|
1
|
Vanni E, Bugianesi E, Kotronen A, De
Minicis S, Yki-Järvinen H and Svegliati-Baroni G: From the
metabolic syndrome to NAFLD or vice versa? Dig Liver Dis.
42:320–330. 2010.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Rinella ME: Nonalcoholic fatty liver
disease: A systematic review. JAMA. 313:2263–2273. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gawrieh S, Marion MC, Komorowski R,
Wallace J, Charlton M, Kissebah A, Langefeld CD and Olivier M:
Genetic variation in the peroxisome proliferator activated
receptor-gamma gene is associated with histologically advanced
NAFLD. Dig Dis Sci. 57:952–957. 2012.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Younossi ZM, Koenig AB, Abdelatif D, Fazel
Y, Henry L and Wymer M: Global epidemiology of nonalcoholic fatty
liver disease-meta-analytic assessment of prevalence, incidence,
and outcomes. Hepatology. 64:73–84. 2016.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX,
Zhang P, She ZG, Zhu L, Cai J and Li H: Epidemiological feature of
NAFLD from 1999 to 2018 in China. Hepatology. 71:1851–1864.
2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Marchisello S, Di Pino A, Scicali R,
Urbano F, Piro S, Purrello F and Rabuazzo AM: Pathophysiological,
molecular and therapeutic issues of nonalcoholic fatty liver
disease: An overview. Int J Mol Sci. 20(1948)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Bessone F, Razori MV and Roma MG:
Molecular pathways of nonalcoholic fatty liver disease development
and progression. Cell Mol Life Sci. 76:99–128. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Wasilewska N, Bobrus-Chociej A,
Harasim-Symbor E, Tarasów E, Wojtkowska M, Chabowski A and
Lebensztejn DM: Increased serum concentration of ceramides in obese
children with nonalcoholic fatty liver disease. Lipids Health Dis.
17(216)2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Jegatheesan P and De Bandt JP: Fructose
and NAFLD: The multifaceted aspects of fructose metabolism.
Nutrients. 9(230)2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chen L, Chen XW, Huang X, Song BL and Wang
Y and Wang Y: Regulation of glucose and lipid metabolism in health
and disease. Sci China Life Sci. 62:1420–1458. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Kim SH, Kwon DY, Kwak JH, Lee S, Lee YH,
Yun J, Son TG and Jung YS: Tunicamycin-induced ER stress is
accompanied with oxidative stress via abrogation of sulfur amino
acids metabolism in the liver. Int J Mol Sci.
19(4114)2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Mouzaki M, Wang AY, Bandsma R, Comelli EM,
Arendt BM, Zhang L, Fang S, Fischer SE, McGilvray LG and Allard JP:
Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS
One. 11(e0151829)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu J, Sun W and Yang L: Association
between iron metabolism and cognitive impairment in older
non-alcoholic fatty liver disease individuals: A cross-sectional
study in patients from a Chinese center. Medicine (Baltimore).
98(e18189)2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lim JS, Mietus-Snyder M, Valente A,
Schwarz JM and Lustig RH: The role of fructose in the pathogenesis
of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol.
7:251–264. 2010.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Jensen T, Abdelmalek MF, Sullivan S,
Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang
DH, et al: Fructose and sugar: A major mediator of non-alcoholic
fatty liver disease. J Hepatol. 68:1063–1075. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Alwahsh SM and Gebhardt R: Dietary
fructose as a risk factor for non-alcoholic fatty liver disease
(NAFLD). Arch Toxicol. 91:1545–1563. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhao S, Jang C, Liu J, Uehara K, Gilbert
M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, et al: Dietary
fructose feeds hepatic lipogenesis via microbiota-derived acetate.
Nature. 579:586–591. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang S, Du T, Zhang J, Lu H, Lin X, Xie
J, Yang Y and Yu X: The triglyceride and glucose index (TyG) is an
effective biomarker to identify nonalcoholic fatty liver disease.
Lipids Health Dis. 16(15)2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Khan RS, Bril F, Cusi K and Newsome PN:
Modulation of insulin resistance in nonalcoholic fatty liver
disease. Hepatology. 70:711–724. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Omar BA, Andersen B, Hald J, Raun K,
Nishimura E and Ahrén B: Fibroblast growth factor 21 (FGF21) and
glucagon-like peptide 1 contribute to diabetes resistance in
glucagon receptor-deficient mice. Diabetes. 63:101–110.
2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Patel V, Joharapurkar A, Kshirsagar S,
Sutariya B, Patel M, Patel H, Pandey D, Patel D, Ranvir R, Kadam S,
et al: Coagonist of GLP-1 and glucagon receptor ameliorates
development of non-alcoholic fatty liver disease. Cardiovasc
Hematol Agents Med Chem. 16:35–43. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Dongiovanni P, Meroni M, Baselli GA,
Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo
V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like
2 induction and fibrosis accumulation in non-alcoholic fatty liver
disease. Clin Sci (Lond). 131:1301–1315. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Uygun A, Kadayifci A, Demirci H, Saglam M,
Sakin YS, Ozturk K, Polat Z, Karslioglu Y and Bolu E: The effect of
fatty pancreas on serum glucose parameters in patients with
nonalcoholic steatohepatitis. Eur J Intern Med. 26:37–41.
2015.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Fu D, Cui H and Zhang Y: Lack of ClC-2
alleviates high fat diet-induced insulin resistance and
non-alcoholic fatty liver disease. Cell Physiol Biochem.
45:2187–2198. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Kumashiro N, Erion DM, Zhang D, Kahn M,
Beddow SA, Chu X, Still CD, Gerhard GS, Han X, Dziura J, et al:
Cellular mechanism of insulin resistance in nonalcoholic fatty
liver disease. Proc Natl Acad Sci USA. 108:16381–16385.
2011.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wu W, Bi Y, Tangsun Y, Yin W, Chen Y and
Zhu D: Effects of transcription factor sterol regulatory element
binding protein-1c in palmitate acid-induced L6 cells insulin
resistance and its mechanism. Zhonghua Yi Xue Za Zhi. 95:611–615.
2015.PubMed/NCBI(In Chinese).
|
|
27
|
Nakajima K, Oda E and Kanda E: The
association of serum sodium and chloride levels with blood pressure
and estimated glomerular filtration rate. Blood Press. 25:51–57.
2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv
XF, Zhou JG and Guan YY: Alteration of volume-regulated chloride
channel during macrophage-derived foam cell formation in
atherosclerosis. Atherosclerosis. 216:59–66. 2011.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Trevaskis JL, Griffin PS, Wittmer C,
Neuschwander-Tetri BA, Brunt EM, Dolman CS, Erickson MR, Napora J,
Parkes DG and Roth JD: Glucagon-like peptide-1 receptor agonism
improves metabolic, biochemical, and histopathological indices of
nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest
Liver Physiol. 302:G762–G772. 2012.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Bernsmeier C, Meyer-Gerspach AC, Blaser
LS, Jeker L, Steinert RE, Heim MH and Beglinger C: Glucose-induced
glucagon-like Peptide 1 secretion is deficient in patients with
non-alcoholic fatty liver disease. PLoS One.
9(e87488)2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chellali S, Boudiba A, Griene L and Koceir
EA: Incretins-adipocytokines interactions in type 2 diabetic
subjects with or without non-alcoholic fatty liver disease:
Interest of GLP-1 (glucagon-like peptide-1) as a modulating
biomarker. Ann Biol Clin (Paris). 77:261–271. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Thompson AM and Trujillo JM: Dulaglutide:
The newest GLP-1 receptor agonist for the management of type 2
diabetes. Ann Pharmacother. 49:351–359. 2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Knop FK, Brønden A and Vilsbøll T:
Exenatide: Pharmacokinetics, clinical use, and future directions.
Expert Opin Pharmacother. 18:555–571. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Dong Y, Lv Q, Li S, Wu Y, Li L, Li J,
Zhang F, Sun X and Tong N: Efficacy and safety of glucagon-like
peptide-1 receptor agonists in non-alcoholic fatty liver disease: A
systematic review and meta-analysis. Clin Res Hepatol
Gastroenterol. 41:284–295. 2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Petit JM and Vergès B: GLP-1 receptor
agonists in NAFLD. Diabetes Metab. 43 (Suppl 1):2S28–2S33.
2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ye DW, Rong XL, Xu AM and Guo J:
Liver-adipose tissue crosstalk: A key player in the pathogenesis of
glucolipid metabolic disease. Chin J Integr Med. 23:410–414.
2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Li H, Dong K, Fang Q, Hou X, Zhou M, Bao
Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth
factor 21 is an independent predictor of non-alcoholic fatty liver
disease: A 3-year prospective study in China. J Hepatol.
58:557–563. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Zhou K and Cen J: The fatty liver index
(FLI) and incident hypertension: A longitudinal study among Chinese
population. Lipids Health Dis. 17(214)2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Emanuelli B, Vienberg SG, Smyth G, Cheng
C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A
and Kahn CR: Interplay between FGF21 and insulin action in the
liver regulates metabolism. J Clin Invest. 124:515–527.
2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tucker B, Li H, Long X, Rye KA and Ong KL:
Fibroblast growth factor 21 in non-alcoholic fatty liver disease.
Metabolism. 101(153994)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Dongiovanni P, Rametta R, Meroni M and
Valenti L: The role of insulin resistance in nonalcoholic
steatohepatitis and liver disease development-a potential
therapeutic target? Expert Rev Gastroenterol Hepatol. 10:229–242.
2016.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Angulo P, Kleiner DE, Dam-Larsen S, Adams
LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC,
Lafferty HD, Stahler A, et al: Liver fibrosis, but no other
histologic features, is associated with long-term outcomes of
patients with nonalcoholic fatty liver disease. Gastroenterology.
149:389–397.e10. 2015.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Grau-Bové X, Ruiz-Trillo I and
Rodriguez-Pascual F: Origin and evolution of lysyl oxidases. Sci
Rep. 5(10568)2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ikenaga N, Peng ZW, Vaid KA, Liu SB,
Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D and
Popov YV: Selective targeting of lysyl oxidase-like 2 (LOXL2)
suppresses hepatic fibrosis progression and accelerates its
reversal. Gut. 66:1697–1708. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Williamson KD and Chapman RW: New
therapeutic strategies for primary sclerosing cholangitis. Semin
Liver Dis. 36:5–14. 2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ibrahim SH, Kohli R and Gores GJ:
Mechanisms of lipotoxicity in NAFLD and clinical implications. J
Pediatr Gastroenterol Nutr. 53:131–140. 2011.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Ferramosca A and Zara V: Modulation of
hepatic steatosis by dietary fatty acids. World J Gastroenterol.
20:1746–1755. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Obara N, Fukushima K, Ueno Y, Wakui Y,
Kimura O, Tamai K, Kakazu E, Inoue J, Kondo Y, Ogawa N, et al:
Possible involvement and the mechanisms of excess trans-fatty acid
consumption in severe NAFLD in mice. J Hepatol. 53:326–334.
2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Dongiovanni P, Anstee QM and Valenti L:
Genetic predisposition in NAFLD and NASH: Impact on severity of
liver disease and response to treatment. Curr Pharm Des.
19:5219–5238. 2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Orellana-Gavaldà JM, Herrero L, Malandrino
MI, Pañeda A, Sol Rodríguez-Peña M, Petry H, Asins G, Van Deventer
S, Hegardt FG and Serra D: Molecular therapy for obesity and
diabetes based on a long-term increase in hepatic fatty-acid
oxidation. Hepatology. 53:821–832. 2011.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Gastaldelli A: Insulin resistance and
reduced metabolic flexibility: Cause or consequence of NAFLD? Clin
Sci (Lond). 131:2701–2704. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Poulsen MK, Nellemann B, Bibby BM,
Stødkilde-Jørgensen H, Pedersen SB, Grønbaek H and Nielsen S: No
effect of resveratrol on VLDL-TG kinetics and insulin sensitivity
in obese men with nonalcoholic fatty liver disease. Diabetes Obes
Metab. 20:2504–2509. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Assunção SNF, Sorte NCAB, Alves CAD,
Mendes PSA, Alves CRB and Silva LR: Inflammatory cytokines and
non-alcoholic fatty liver disease (NAFLD) in obese children and
adolescents. Nutr Hosp. 35:78–83. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lopetuso LR, Mocci G, Marzo M, D'Aversa F,
Rapaccini GL, Guidi L, Armuzzi A, Gasbarrini A and Papa A: Harmful
effects and potential benefits of anti-tumor necrosis factor
(TNF)-α on the liver. Int J Mol Sci. 19(2199)2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zahran WE, Salah El-Dien KA, Kamel PG and
El-Sawaby AS: Efficacy of tumor necrosis factor and interleukin-10
analysis in the follow-up of nonalcoholic fatty liver disease
progression. Indian J Clin Biochem. 28:141–146. 2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Bocsan IC, Milaciu MV, Pop RM, Vesa SC,
Ciumarnean L, Matei DM and Buzoianu AD: Cytokines
genotype-phenotype correlation in nonalcoholic steatohepatitis.
Oxid Med Cell Longev. 2017(4297206)2017.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yang R, Guan MJ, Zhao N, Li MJ and Zeng T:
Roles of extrahepatic lipolysis and the disturbance of hepatic
fatty acid metabolism in TNF-α-induced hepatic steatosis.
Toxicology. 411:172–180. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Jorge ASB, Andrade JMO, Paraíso AF, Jorge
GCB, Silveira CM, de Souza LR, Santos EP, Guimaraes ALS, Santos SHS
and De-Paula AMB: Body mass index and the visceral adipose tissue
expression of IL-6 and TNF-alpha are associated with the
morphological severity of non-alcoholic fatty liver disease in
individuals with class III obesity. Obes Res Clin Pract. 12 (Suppl
2):S1–S8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Vida M, Gavito AL, Pavón FJ, Bautista D,
Serrano A, Suarez J, Arrabal S, Decara J, Romero-Cuevas M,
Rodríguez de Fonseca F and Baixeras E: Chronic administration of
recombinant IL-6 upregulates lipogenic enzyme expression and
aggravates high-fat-diet-induced steatosis in IL-6-deficient mice.
Dis Model Mech. 8:721–731. 2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Romeo S, Huang-Doran I, Baroni MG and
Kotronen A: Unravelling the pathogenesis of fatty liver disease:
Patatin-like phospholipase domain-containing 3 protein. Curr Opin
Lipidol. 21:247–252. 2010.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Romeo S, Kozlitina J, Xing C, Pertsemlidis
A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC and Hobbs HH:
Genetic variation in PNPLA3 confers susceptibility to nonalcoholic
fatty liver disease. Nat Genet. 40:1461–1465. 2008.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wang X, Liu Z, Wang K, Wang Z, Sun X,
Zhong L, Deng G, Song G, Sun B, Peng Z and Liu W: Additive effects
of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty
liver disease (NAFLD) in a Chinese population. Front Genet.
7(140)2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Sookoian S and Pirola CJ: Meta-analysis of
the influence of I148M variant of patatin-like phospholipase domain
containing 3 gene (PNPLA3) on the susceptibility and histological
severity of nonalcoholic fatty liver disease. Hepatology.
53:1883–1894. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Aragonès G, Auguet T, Armengol S, Berlanga
A, Guiu-Jurado E, Aguilar C, Martínez S, Sabench F, Porras JA, Ruiz
MD, et al: PNPLA3 expression is related to liver steatosis in
morbidly obese women with non-alcoholic fatty liver disease. Int J
Mol Sci. 17(630)2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhang L, You W, Zhang H, Peng R, Zhu Q,
Yao A, Li X, Zhou Y, Wang X, Pu L and Wu J: PNPLA3 polymorphisms
(rs738409) and non-alcoholic fatty liver disease risk and related
phenotypes: A meta-analysis. J Gastroenterol Hepatol. 30:821–829.
2015.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Rossi C, Marzano V, Consalvo A, Zucchelli
M, Levi Mortera S, Casagrande V, Mavilio M, Sacchetta P, Federici
M, Menghini R, et al: Proteomic and metabolomic characterization of
streptozotocin-induced diabetic nephropathy in TIMP3-deficient
mice. Acta Diabetol. 55:121–129. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Pawlak M, Lefebvre P and Staels B:
Molecular mechanism of PPARα action and its impact on lipid
metabolism, inflammation and fibrosis in non-alcoholic fatty liver
disease. J Hepatol. 62:720–733. 2015.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Manzano León N, Torres N and Tovar AR:
Mechanism of action of sterol regulatory element binding proteins
(SREBPs) in cholesterol and fatty-acid biosynthesis. Rev Invest
Clin. 54:145–153. 2002.PubMed/NCBI(In Spanish).
|
|
69
|
Ziamajidi N, Khaghani S, Hassanzadeh G,
Vardasbi S, Ahmadian S, Nowrouzi A, Ghaffari SM and Abdirad A:
Amelioration by chicory seed extract of diabetes- and oleic
acid-induced non-alcoholic fatty liver disease
(NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of
PPARα and SREBP-1. Food Chem Toxicol. 58:198–209. 2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Park HS, Jeon BH, Woo SH, Leem J, Jang JE,
Cho MS, Park IS, Lee KU and Koh EH: Time-dependent changes in lipid
metabolism in mice with methionine choline deficiency-induced fatty
liver disease. Mol Cells. 32:571–577. 2011.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Van Rooyen DM and Farrell GC: SREBP-2: A
link between insulin resistance, hepatic cholesterol, and
inflammation in NASH. J Gastroenterol Hepatol. 26:789–792.
2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Adolph TE, Grander C, Grabherr F and Tilg
H: Adipokines and non-alcoholic fatty liver Disease: Multiple
interactions. Int J Mol Sci. 18(1649)2017.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Gatselis NK, Ntaios G, Makaritsis K and
Dalekos GN: Adiponect in: A key playmaker adipocytokine in
non-alcoholic fatty liver disease. Clin Exp Med. 14:121–131.
2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Ahmad A, Ali T, Kim MW, Khan A, Jo MH,
Rehman SU, Khan MS, Abid NB, Khan M, Ullah R, et al: Adiponectin
homolog novel osmotin protects obesity/diabetes-induced NAFLD by
upregulating AdipoRs/PPARα signaling in ob/ob and db/db transgenic
mouse models. Metabolism. 90:31–43. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Navekar R, Rafraf M, Ghaffari A,
Asghari-Jafarabadi M and Khoshbaten M: Turmeric supplementation
improves serum glucose indices and leptin levels in patients with
nonalcoholic fatty liver diseases. J Am Coll Nutr. 36:261–267.
2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Perfield JW II, Ortinau LC, Pickering RT,
Ruebel ML, Meers GM and Rector RS: Altered hepatic lipid metabolism
contributes to nonalcoholic fatty liver disease in leptin-deficient
Ob/Ob mice. J Obes. 2013(296537)2013.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Zelber-Sagi S, Lotan R, Shlomai A, Webb M,
Harrari G, Buch A, Nitzan Kaluski D, Halpern Z and Oren R:
Predictors for incidence and remission of NAFLD in the general
population during a seven-year prospective follow-up. J Hepatol.
56:1145–1151. 2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Polyzos SA, Aronis KN, Kountouras J,
Raptis DD, Vasiloglou MF and Mantzoros CS: Circulating leptin in
non-alcoholic fatty liver disease: A systematic review and
meta-analysis. Diabetologia. 59:30–43. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Polyzos SA, Kountouras J and Mantzoros CS:
Leptin in nonalcoholic fatty liver disease: A narrative review.
Metabolism. 64:60–78. 2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Liu Y, Qiu DK and Ma X: Liver X receptors
bridge hepatic lipid metabolism and inflammation. J Dig Dis.
13:69–74. 2012.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Rong X, Albert CJ, Hong C, Duerr MA,
Chamberlain BT, Tarling EJ, Ito A, Gao J, Wang B, Edwards PA, et
al: LXRs regulate ER stress and inflammation through dynamic
modulation of membrane phospholipid composition. Cell Metab.
18:685–697. 2013.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lima-Cabello E, García-Mediavilla MV,
Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T,
Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C
and Sánchez-Campos S: Enhanced expression of pro-inflammatory
mediators and liver X-receptor-regulated lipogenic genes in
non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond).
120:239–250. 2011.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu
Y and Zhao Y: Biological mechanisms and related natural modulators
of liver X receptor in nonalcoholic fatty liver disease. Biomed
Pharmacother. 113(108778)2019.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Tsai TH, Chen E, Li L, Saha P, Lee HJ,
Huang LS, Shelness GS, Chan L and Chang BHJ: The constitutive lipid
droplet protein PLIN2 regulates autophagy in liver. Autophagy.
13:1130–1144. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Imai Y, Boyle S, Varela GM, Caron E, Yin
X, Dhir R, Dhir R, Graham MJ and Ahima RS: Effects of perilipin 2
antisense oligonucleotide treatment on hepatic lipid metabolism and
gene expression. Physiol Genomics. 44:1125–1131. 2012.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sherriff JL, O'Sullivan TA, Properzi C,
Oddo J-L and Adams LA: Choline, its potential role in nonalcoholic
fatty liver disease, and the case for human and bacterial genes.
Adv Nutr. 7:5–13. 2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Michel V, Singh RK and Bakovic M: The
impact of choline availability on muscle lipid metabolism. Food
Funct. 2:53–62. 2011.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Suk KT and Kim DJ: Gut microbiota: Novel
therapeutic target for nonalcoholic fatty liver disease. Expert Rev
Gastroenterol Hepatol. 13:193–204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Pradhan-Sundd T, Vats R, Russell JO, Singh
S, Michael AA, Molina L, Kakar S, Cornuet P, Poddar M, Watkins SC,
et al: Dysregulated bile transporters and impaired tight junctions
during chronic liver injury in mice. Gastroenterology.
155:1218–1232.e24. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Sookoian S, Castaño GO, Scian R, Fernández
Gianotti T, Dopazo H, Rohr C, Gaj G, San Martino J, Sevic I,
Flichman D and Pirola CJ: Serum aminotransferases in nonalcoholic
fatty liver disease are a signature of liver metabolic
perturbations at the amino acid and Krebs cycle level. Am J Clin
Nutr. 103:422–434. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Lake AD, Novak P, Shipkova P, Aranibar N,
Robertson DG, Reily MD, Lehman-McKeeman LD, Vaillancourt RR and
Cherrington NJ: Branched chain amino acid metabolism profiles in
progressive human nonalcoholic fatty liver disease. Amino Acids.
47:603–615. 2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Cheng S, Wiklund P, Autio R, Borra R,
Ojanen X, Xu L, Törmäkangas T and Alen M: Adipose tissue
dysfunction and altered systemic amino acid metabolism are
associated with non-alcoholic fatty liver disease. PLoS One.
10(e0138889)2015.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Haufe S, Witt H, Engeli S, Kaminski J, Utz
W, Fuhrmann JC, Rein D, Schulz-Menger J, Luft FC, Boschmann M and
Jordan J: Branched-chain and aromatic amino acids, insulin
resistance and liver specific ectopic fat storage in overweight to
obese subjects. Nutr Metab Cardiovasc Dis. 26:637–642.
2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
van den Berg EH, Flores-Guerrero JL,
Gruppen EG, de Borst MH, Wolak-Dinsmore J, Connelly MA, Bakker SJL
and Dullaart RPF: Non-alcoholic fatty liver disease and risk of
incident type 2 diabetes: Role of circulating branched-chain amino
acids. Nutrients. 11(705)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Zhang F, Zhao S, Yan W, Xia Y, Chen X,
Wang W, Zhang J, Gao C, Peng C, Yan F, et al: Branched chain amino
acids cause liver injury in obese/diabetic mice by promoting
adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine.
13:157–167. 2016.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Li T, Geng L, Chen X, Miskowiec M, Li X
and Dong B: Branched-chain amino acids alleviate nonalcoholic
steatohepatitis in rats. Appl Physiol Nutr Metab. 38:836–843.
2013.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ra SG, Miyazaki T, Kojima R, Komine S,
Ishikura K, Kawanaka K, Honda A, Matsuzaki Y and Ohmori H: Effect
of BCAA supplement timing on exercise-induced muscle soreness and
damage: A pilot placebo-controlled double-blind study. J Sports Med
Phys Fitness. 58:1582–1591. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zarfeshani A, Ngo S and Sheppard AM:
Leucine alters hepatic glucose/lipid homeostasis via the
myostatin-AMP-activated protein kinase pathway-potential
implications for nonalcoholic fatty liver disease. Clin
Epigenetics. 6(27)2014.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Celinski K, Konturek PC, Slomka M,
Cichoz-Lach H, Brzozowski T, Konturek SJ and Korolczuk A: Effects
of treatment with melatonin and tryptophan on liver enzymes,
parameters of fat metabolism and plasma levels of cytokines in
patients with non-alcoholic fatty liver disease-14 months follow
up. J Physiol Pharmacol. 65:75–82. 2014.PubMed/NCBI
|
|
100
|
Chen Y, Li C, Liu L, Guo F, Li S, Huang L,
Sun C and Feng R: Serum metabonomics of NAFLD plus T2DM based on
liquid chromatography-mass spectrometry. Clin Biochem. 49:962–966.
2016.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Jin R, Banton S, Tran VT, Konomi JV, Li S,
Jones DP and Vos MB: Amino acid metabolism is altered in
adolescents with nonalcoholic fatty liver disease-an untargeted,
high resolution metabolomics study. J Pediatr. 172:14–19.e5.
2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Gaggini M, Carli F, Rosso C, Buzzigoli E,
Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R,
Cassader M, et al: Altered amino acid concentrations in NAFLD:
Impact of obesity and insulin resistance. Hepatology. 67:145–158.
2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Stojanović M, Todorović D, Šćepanović L,
Mitrović D, Borozan S, Dragutinović V, Labudović-Borović M, Krstić
D, Čolović M and Djuric D: Subchronic methionine load induces
oxidative stress and provokes biochemical and histological changes
in the rat liver tissue. Mol Cell Biochem. 448:43–50.
2018.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Dai H, Wang W, Tang X, Chen R, Chen Z, Lu
Y and Yuan H: Association between homocysteine and non-alcoholic
fatty liver disease in Chinese adults: A cross-sectional study.
Nutr J. 15(102)2016.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Pacana T, Cazanave S, Verdianelli A, Patel
V, Min HK, Mirshahi F, Quinlivan E and Sanyal AJ: Dysregulated
hepatic methionine metabolism drives homocysteine elevation in
diet-induced nonalcoholic fatty liver disease. PLoS One.
10(e0136822)2015.PubMed/NCBI View Article : Google Scholar
|
|
106
|
de Carvalho SC, Muniz MT, Siqueira MD,
Siqueira ER, Gomes AV, Silva KA, Bezerra LC, D'Almeida V, de
Oliveira CP and Pereira LM: Plasmatic higher levels of homocysteine
in non-alcoholic fatty liver disease (NAFLD). Nutr J.
12(37)2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Abu-Serie MM, El-Gamal BA, El-Kersh MA and
El-Saadani MA: Investigation into the antioxidant role of arginine
in the treatment and the protection for intralipid-induced
non-alcoholic steatohepatitis. Lipids Health Dis.
14(128)2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Dogru T, Genc H, Tapan S, Ercin CN, Ors F,
Aslan F, Kara M, Sertoglu E, Bagci S, Kurt I and Sonmez A: Elevated
asymmetric dimethylarginine in plasma: An early marker for
endothelial dysfunction in non-alcoholic fatty liver disease?
Diabetes Res Clin Pract. 96:47–52. 2012.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Voloshin I, Hahn-Obercyger M, Anavi S and
Tirosh O: L-arginine conjugates of bile acids-a possible treatment
for non-alcoholic fatty liver disease. Lipids Health Dis.
13(69)2014.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Chalasani N, Younossi Z, Lavine JE, Diehl
AM, Brunt EM, Cusi K, Charlton M and Sanyal AJ: American
Gastroenterological Association; American Association for the Study
of Liver Diseases; American College of Gastroenterologyh: The
diagnosis and management of non-alcoholic fatty liver disease:
Practice guideline by the American gastroenterological association,
American association for the study of liver diseases, and American
college of gastroenterology. Gastroenterology. 142:1592–1609.
2012.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Chiang JYL and Ferrell JM: Bile acid
metabolism in liver pathobiology. Gene Expr. 18:71–87.
2018.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Tanaka N, Matsubara T, Krausz KW,
Patterson AD and Gonzalez FJ: Disruption of phospholipid and bile
acid homeostasis in mice with nonalcoholic steatohepatitis.
Hepatology. 56:118–129. 2012.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Ferslew BC, Johnston CK, Tsakalozou E,
Bridges AS, Paine MF, Jia W, Stewart PW, Barritt AS IV and Brouwer
KL: Altered morphine glucuronide and bile acid disposition in
patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther.
97:419–427. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
114
|
Lake AD, Novak P, Shipkova P, Aranibar N,
Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD and Cherrington NJ:
Decreased hepatotoxic bile acid composition and altered synthesis
in progressive human nonalcoholic fatty liver disease. Toxicol Appl
Pharmacol. 268:132–140. 2013.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Evans RM and Mangelsdorf DJ: Nuclear
receptors, RXR, and the big bang. Cell. 157:255–266.
2014.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Okushin K, Tsutsumi T, Enooku K, Fujinaga
H, Kado A, Shibahara J, Fukayama M, Moriya K, Yotsuyanagi H and
Koike K: The intrahepatic expression levels of bile acid
transporters are inversely correlated with the histological
progression of nonalcoholic fatty liver disease. J Gastroenterol.
51:808–818. 2016.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Schiöth HB, Boström A, Murphy SK, Erhart
W, Hampe J, Moylan C and Mwinyi J: A targeted analysis reveals
relevant shifts in the methylation and transcription of genes
responsible for bile acid homeostasis and drug metabolism in
non-alcoholic fatty liver disease. BMC Genomics.
17(462)2016.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Kim SG, Kim BK, Kim K and Fang S: Bile
acid nuclear receptor farnesoid X receptor: Therapeutic target for
nonalcoholic fatty liver disease. Endocrinol Metab (Seoul).
31:500–504. 2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Martin IV, Schmitt J, Minkenberg A,
Mertens JC, Stieger B, Mullhaupt B and Geier A: Bile acid retention
and activation of endogenous hepatic farnesoid-X-receptor in the
pathogenesis of fatty liver disease in ob/ob-mice. Biol Chem.
391:1441–1449. 2010.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Toyoda Y, Takada T, Yamanashi Y and Suzuki
H: Pathophysiological importance of bile cholesterol reabsorption:
Hepatic NPC1L1-exacerbated steatosis and decreasing VLDL-TG
secretion in mice fed a high-fat diet. Lipids Health Dis.
18(234)2019.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Yoshida M: Novel role of NPC1L1 in the
regulation of hepatic metabolism: Potential contribution of
ezetimibe in NAFLD/NASH treatment. Curr Vasc Pharmacol. 9:121–123.
2011.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Nomura M, Ishii H, Kawakami A and Yoshida
M: Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic
insulin resistance. Am J Physiol Endocrinol Metab. 297:E1030–E1038.
2009.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Aguilar-Olivos NE, Carrillo-Córdova D,
Oria-Hernández J, Sánchez-Valle V, Ponciano-Rodríguez G,
Ramírez-Jaramillo M, Chablé-Montero F, Chávez-Tapia NC, Uribe M and
Méndez-Sánchez N: The nuclear receptor FXR, but not LXR,
up-regulates bile acid transporter expression in non-alcoholic
fatty liver disease. Ann Hepatol. 14:487–493. 2015.PubMed/NCBI
|
|
124
|
Bechmann LP, Kocabayoglu P, Sowa JP, Sydor
S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA,
Kilicarslan A, et al: Free fatty acids repress small heterodimer
partner (SHP) activation and adiponectin counteracts bile
acid-induced liver injury in superobese patients with nonalcoholic
steatohepatitis. Hepatology. 57:1394–1406. 2013.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Rao A, Kosters A, Mells JE, Zhang W,
Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, et al:
Inhibition of ileal bile acid uptake protects against nonalcoholic
fatty liver disease in high-fat diet-fed mice. Sci Transl Med.
8(357ra122)2016.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Chassaing B, Etienne-Mesmin L and Gewirtz
AT: Microbiota-liver axis in hepatic disease. Hepatology.
59:328–339. 2014.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Houghton D, Stewart CJ, Day CP and Trenell
M: Gut microbiota and lifestyle interventions in NAFLD. Int J Mol
Sci. 17(447)2016.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Castaño-Rodríguez N, Mitchell HM and
Kaakoush NO: NAFLD, Helicobacter species and the intestinal
microbiome. Best Pract Res Clin Gastroenterol. 31:657–668.
2017.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Chen YM, Liu Y, Zhou RF, Chen XL, Wang C,
Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, et al: Associations
of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine
and choline with non-alcoholic fatty liver disease in adults. Sci
Rep. 6(19076)2016.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Koeth RA, Wang Z, Levison BS, Buffa JA,
Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal
microbiota metabolism of L-carnitine, a nutrient in red meat,
promotes atherosclerosis. Nat Med. 19:576–585. 2013.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Datz C, Müller E and Aigner E: Iron
overload and non-alcoholic fatty liver disease. Minerva Endocrinol.
42:173–183. 2017.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Moya D, Baker SS, Liu W, Garrick M,
Kozielski R, Baker RD and Zhu L: Novel pathway for iron deficiency
in pediatric non-alcoholic steatohepatitis. Clin Nutr. 34:549–556.
2015.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Tsuchiya H, Ashla AA, Hoshikawa Y, Matsumi
Y, Kanki K, Enjoji M, Momosaki S, Nakamuta M, Taketomi A, Maehara
Y, et al: Iron state in association with retinoid metabolism in
non-alcoholic fatty liver disease. Hepatol Res. 40:1227–1238.
2010.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Handa P, Morgan-Stevenson V, Maliken BD,
Nelson JE, Washington S, Westerman M, Yeh MM and Kowdley KV: Iron
overload results in hepatic oxidative stress, immune cell
activation, and hepatocellular ballooning injury, leading to
nonalcoholic steatohepatitis in genetically obese mice. Am J
Physiol Gastrointest Liver Physiol. 310:G117–G127. 2016.PubMed/NCBI View Article : Google Scholar
|
|
135
|
O'Brien J and Powell LW: Non-alcoholic
fatty liver disease: Is iron relevant? Hepatol Int. 6:332–341.
2012.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Tan TC, Crawford DH, Jaskowski LA,
Subramaniam VN, Clouston AD, Crane DI, Bridle KR, Anderson GJ and
Fletcher LM: Excess iron modulates endoplasmic reticulum
stress-associated pathways in a mouse model of alcohol and high-fat
diet-induced liver injury. Lab Invest. 93:1295–1312.
2013.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Fujita N and Takei Y: Iron overload in
nonalcoholic steatohepatitis. Adv Clin Chem. 55:105–132.
2011.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Uysal S, Armutcu F, Aydogan T, Akin K,
Ikizek M and Yigitoglu MR: Some inflammatory cytokine levels, iron
metabolism and oxidan stress markers in subjects with nonalcoholic
steatohepatitis. Clin Biochem. 44:1375–1379. 2011.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Aigner E, Weiss G and Datz C:
Dysregulation of iron and copper homeostasis in nonalcoholic fatty
liver. World J Hepatol. 7:177–188. 2015.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Hagström H, Nasr P, Bottai M, Ekstedt M,
Kechagias S, Hultcrantz R and Stål P: Elevated serum ferritin is
associated with increased mortality in non-alcoholic fatty liver
disease after 16 years of follow-up. Liver Int. 36:1688–1695.
2016.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Ghamarchehreh ME, Jonaidi-Jafari N,
Bigdeli M, Khedmat H and Saburi A: Iron status and metabolic
syndrome in patients with non-alcoholic fatty liver disease. Middle
East J Dig Dis. 8:31–38. 2016.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Iwasa M, Hara N, Iwata K, Ishidome M,
Sugimoto R, Tanaka H, Fujita N, Kobayashi Y and Takei Y:
Restriction of calorie and iron intake results in reduction of
visceral fat and serum alanine aminotransferase and ferritin levels
in patients with chronic liver disease. Hepatol Res. 40:1188–1194.
2010.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Kowdley KV, Belt P, Wilson LA, Yeh MM,
Neuschwander-Tetri BA, Chalasani N, Sanyal AJ and Nelson JE: NASH
Clinical Research Network. Serum ferritin is an independent
predictor of histologic severity and advanced fibrosis in patients
with nonalcoholic fatty liver disease. Hepatology. 55:77–85.
2012.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Valenti L, Dongiovanni P and Fargion S:
Diagnostic and therapeutic implications of the association between
ferritin level and severity of nonalcoholic fatty liver disease.
World J Gastroenterol. 18:3782–3786. 2012.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Boga S, Alkim H, Alkim C, Koksal AR,
Bayram M, Yilmaz Ozguven MB and Tekin Neijmann S: The relationship
of serum hemojuvelin and hepcidin levels with iron overload in
nonalcoholic fatty liver disease. J Gastrointestin Liver Dis.
24:293–300. 2015.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Tsuchiya H, Ebata Y, Sakabe T, Hama S,
Kogure K and Shiota G: High-fat, high-fructose diet induces hepatic
iron overload via a hepcidin-independent mechanism prior to the
onset of liver steatosis and insulin resistance in mice.
Metabolism. 62:62–69. 2013.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Valenti L, Swinkels DW, Burdick L,
Dongiovanni P, Tjalsma H, Motta BM, Bertelli C, Fatta E, Bignamini
D, Rametta R, et al: Serum ferritin levels are associated with
vascular damage in patients with nonalcoholic fatty liver disease.
Nutr Metab Cardiovasc Dis. 21:568–575. 2011.PubMed/NCBI View Article : Google Scholar
|