin, D., Moraru, R. L., Branisteanu, D. C."Artificial intelligence and deep learning in ophthalmology - present and future (Review)". Experimental and Therapeutic Medicine 20, no. 4 (2020): 3469-3473. https://doi.org/10.3892/etm.2020.9118
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team