Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)

  • Authors:
    • Mingmei Shao
    • Zixiang Ye
    • Yanhong Qin
    • Tao Wu
  • View Affiliations / Copyright

    Affiliations: Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
    Copyright: © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 26
    |
    Published online on: August 28, 2020
       https://doi.org/10.3892/etm.2020.9154
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and can lead to liver cirrhosis or liver cancer in severe cases. In recent years, the incidence of NAFLD has increased substantially. The trend has continued to increase and has become a key point of concern for health systems. NAFLD is often associated with metabolic abnormalities caused by increased visceral obesity, including insulin resistance, diabetes mellitus, hypertension, dyslipidemia, atherosclerosis and systemic microinflammation. Therefore, the pathophysiological mechanisms of NAFLD must be clarified to develop new drug treatment strategies. Recently, researchers have conducted numerous studies on the pathogenesis of NAFLD and have identified various important regulatory factors and potential molecular mechanisms, providing new targets and a theoretical basis for the treatment of NAFLD. However, the pathogenesis of NAFLD is extremely complex and involves the interrelationship and influence of multiple organs and systems. Therefore, the condition must be explored further. In the present review, the abnormal metabolic process, including glucose, lipid, amino acid, bile acid and iron metabolism are reviewed. It was concluded that NAFLD is associated with an imbalanced metabolic network that involves glucose, lipids, amino acids, bile acids and iron, and lipid metabolism is the core metabolic process. The current study aimed to provide evidence and hypotheses for research and clinical treatment of NAFLD.
View Figures

Figure 1

View References

1 

Vanni E, Bugianesi E, Kotronen A, De Minicis S, Yki-Järvinen H and Svegliati-Baroni G: From the metabolic syndrome to NAFLD or vice versa? Dig Liver Dis. 42:320–330. 2010.PubMed/NCBI View Article : Google Scholar

2 

Rinella ME: Nonalcoholic fatty liver disease: A systematic review. JAMA. 313:2263–2273. 2015.PubMed/NCBI View Article : Google Scholar

3 

Gawrieh S, Marion MC, Komorowski R, Wallace J, Charlton M, Kissebah A, Langefeld CD and Olivier M: Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD. Dig Dis Sci. 57:952–957. 2012.PubMed/NCBI View Article : Google Scholar

4 

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L and Wymer M: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 64:73–84. 2016.PubMed/NCBI View Article : Google Scholar

5 

Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J and Li H: Epidemiological feature of NAFLD from 1999 to 2018 in China. Hepatology. 71:1851–1864. 2020.PubMed/NCBI View Article : Google Scholar

6 

Marchisello S, Di Pino A, Scicali R, Urbano F, Piro S, Purrello F and Rabuazzo AM: Pathophysiological, molecular and therapeutic issues of nonalcoholic fatty liver disease: An overview. Int J Mol Sci. 20(1948)2019.PubMed/NCBI View Article : Google Scholar

7 

Bessone F, Razori MV and Roma MG: Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci. 76:99–128. 2019.PubMed/NCBI View Article : Google Scholar

8 

Wasilewska N, Bobrus-Chociej A, Harasim-Symbor E, Tarasów E, Wojtkowska M, Chabowski A and Lebensztejn DM: Increased serum concentration of ceramides in obese children with nonalcoholic fatty liver disease. Lipids Health Dis. 17(216)2018.PubMed/NCBI View Article : Google Scholar

9 

Jegatheesan P and De Bandt JP: Fructose and NAFLD: The multifaceted aspects of fructose metabolism. Nutrients. 9(230)2017.PubMed/NCBI View Article : Google Scholar

10 

Chen L, Chen XW, Huang X, Song BL and Wang Y and Wang Y: Regulation of glucose and lipid metabolism in health and disease. Sci China Life Sci. 62:1420–1458. 2019.PubMed/NCBI View Article : Google Scholar

11 

Kim SH, Kwon DY, Kwak JH, Lee S, Lee YH, Yun J, Son TG and Jung YS: Tunicamycin-induced ER stress is accompanied with oxidative stress via abrogation of sulfur amino acids metabolism in the liver. Int J Mol Sci. 19(4114)2018.PubMed/NCBI View Article : Google Scholar

12 

Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, Fang S, Fischer SE, McGilvray LG and Allard JP: Bile acids and dysbiosis in non-alcoholic fatty liver disease. PLoS One. 11(e0151829)2016.PubMed/NCBI View Article : Google Scholar

13 

Xu J, Sun W and Yang L: Association between iron metabolism and cognitive impairment in older non-alcoholic fatty liver disease individuals: A cross-sectional study in patients from a Chinese center. Medicine (Baltimore). 98(e18189)2019.PubMed/NCBI View Article : Google Scholar

14 

Lim JS, Mietus-Snyder M, Valente A, Schwarz JM and Lustig RH: The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 7:251–264. 2010.PubMed/NCBI View Article : Google Scholar

15 

Jensen T, Abdelmalek MF, Sullivan S, Nadeau KJ, Green M, Roncal C, Nakagawa T, Kuwabara M, Sato Y, Kang DH, et al: Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J Hepatol. 68:1063–1075. 2018.PubMed/NCBI View Article : Google Scholar

16 

Alwahsh SM and Gebhardt R: Dietary fructose as a risk factor for non-alcoholic fatty liver disease (NAFLD). Arch Toxicol. 91:1545–1563. 2017.PubMed/NCBI View Article : Google Scholar

17 

Zhao S, Jang C, Liu J, Uehara K, Gilbert M, Izzo L, Zeng X, Trefely S, Fernandez S, Carrer A, et al: Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature. 579:586–591. 2020.PubMed/NCBI View Article : Google Scholar

18 

Zhang S, Du T, Zhang J, Lu H, Lin X, Xie J, Yang Y and Yu X: The triglyceride and glucose index (TyG) is an effective biomarker to identify nonalcoholic fatty liver disease. Lipids Health Dis. 16(15)2017.PubMed/NCBI View Article : Google Scholar

19 

Khan RS, Bril F, Cusi K and Newsome PN: Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology. 70:711–724. 2019.PubMed/NCBI View Article : Google Scholar

20 

Omar BA, Andersen B, Hald J, Raun K, Nishimura E and Ahrén B: Fibroblast growth factor 21 (FGF21) and glucagon-like peptide 1 contribute to diabetes resistance in glucagon receptor-deficient mice. Diabetes. 63:101–110. 2014.PubMed/NCBI View Article : Google Scholar

21 

Patel V, Joharapurkar A, Kshirsagar S, Sutariya B, Patel M, Patel H, Pandey D, Patel D, Ranvir R, Kadam S, et al: Coagonist of GLP-1 and glucagon receptor ameliorates development of non-alcoholic fatty liver disease. Cardiovasc Hematol Agents Med Chem. 16:35–43. 2018.PubMed/NCBI View Article : Google Scholar

22 

Dongiovanni P, Meroni M, Baselli GA, Bassani GA, Rametta R, Pietrelli A, Maggioni M, Facciotti F, Trunzo V, Badiali S, et al: Insulin resistance promotes lysyl oxidase like 2 induction and fibrosis accumulation in non-alcoholic fatty liver disease. Clin Sci (Lond). 131:1301–1315. 2017.PubMed/NCBI View Article : Google Scholar

23 

Uygun A, Kadayifci A, Demirci H, Saglam M, Sakin YS, Ozturk K, Polat Z, Karslioglu Y and Bolu E: The effect of fatty pancreas on serum glucose parameters in patients with nonalcoholic steatohepatitis. Eur J Intern Med. 26:37–41. 2015.PubMed/NCBI View Article : Google Scholar

24 

Fu D, Cui H and Zhang Y: Lack of ClC-2 alleviates high fat diet-induced insulin resistance and non-alcoholic fatty liver disease. Cell Physiol Biochem. 45:2187–2198. 2018.PubMed/NCBI View Article : Google Scholar

25 

Kumashiro N, Erion DM, Zhang D, Kahn M, Beddow SA, Chu X, Still CD, Gerhard GS, Han X, Dziura J, et al: Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci USA. 108:16381–16385. 2011.PubMed/NCBI View Article : Google Scholar

26 

Wu W, Bi Y, Tangsun Y, Yin W, Chen Y and Zhu D: Effects of transcription factor sterol regulatory element binding protein-1c in palmitate acid-induced L6 cells insulin resistance and its mechanism. Zhonghua Yi Xue Za Zhi. 95:611–615. 2015.PubMed/NCBI(In Chinese).

27 

Nakajima K, Oda E and Kanda E: The association of serum sodium and chloride levels with blood pressure and estimated glomerular filtration rate. Blood Press. 25:51–57. 2016.PubMed/NCBI View Article : Google Scholar

28 

Hong L, Xie ZZ, Du YH, Tang YB, Tao J, Lv XF, Zhou JG and Guan YY: Alteration of volume-regulated chloride channel during macrophage-derived foam cell formation in atherosclerosis. Atherosclerosis. 216:59–66. 2011.PubMed/NCBI View Article : Google Scholar

29 

Trevaskis JL, Griffin PS, Wittmer C, Neuschwander-Tetri BA, Brunt EM, Dolman CS, Erickson MR, Napora J, Parkes DG and Roth JD: Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 302:G762–G772. 2012.PubMed/NCBI View Article : Google Scholar

30 

Bernsmeier C, Meyer-Gerspach AC, Blaser LS, Jeker L, Steinert RE, Heim MH and Beglinger C: Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease. PLoS One. 9(e87488)2014.PubMed/NCBI View Article : Google Scholar

31 

Chellali S, Boudiba A, Griene L and Koceir EA: Incretins-adipocytokines interactions in type 2 diabetic subjects with or without non-alcoholic fatty liver disease: Interest of GLP-1 (glucagon-like peptide-1) as a modulating biomarker. Ann Biol Clin (Paris). 77:261–271. 2019.PubMed/NCBI View Article : Google Scholar

32 

Thompson AM and Trujillo JM: Dulaglutide: The newest GLP-1 receptor agonist for the management of type 2 diabetes. Ann Pharmacother. 49:351–359. 2015.PubMed/NCBI View Article : Google Scholar

33 

Knop FK, Brønden A and Vilsbøll T: Exenatide: Pharmacokinetics, clinical use, and future directions. Expert Opin Pharmacother. 18:555–571. 2017.PubMed/NCBI View Article : Google Scholar

34 

Dong Y, Lv Q, Li S, Wu Y, Li L, Li J, Zhang F, Sun X and Tong N: Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol. 41:284–295. 2017.PubMed/NCBI View Article : Google Scholar

35 

Petit JM and Vergès B: GLP-1 receptor agonists in NAFLD. Diabetes Metab. 43 (Suppl 1):2S28–2S33. 2017.PubMed/NCBI View Article : Google Scholar

36 

Ye DW, Rong XL, Xu AM and Guo J: Liver-adipose tissue crosstalk: A key player in the pathogenesis of glucolipid metabolic disease. Chin J Integr Med. 23:410–414. 2017.PubMed/NCBI View Article : Google Scholar

37 

Li H, Dong K, Fang Q, Hou X, Zhou M, Bao Y, Xiang K, Xu A and Jia W: High serum level of fibroblast growth factor 21 is an independent predictor of non-alcoholic fatty liver disease: A 3-year prospective study in China. J Hepatol. 58:557–563. 2013.PubMed/NCBI View Article : Google Scholar

38 

Zhou K and Cen J: The fatty liver index (FLI) and incident hypertension: A longitudinal study among Chinese population. Lipids Health Dis. 17(214)2018.PubMed/NCBI View Article : Google Scholar

39 

Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A and Kahn CR: Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest. 124:515–527. 2014.PubMed/NCBI View Article : Google Scholar

40 

Tucker B, Li H, Long X, Rye KA and Ong KL: Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism. 101(153994)2019.PubMed/NCBI View Article : Google Scholar

41 

Dongiovanni P, Rametta R, Meroni M and Valenti L: The role of insulin resistance in nonalcoholic steatohepatitis and liver disease development-a potential therapeutic target? Expert Rev Gastroenterol Hepatol. 10:229–242. 2016.PubMed/NCBI View Article : Google Scholar

42 

Angulo P, Kleiner DE, Dam-Larsen S, Adams LA, Bjornsson ES, Charatcharoenwitthaya P, Mills PR, Keach JC, Lafferty HD, Stahler A, et al: Liver fibrosis, but no other histologic features, is associated with long-term outcomes of patients with nonalcoholic fatty liver disease. Gastroenterology. 149:389–397.e10. 2015.PubMed/NCBI View Article : Google Scholar

43 

Grau-Bové X, Ruiz-Trillo I and Rodriguez-Pascual F: Origin and evolution of lysyl oxidases. Sci Rep. 5(10568)2015.PubMed/NCBI View Article : Google Scholar

44 

Ikenaga N, Peng ZW, Vaid KA, Liu SB, Yoshida S, Sverdlov DY, Mikels-Vigdal A, Smith V, Schuppan D and Popov YV: Selective targeting of lysyl oxidase-like 2 (LOXL2) suppresses hepatic fibrosis progression and accelerates its reversal. Gut. 66:1697–1708. 2017.PubMed/NCBI View Article : Google Scholar

45 

Williamson KD and Chapman RW: New therapeutic strategies for primary sclerosing cholangitis. Semin Liver Dis. 36:5–14. 2016.PubMed/NCBI View Article : Google Scholar

46 

Ibrahim SH, Kohli R and Gores GJ: Mechanisms of lipotoxicity in NAFLD and clinical implications. J Pediatr Gastroenterol Nutr. 53:131–140. 2011.PubMed/NCBI View Article : Google Scholar

47 

Ferramosca A and Zara V: Modulation of hepatic steatosis by dietary fatty acids. World J Gastroenterol. 20:1746–1755. 2014.PubMed/NCBI View Article : Google Scholar

48 

Obara N, Fukushima K, Ueno Y, Wakui Y, Kimura O, Tamai K, Kakazu E, Inoue J, Kondo Y, Ogawa N, et al: Possible involvement and the mechanisms of excess trans-fatty acid consumption in severe NAFLD in mice. J Hepatol. 53:326–334. 2010.PubMed/NCBI View Article : Google Scholar

49 

Dongiovanni P, Anstee QM and Valenti L: Genetic predisposition in NAFLD and NASH: Impact on severity of liver disease and response to treatment. Curr Pharm Des. 19:5219–5238. 2013.PubMed/NCBI View Article : Google Scholar

50 

Orellana-Gavaldà JM, Herrero L, Malandrino MI, Pañeda A, Sol Rodríguez-Peña M, Petry H, Asins G, Van Deventer S, Hegardt FG and Serra D: Molecular therapy for obesity and diabetes based on a long-term increase in hepatic fatty-acid oxidation. Hepatology. 53:821–832. 2011.PubMed/NCBI View Article : Google Scholar

51 

Gastaldelli A: Insulin resistance and reduced metabolic flexibility: Cause or consequence of NAFLD? Clin Sci (Lond). 131:2701–2704. 2017.PubMed/NCBI View Article : Google Scholar

52 

Poulsen MK, Nellemann B, Bibby BM, Stødkilde-Jørgensen H, Pedersen SB, Grønbaek H and Nielsen S: No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes Metab. 20:2504–2509. 2018.PubMed/NCBI View Article : Google Scholar

53 

Assunção SNF, Sorte NCAB, Alves CAD, Mendes PSA, Alves CRB and Silva LR: Inflammatory cytokines and non-alcoholic fatty liver disease (NAFLD) in obese children and adolescents. Nutr Hosp. 35:78–83. 2018.PubMed/NCBI View Article : Google Scholar

54 

Lopetuso LR, Mocci G, Marzo M, D'Aversa F, Rapaccini GL, Guidi L, Armuzzi A, Gasbarrini A and Papa A: Harmful effects and potential benefits of anti-tumor necrosis factor (TNF)-α on the liver. Int J Mol Sci. 19(2199)2018.PubMed/NCBI View Article : Google Scholar

55 

Zahran WE, Salah El-Dien KA, Kamel PG and El-Sawaby AS: Efficacy of tumor necrosis factor and interleukin-10 analysis in the follow-up of nonalcoholic fatty liver disease progression. Indian J Clin Biochem. 28:141–146. 2013.PubMed/NCBI View Article : Google Scholar

56 

Bocsan IC, Milaciu MV, Pop RM, Vesa SC, Ciumarnean L, Matei DM and Buzoianu AD: Cytokines genotype-phenotype correlation in nonalcoholic steatohepatitis. Oxid Med Cell Longev. 2017(4297206)2017.PubMed/NCBI View Article : Google Scholar

57 

Yang R, Guan MJ, Zhao N, Li MJ and Zeng T: Roles of extrahepatic lipolysis and the disturbance of hepatic fatty acid metabolism in TNF-α-induced hepatic steatosis. Toxicology. 411:172–180. 2019.PubMed/NCBI View Article : Google Scholar

58 

Jorge ASB, Andrade JMO, Paraíso AF, Jorge GCB, Silveira CM, de Souza LR, Santos EP, Guimaraes ALS, Santos SHS and De-Paula AMB: Body mass index and the visceral adipose tissue expression of IL-6 and TNF-alpha are associated with the morphological severity of non-alcoholic fatty liver disease in individuals with class III obesity. Obes Res Clin Pract. 12 (Suppl 2):S1–S8. 2018.PubMed/NCBI View Article : Google Scholar

59 

Vida M, Gavito AL, Pavón FJ, Bautista D, Serrano A, Suarez J, Arrabal S, Decara J, Romero-Cuevas M, Rodríguez de Fonseca F and Baixeras E: Chronic administration of recombinant IL-6 upregulates lipogenic enzyme expression and aggravates high-fat-diet-induced steatosis in IL-6-deficient mice. Dis Model Mech. 8:721–731. 2015.PubMed/NCBI View Article : Google Scholar

60 

Romeo S, Huang-Doran I, Baroni MG and Kotronen A: Unravelling the pathogenesis of fatty liver disease: Patatin-like phospholipase domain-containing 3 protein. Curr Opin Lipidol. 21:247–252. 2010.PubMed/NCBI View Article : Google Scholar

61 

Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC and Hobbs HH: Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 40:1461–1465. 2008.PubMed/NCBI View Article : Google Scholar

62 

Wang X, Liu Z, Wang K, Wang Z, Sun X, Zhong L, Deng G, Song G, Sun B, Peng Z and Liu W: Additive effects of the risk alleles of PNPLA3 and TM6SF2 on non-alcoholic fatty liver disease (NAFLD) in a Chinese population. Front Genet. 7(140)2016.PubMed/NCBI View Article : Google Scholar

63 

Sookoian S and Pirola CJ: Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology. 53:1883–1894. 2011.PubMed/NCBI View Article : Google Scholar

64 

Aragonès G, Auguet T, Armengol S, Berlanga A, Guiu-Jurado E, Aguilar C, Martínez S, Sabench F, Porras JA, Ruiz MD, et al: PNPLA3 expression is related to liver steatosis in morbidly obese women with non-alcoholic fatty liver disease. Int J Mol Sci. 17(630)2016.PubMed/NCBI View Article : Google Scholar

65 

Zhang L, You W, Zhang H, Peng R, Zhu Q, Yao A, Li X, Zhou Y, Wang X, Pu L and Wu J: PNPLA3 polymorphisms (rs738409) and non-alcoholic fatty liver disease risk and related phenotypes: A meta-analysis. J Gastroenterol Hepatol. 30:821–829. 2015.PubMed/NCBI View Article : Google Scholar

66 

Rossi C, Marzano V, Consalvo A, Zucchelli M, Levi Mortera S, Casagrande V, Mavilio M, Sacchetta P, Federici M, Menghini R, et al: Proteomic and metabolomic characterization of streptozotocin-induced diabetic nephropathy in TIMP3-deficient mice. Acta Diabetol. 55:121–129. 2018.PubMed/NCBI View Article : Google Scholar

67 

Pawlak M, Lefebvre P and Staels B: Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. J Hepatol. 62:720–733. 2015.PubMed/NCBI View Article : Google Scholar

68 

Manzano León N, Torres N and Tovar AR: Mechanism of action of sterol regulatory element binding proteins (SREBPs) in cholesterol and fatty-acid biosynthesis. Rev Invest Clin. 54:145–153. 2002.PubMed/NCBI(In Spanish).

69 

Ziamajidi N, Khaghani S, Hassanzadeh G, Vardasbi S, Ahmadian S, Nowrouzi A, Ghaffari SM and Abdirad A: Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food Chem Toxicol. 58:198–209. 2013.PubMed/NCBI View Article : Google Scholar

70 

Park HS, Jeon BH, Woo SH, Leem J, Jang JE, Cho MS, Park IS, Lee KU and Koh EH: Time-dependent changes in lipid metabolism in mice with methionine choline deficiency-induced fatty liver disease. Mol Cells. 32:571–577. 2011.PubMed/NCBI View Article : Google Scholar

71 

Van Rooyen DM and Farrell GC: SREBP-2: A link between insulin resistance, hepatic cholesterol, and inflammation in NASH. J Gastroenterol Hepatol. 26:789–792. 2011.PubMed/NCBI View Article : Google Scholar

72 

Adolph TE, Grander C, Grabherr F and Tilg H: Adipokines and non-alcoholic fatty liver Disease: Multiple interactions. Int J Mol Sci. 18(1649)2017.PubMed/NCBI View Article : Google Scholar

73 

Gatselis NK, Ntaios G, Makaritsis K and Dalekos GN: Adiponect in: A key playmaker adipocytokine in non-alcoholic fatty liver disease. Clin Exp Med. 14:121–131. 2014.PubMed/NCBI View Article : Google Scholar

74 

Ahmad A, Ali T, Kim MW, Khan A, Jo MH, Rehman SU, Khan MS, Abid NB, Khan M, Ullah R, et al: Adiponectin homolog novel osmotin protects obesity/diabetes-induced NAFLD by upregulating AdipoRs/PPARα signaling in ob/ob and db/db transgenic mouse models. Metabolism. 90:31–43. 2019.PubMed/NCBI View Article : Google Scholar

75 

Navekar R, Rafraf M, Ghaffari A, Asghari-Jafarabadi M and Khoshbaten M: Turmeric supplementation improves serum glucose indices and leptin levels in patients with nonalcoholic fatty liver diseases. J Am Coll Nutr. 36:261–267. 2017.PubMed/NCBI View Article : Google Scholar

76 

Perfield JW II, Ortinau LC, Pickering RT, Ruebel ML, Meers GM and Rector RS: Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. J Obes. 2013(296537)2013.PubMed/NCBI View Article : Google Scholar

77 

Zelber-Sagi S, Lotan R, Shlomai A, Webb M, Harrari G, Buch A, Nitzan Kaluski D, Halpern Z and Oren R: Predictors for incidence and remission of NAFLD in the general population during a seven-year prospective follow-up. J Hepatol. 56:1145–1151. 2012.PubMed/NCBI View Article : Google Scholar

78 

Polyzos SA, Aronis KN, Kountouras J, Raptis DD, Vasiloglou MF and Mantzoros CS: Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Diabetologia. 59:30–43. 2016.PubMed/NCBI View Article : Google Scholar

79 

Polyzos SA, Kountouras J and Mantzoros CS: Leptin in nonalcoholic fatty liver disease: A narrative review. Metabolism. 64:60–78. 2015.PubMed/NCBI View Article : Google Scholar

80 

Liu Y, Qiu DK and Ma X: Liver X receptors bridge hepatic lipid metabolism and inflammation. J Dig Dis. 13:69–74. 2012.PubMed/NCBI View Article : Google Scholar

81 

Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT, Tarling EJ, Ito A, Gao J, Wang B, Edwards PA, et al: LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18:685–697. 2013.PubMed/NCBI View Article : Google Scholar

82 

Lima-Cabello E, García-Mediavilla MV, Miquilena-Colina ME, Vargas-Castrillón J, Lozano-Rodríguez T, Fernández-Bermejo M, Olcoz JL, González-Gallego J, García-Monzón C and Sánchez-Campos S: Enhanced expression of pro-inflammatory mediators and liver X-receptor-regulated lipogenic genes in non-alcoholic fatty liver disease and hepatitis C. Clin Sci (Lond). 120:239–250. 2011.PubMed/NCBI View Article : Google Scholar

83 

Ni M, Zhang B, Zhao J, Feng Q, Peng J, Hu Y and Zhao Y: Biological mechanisms and related natural modulators of liver X receptor in nonalcoholic fatty liver disease. Biomed Pharmacother. 113(108778)2019.PubMed/NCBI View Article : Google Scholar

84 

Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, Shelness GS, Chan L and Chang BHJ: The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 13:1130–1144. 2017.PubMed/NCBI View Article : Google Scholar

85 

Imai Y, Boyle S, Varela GM, Caron E, Yin X, Dhir R, Dhir R, Graham MJ and Ahima RS: Effects of perilipin 2 antisense oligonucleotide treatment on hepatic lipid metabolism and gene expression. Physiol Genomics. 44:1125–1131. 2012.PubMed/NCBI View Article : Google Scholar

86 

Sherriff JL, O'Sullivan TA, Properzi C, Oddo J-L and Adams LA: Choline, its potential role in nonalcoholic fatty liver disease, and the case for human and bacterial genes. Adv Nutr. 7:5–13. 2016.PubMed/NCBI View Article : Google Scholar

87 

Michel V, Singh RK and Bakovic M: The impact of choline availability on muscle lipid metabolism. Food Funct. 2:53–62. 2011.PubMed/NCBI View Article : Google Scholar

88 

Suk KT and Kim DJ: Gut microbiota: Novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol. 13:193–204. 2019.PubMed/NCBI View Article : Google Scholar

89 

Pradhan-Sundd T, Vats R, Russell JO, Singh S, Michael AA, Molina L, Kakar S, Cornuet P, Poddar M, Watkins SC, et al: Dysregulated bile transporters and impaired tight junctions during chronic liver injury in mice. Gastroenterology. 155:1218–1232.e24. 2018.PubMed/NCBI View Article : Google Scholar

90 

Sookoian S, Castaño GO, Scian R, Fernández Gianotti T, Dopazo H, Rohr C, Gaj G, San Martino J, Sevic I, Flichman D and Pirola CJ: Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am J Clin Nutr. 103:422–434. 2016.PubMed/NCBI View Article : Google Scholar

91 

Lake AD, Novak P, Shipkova P, Aranibar N, Robertson DG, Reily MD, Lehman-McKeeman LD, Vaillancourt RR and Cherrington NJ: Branched chain amino acid metabolism profiles in progressive human nonalcoholic fatty liver disease. Amino Acids. 47:603–615. 2015.PubMed/NCBI View Article : Google Scholar

92 

Cheng S, Wiklund P, Autio R, Borra R, Ojanen X, Xu L, Törmäkangas T and Alen M: Adipose tissue dysfunction and altered systemic amino acid metabolism are associated with non-alcoholic fatty liver disease. PLoS One. 10(e0138889)2015.PubMed/NCBI View Article : Google Scholar

93 

Haufe S, Witt H, Engeli S, Kaminski J, Utz W, Fuhrmann JC, Rein D, Schulz-Menger J, Luft FC, Boschmann M and Jordan J: Branched-chain and aromatic amino acids, insulin resistance and liver specific ectopic fat storage in overweight to obese subjects. Nutr Metab Cardiovasc Dis. 26:637–642. 2016.PubMed/NCBI View Article : Google Scholar

94 

van den Berg EH, Flores-Guerrero JL, Gruppen EG, de Borst MH, Wolak-Dinsmore J, Connelly MA, Bakker SJL and Dullaart RPF: Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: Role of circulating branched-chain amino acids. Nutrients. 11(705)2019.PubMed/NCBI View Article : Google Scholar

95 

Zhang F, Zhao S, Yan W, Xia Y, Chen X, Wang W, Zhang J, Gao C, Peng C, Yan F, et al: Branched chain amino acids cause liver injury in obese/diabetic mice by promoting adipocyte lipolysis and inhibiting hepatic autophagy. EBioMedicine. 13:157–167. 2016.PubMed/NCBI View Article : Google Scholar

96 

Li T, Geng L, Chen X, Miskowiec M, Li X and Dong B: Branched-chain amino acids alleviate nonalcoholic steatohepatitis in rats. Appl Physiol Nutr Metab. 38:836–843. 2013.PubMed/NCBI View Article : Google Scholar

97 

Ra SG, Miyazaki T, Kojima R, Komine S, Ishikura K, Kawanaka K, Honda A, Matsuzaki Y and Ohmori H: Effect of BCAA supplement timing on exercise-induced muscle soreness and damage: A pilot placebo-controlled double-blind study. J Sports Med Phys Fitness. 58:1582–1591. 2018.PubMed/NCBI View Article : Google Scholar

98 

Zarfeshani A, Ngo S and Sheppard AM: Leucine alters hepatic glucose/lipid homeostasis via the myostatin-AMP-activated protein kinase pathway-potential implications for nonalcoholic fatty liver disease. Clin Epigenetics. 6(27)2014.PubMed/NCBI View Article : Google Scholar

99 

Celinski K, Konturek PC, Slomka M, Cichoz-Lach H, Brzozowski T, Konturek SJ and Korolczuk A: Effects of treatment with melatonin and tryptophan on liver enzymes, parameters of fat metabolism and plasma levels of cytokines in patients with non-alcoholic fatty liver disease-14 months follow up. J Physiol Pharmacol. 65:75–82. 2014.PubMed/NCBI

100 

Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C and Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 49:962–966. 2016.PubMed/NCBI View Article : Google Scholar

101 

Jin R, Banton S, Tran VT, Konomi JV, Li S, Jones DP and Vos MB: Amino acid metabolism is altered in adolescents with nonalcoholic fatty liver disease-an untargeted, high resolution metabolomics study. J Pediatr. 172:14–19.e5. 2016.PubMed/NCBI View Article : Google Scholar

102 

Gaggini M, Carli F, Rosso C, Buzzigoli E, Marietti M, Della Latta V, Ciociaro D, Abate ML, Gambino R, Cassader M, et al: Altered amino acid concentrations in NAFLD: Impact of obesity and insulin resistance. Hepatology. 67:145–158. 2018.PubMed/NCBI View Article : Google Scholar

103 

Stojanović M, Todorović D, Šćepanović L, Mitrović D, Borozan S, Dragutinović V, Labudović-Borović M, Krstić D, Čolović M and Djuric D: Subchronic methionine load induces oxidative stress and provokes biochemical and histological changes in the rat liver tissue. Mol Cell Biochem. 448:43–50. 2018.PubMed/NCBI View Article : Google Scholar

104 

Dai H, Wang W, Tang X, Chen R, Chen Z, Lu Y and Yuan H: Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: A cross-sectional study. Nutr J. 15(102)2016.PubMed/NCBI View Article : Google Scholar

105 

Pacana T, Cazanave S, Verdianelli A, Patel V, Min HK, Mirshahi F, Quinlivan E and Sanyal AJ: Dysregulated hepatic methionine metabolism drives homocysteine elevation in diet-induced nonalcoholic fatty liver disease. PLoS One. 10(e0136822)2015.PubMed/NCBI View Article : Google Scholar

106 

de Carvalho SC, Muniz MT, Siqueira MD, Siqueira ER, Gomes AV, Silva KA, Bezerra LC, D'Almeida V, de Oliveira CP and Pereira LM: Plasmatic higher levels of homocysteine in non-alcoholic fatty liver disease (NAFLD). Nutr J. 12(37)2013.PubMed/NCBI View Article : Google Scholar

107 

Abu-Serie MM, El-Gamal BA, El-Kersh MA and El-Saadani MA: Investigation into the antioxidant role of arginine in the treatment and the protection for intralipid-induced non-alcoholic steatohepatitis. Lipids Health Dis. 14(128)2015.PubMed/NCBI View Article : Google Scholar

108 

Dogru T, Genc H, Tapan S, Ercin CN, Ors F, Aslan F, Kara M, Sertoglu E, Bagci S, Kurt I and Sonmez A: Elevated asymmetric dimethylarginine in plasma: An early marker for endothelial dysfunction in non-alcoholic fatty liver disease? Diabetes Res Clin Pract. 96:47–52. 2012.PubMed/NCBI View Article : Google Scholar

109 

Voloshin I, Hahn-Obercyger M, Anavi S and Tirosh O: L-arginine conjugates of bile acids-a possible treatment for non-alcoholic fatty liver disease. Lipids Health Dis. 13(69)2014.PubMed/NCBI View Article : Google Scholar

110 

Chalasani N, Younossi Z, Lavine JE, Diehl AM, Brunt EM, Cusi K, Charlton M and Sanyal AJ: American Gastroenterological Association; American Association for the Study of Liver Diseases; American College of Gastroenterologyh: The diagnosis and management of non-alcoholic fatty liver disease: Practice guideline by the American gastroenterological association, American association for the study of liver diseases, and American college of gastroenterology. Gastroenterology. 142:1592–1609. 2012.PubMed/NCBI View Article : Google Scholar

111 

Chiang JYL and Ferrell JM: Bile acid metabolism in liver pathobiology. Gene Expr. 18:71–87. 2018.PubMed/NCBI View Article : Google Scholar

112 

Tanaka N, Matsubara T, Krausz KW, Patterson AD and Gonzalez FJ: Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology. 56:118–129. 2012.PubMed/NCBI View Article : Google Scholar

113 

Ferslew BC, Johnston CK, Tsakalozou E, Bridges AS, Paine MF, Jia W, Stewart PW, Barritt AS IV and Brouwer KL: Altered morphine glucuronide and bile acid disposition in patients with nonalcoholic steatohepatitis. Clin Pharmacol Ther. 97:419–427. 2015.PubMed/NCBI View Article : Google Scholar

114 

Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD and Cherrington NJ: Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol. 268:132–140. 2013.PubMed/NCBI View Article : Google Scholar

115 

Evans RM and Mangelsdorf DJ: Nuclear receptors, RXR, and the big bang. Cell. 157:255–266. 2014.PubMed/NCBI View Article : Google Scholar

116 

Okushin K, Tsutsumi T, Enooku K, Fujinaga H, Kado A, Shibahara J, Fukayama M, Moriya K, Yotsuyanagi H and Koike K: The intrahepatic expression levels of bile acid transporters are inversely correlated with the histological progression of nonalcoholic fatty liver disease. J Gastroenterol. 51:808–818. 2016.PubMed/NCBI View Article : Google Scholar

117 

Schiöth HB, Boström A, Murphy SK, Erhart W, Hampe J, Moylan C and Mwinyi J: A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease. BMC Genomics. 17(462)2016.PubMed/NCBI View Article : Google Scholar

118 

Kim SG, Kim BK, Kim K and Fang S: Bile acid nuclear receptor farnesoid X receptor: Therapeutic target for nonalcoholic fatty liver disease. Endocrinol Metab (Seoul). 31:500–504. 2016.PubMed/NCBI View Article : Google Scholar

119 

Martin IV, Schmitt J, Minkenberg A, Mertens JC, Stieger B, Mullhaupt B and Geier A: Bile acid retention and activation of endogenous hepatic farnesoid-X-receptor in the pathogenesis of fatty liver disease in ob/ob-mice. Biol Chem. 391:1441–1449. 2010.PubMed/NCBI View Article : Google Scholar

120 

Toyoda Y, Takada T, Yamanashi Y and Suzuki H: Pathophysiological importance of bile cholesterol reabsorption: Hepatic NPC1L1-exacerbated steatosis and decreasing VLDL-TG secretion in mice fed a high-fat diet. Lipids Health Dis. 18(234)2019.PubMed/NCBI View Article : Google Scholar

121 

Yoshida M: Novel role of NPC1L1 in the regulation of hepatic metabolism: Potential contribution of ezetimibe in NAFLD/NASH treatment. Curr Vasc Pharmacol. 9:121–123. 2011.PubMed/NCBI View Article : Google Scholar

122 

Nomura M, Ishii H, Kawakami A and Yoshida M: Inhibition of hepatic Niemann-Pick C1-like 1 improves hepatic insulin resistance. Am J Physiol Endocrinol Metab. 297:E1030–E1038. 2009.PubMed/NCBI View Article : Google Scholar

123 

Aguilar-Olivos NE, Carrillo-Córdova D, Oria-Hernández J, Sánchez-Valle V, Ponciano-Rodríguez G, Ramírez-Jaramillo M, Chablé-Montero F, Chávez-Tapia NC, Uribe M and Méndez-Sánchez N: The nuclear receptor FXR, but not LXR, up-regulates bile acid transporter expression in non-alcoholic fatty liver disease. Ann Hepatol. 14:487–493. 2015.PubMed/NCBI

124 

Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, et al: Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology. 57:1394–1406. 2013.PubMed/NCBI View Article : Google Scholar

125 

Rao A, Kosters A, Mells JE, Zhang W, Setchell KD, Amanso AM, Wynn GM, Xu T, Keller BT, Yin H, et al: Inhibition of ileal bile acid uptake protects against nonalcoholic fatty liver disease in high-fat diet-fed mice. Sci Transl Med. 8(357ra122)2016.PubMed/NCBI View Article : Google Scholar

126 

Chassaing B, Etienne-Mesmin L and Gewirtz AT: Microbiota-liver axis in hepatic disease. Hepatology. 59:328–339. 2014.PubMed/NCBI View Article : Google Scholar

127 

Houghton D, Stewart CJ, Day CP and Trenell M: Gut microbiota and lifestyle interventions in NAFLD. Int J Mol Sci. 17(447)2016.PubMed/NCBI View Article : Google Scholar

128 

Castaño-Rodríguez N, Mitchell HM and Kaakoush NO: NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol. 31:657–668. 2017.PubMed/NCBI View Article : Google Scholar

129 

Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, Wang LJ, Zheng RD, Zhang HW, Ling WH, et al: Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 6(19076)2016.PubMed/NCBI View Article : Google Scholar

130 

Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L, et al: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 19:576–585. 2013.PubMed/NCBI View Article : Google Scholar

131 

Datz C, Müller E and Aigner E: Iron overload and non-alcoholic fatty liver disease. Minerva Endocrinol. 42:173–183. 2017.PubMed/NCBI View Article : Google Scholar

132 

Moya D, Baker SS, Liu W, Garrick M, Kozielski R, Baker RD and Zhu L: Novel pathway for iron deficiency in pediatric non-alcoholic steatohepatitis. Clin Nutr. 34:549–556. 2015.PubMed/NCBI View Article : Google Scholar

133 

Tsuchiya H, Ashla AA, Hoshikawa Y, Matsumi Y, Kanki K, Enjoji M, Momosaki S, Nakamuta M, Taketomi A, Maehara Y, et al: Iron state in association with retinoid metabolism in non-alcoholic fatty liver disease. Hepatol Res. 40:1227–1238. 2010.PubMed/NCBI View Article : Google Scholar

134 

Handa P, Morgan-Stevenson V, Maliken BD, Nelson JE, Washington S, Westerman M, Yeh MM and Kowdley KV: Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am J Physiol Gastrointest Liver Physiol. 310:G117–G127. 2016.PubMed/NCBI View Article : Google Scholar

135 

O'Brien J and Powell LW: Non-alcoholic fatty liver disease: Is iron relevant? Hepatol Int. 6:332–341. 2012.PubMed/NCBI View Article : Google Scholar

136 

Tan TC, Crawford DH, Jaskowski LA, Subramaniam VN, Clouston AD, Crane DI, Bridle KR, Anderson GJ and Fletcher LM: Excess iron modulates endoplasmic reticulum stress-associated pathways in a mouse model of alcohol and high-fat diet-induced liver injury. Lab Invest. 93:1295–1312. 2013.PubMed/NCBI View Article : Google Scholar

137 

Fujita N and Takei Y: Iron overload in nonalcoholic steatohepatitis. Adv Clin Chem. 55:105–132. 2011.PubMed/NCBI View Article : Google Scholar

138 

Uysal S, Armutcu F, Aydogan T, Akin K, Ikizek M and Yigitoglu MR: Some inflammatory cytokine levels, iron metabolism and oxidan stress markers in subjects with nonalcoholic steatohepatitis. Clin Biochem. 44:1375–1379. 2011.PubMed/NCBI View Article : Google Scholar

139 

Aigner E, Weiss G and Datz C: Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World J Hepatol. 7:177–188. 2015.PubMed/NCBI View Article : Google Scholar

140 

Hagström H, Nasr P, Bottai M, Ekstedt M, Kechagias S, Hultcrantz R and Stål P: Elevated serum ferritin is associated with increased mortality in non-alcoholic fatty liver disease after 16 years of follow-up. Liver Int. 36:1688–1695. 2016.PubMed/NCBI View Article : Google Scholar

141 

Ghamarchehreh ME, Jonaidi-Jafari N, Bigdeli M, Khedmat H and Saburi A: Iron status and metabolic syndrome in patients with non-alcoholic fatty liver disease. Middle East J Dig Dis. 8:31–38. 2016.PubMed/NCBI View Article : Google Scholar

142 

Iwasa M, Hara N, Iwata K, Ishidome M, Sugimoto R, Tanaka H, Fujita N, Kobayashi Y and Takei Y: Restriction of calorie and iron intake results in reduction of visceral fat and serum alanine aminotransferase and ferritin levels in patients with chronic liver disease. Hepatol Res. 40:1188–1194. 2010.PubMed/NCBI View Article : Google Scholar

143 

Kowdley KV, Belt P, Wilson LA, Yeh MM, Neuschwander-Tetri BA, Chalasani N, Sanyal AJ and Nelson JE: NASH Clinical Research Network. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 55:77–85. 2012.PubMed/NCBI View Article : Google Scholar

144 

Valenti L, Dongiovanni P and Fargion S: Diagnostic and therapeutic implications of the association between ferritin level and severity of nonalcoholic fatty liver disease. World J Gastroenterol. 18:3782–3786. 2012.PubMed/NCBI View Article : Google Scholar

145 

Boga S, Alkim H, Alkim C, Koksal AR, Bayram M, Yilmaz Ozguven MB and Tekin Neijmann S: The relationship of serum hemojuvelin and hepcidin levels with iron overload in nonalcoholic fatty liver disease. J Gastrointestin Liver Dis. 24:293–300. 2015.PubMed/NCBI View Article : Google Scholar

146 

Tsuchiya H, Ebata Y, Sakabe T, Hama S, Kogure K and Shiota G: High-fat, high-fructose diet induces hepatic iron overload via a hepcidin-independent mechanism prior to the onset of liver steatosis and insulin resistance in mice. Metabolism. 62:62–69. 2013.PubMed/NCBI View Article : Google Scholar

147 

Valenti L, Swinkels DW, Burdick L, Dongiovanni P, Tjalsma H, Motta BM, Bertelli C, Fatta E, Bignamini D, Rametta R, et al: Serum ferritin levels are associated with vascular damage in patients with nonalcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 21:568–575. 2011.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shao M, Ye Z, Qin Y and Wu T: Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review). Exp Ther Med 20: 26, 2020.
APA
Shao, M., Ye, Z., Qin, Y., & Wu, T. (2020). Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review). Experimental and Therapeutic Medicine, 20, 26. https://doi.org/10.3892/etm.2020.9154
MLA
Shao, M., Ye, Z., Qin, Y., Wu, T."Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)". Experimental and Therapeutic Medicine 20.5 (2020): 26.
Chicago
Shao, M., Ye, Z., Qin, Y., Wu, T."Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)". Experimental and Therapeutic Medicine 20, no. 5 (2020): 26. https://doi.org/10.3892/etm.2020.9154
Copy and paste a formatted citation
x
Spandidos Publications style
Shao M, Ye Z, Qin Y and Wu T: Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review). Exp Ther Med 20: 26, 2020.
APA
Shao, M., Ye, Z., Qin, Y., & Wu, T. (2020). Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review). Experimental and Therapeutic Medicine, 20, 26. https://doi.org/10.3892/etm.2020.9154
MLA
Shao, M., Ye, Z., Qin, Y., Wu, T."Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)". Experimental and Therapeutic Medicine 20.5 (2020): 26.
Chicago
Shao, M., Ye, Z., Qin, Y., Wu, T."Abnormal metabolic processes involved in the pathogenesis of non‑alcoholic fatty liver disease (Review)". Experimental and Therapeutic Medicine 20, no. 5 (2020): 26. https://doi.org/10.3892/etm.2020.9154
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team