|
1
|
Singh KP, Crane M, Audsley J, Avihingsanon
A, Sasadeusz J and Lewin SR: HIV-hepatitis B virus coinfection:
Epidemiology, pathogenesis, and treatment. AIDS. 31:2035–2052.
2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Nikolopoulos GK, Paraskevis D,
Hatzitheodorou E, Moschidis Z, Sypsa V, Zavitsanos X, Kalapothaki V
and Hatzakis A: Impact of hepatitis B virus infection on the
progression of AIDS and mortality in HIV-infected individuals: A
cohort study and meta-analysis. Clin Infect Dis. 48:1763–1771.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
Naing C, Poovorawan Y and Tong K:
Comparative effectiveness of anti-viral drugs with dual activity
for treating hepatitis B and HIV co-infected patients: A network
meta-analysis. BMC Infect Dis. 18(564)2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Levy V and Grant R: Antiretroviral therapy
for hepatitis B virus-HIV-coinfected patients: Promises and
pitfalls. Clin Infect Dis. 43:904–910. 2006.PubMed/NCBI View
Article : Google Scholar
|
|
5
|
Sun HY, Sheng WH, Tsai MS, Lee KY, Chang
SY and Hung CC: Hepatitis B virus coinfection in human
immunodeficiency virus-infected patients: A review. World J
Gastroenterol. 20:14598–14614. 2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Núñez M, Puoti M, Camino N and Soriano V:
Treatment of chronic hepatitis B in the human immunodeficiency
virus-infected patient: Present and future. Clin Infect Dis.
37:1678–1685. 2003.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Mendes-Corrêa M and Núñez M: Management of
HIV and hepatitis virus coinfection. Expert Opin Pharmacother.
11:2497–2516. 2010.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Consolidated guidelines on the use of
antiretroviral drugs for treating and preventing HIV infection.
World Health Organization [updated June 2013]. urihttps://www.who.int/hiv/pub/guidelines/arv2013/art/WHO_CG_table_7.1.pdf?ua=1simplehttps://www.who.int/hiv/pub/guidelines/arv2013/art/WHO_CG_table_7.1.pdf?ua=1.
Accessed October 22, 2020.
|
|
9
|
AIDS and Hepatitis C Professional Group,
Society of Infectious Diseases, Chinese Medical Association;
Chinese Center for Disease Control and Prevention. Chinese
guidelines for diagnosis and treatment of HIV/AIDS (2018). Zhonghua
Nei Ke Za Zhi. 57:867–884. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
10
|
Lin JJ, Lin KY, Tang HJ, Lin SP, Lee YC,
Liu CE, Huang YS, Wang NC, Li CW, Ko WC, et al: Hepatitis B virus
seroprevalence among HIV-infected patients receiving combination
antiretroviral therapy three decades after universal neonatal
hepatitis B immunization program in Taiwan. J Microbiol Immunol
Infect: Oct 30, 2019 (Epub ahead of print). doi:
10.1016/j.jmii.2019.10.005.
|
|
11
|
Lai CL and Yuen MF: Management of chronic
hepatitis B in patients from special populations. Cold Spring Harb
Perspect Med. 5(a021527)2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lieveld FI, Smit C, Richter C, van Erpecum
KJ, Spanier BWM, Gisolf EH, Vrolijk JM, Siersema PD, Hoepelman AIM,
Reiss P and Arends JE: Liver decompensation in HIV/Hepatitis B
coinfection in the combination antiretroviral therapy era does not
seem increased compared to hepatitis B mono-infection. Liver Int.
39:470–483. 2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Dore GJ, Soriano V, Rockstroh J, Kupfer B,
Tedaldi E, Peters L, Neuhaus J, Puoti M, Klein MB, Mocroft A, et
al: Frequent hepatitis B virus rebound among HIV-hepatitis B
virus-coinfected patients following antiretroviral therapy
interruption. AIDS. 24:857–865. 2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Shilaih M, Marzel A, Scherrer AU, Braun
DL, Kovari H, Rougemont M, Darling K, Battegay M, Hoffmann M,
Bernasconi E, et al: Dually Active HIV/HBV antiretrovirals as
protection against incident hepatitis B infections: Potential for
prophylaxis. J Infect Dis. 214:599–606. 2016.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Soriano V, Barreiro P, Benitez L, Peña JM
and de Mendoza C: New antivirals for the treatment of chronic
hepatitis B. Expert Opin Investig Drugs. 26:843–851.
2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Fosdick A, Zheng J, Pflanz S, Frey CR,
Hesselgesser J, Halcomb RL, Wolfgang G and Tumas DB:
Pharmacokinetic and pharmacodynamic properties of GS-9620, a novel
Toll-like receptor 7 agonist, demonstrate interferon-stimulated
gene induction without detectable serum interferon at low oral
doses. J Pharmacol Exp Ther. 348:96–105. 2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Menne S, Tumas DB, Liu KH, Thampi L,
AlDeghaither D, Baldwin BH, Bellezza CA, Cote PJ, Zheng J, Halcomb
R, et al: Sustained efficacy and seroconversion with the Toll-like
receptor 7 agonist GS-9620 in the Woodchuck model of chronic
hepatitis B. J Hepatol. 62:1237–1245. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Lanford RE, Guerra B, Chavez D, Giavedoni
L, Hodara VL, Brasky KM, Fosdick A, Frey CR, Zheng J, Wolfgang G,
et al: GS-9620, an oral agonist of Toll-like receptor-7, induces
prolonged suppression of hepatitis B virus in chronically infected
chimpanzees. Gastroenterology. 144:1508–1517, 1517e1-e10.
2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Niu C, Li L, Daffis S, Lucifora J, Bonnin
M, Maadadi S, Salas E, Chu R, Ramos H, Livingston CM, et al:
Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition
of HBV via a type I interferon-dependent mechanism. J Hepatol.
68:922–931. 2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Janssen HLA, Brunetto MR, Kim YJ, Ferrari
C, Massetto B, Nguyen AH, Joshi A, Woo J, Lau AH, Gaggar A, et al:
Safety, efficacy and pharmacodynamics of vesatolimod (GS-9620) in
virally suppressed patients with chronic hepatitis B. J Hepatol.
68:431–440. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Boni C, Vecchi A, Rossi M, Laccabue D,
Giuberti T, Alfieri A, Lampertico P, Grossi G, Facchetti F,
Brunetto MR, et al: TLR7 agonist increases responses of hepatitis B
virus-specific T cells and natural killer cells in patients with
chronic hepatitis B treated with nucleos(T)ide analogues.
Gastroenterology. 154:1764–1777.e7. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Agarwal K, Ahn SH, Elkhashab M, Lau AH,
Gaggar A, Bulusu A, Tian X, Cathcart AL, Woo J, Subramanian GM, et
al: Safety and efficacy of vesatolimod (GS-9620) in patients with
chronic hepatitis B who are not currently on antiviral treatment. J
Viral Hepat. 25:1331–1340. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Offersen R, Nissen SK, Rasmussen TA,
Østergaard L, Denton PW, Søgaard OS and Tolstrup M: A novel
toll-like receptor 9 agonist, MGN1703, enhances HIV-1 transcription
and NK cell-mediated inhibition of HIV-1-infected autologous
CD4+ T cells. J Virol. 90:4441–4453. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Tsai A, Irrinki A, Kaur J, Cihlar T,
Kukolj G, Sloan DD and Murry JP: Toll-like receptor 7 agonist
GS-9620 induces HIV expression and HIV-specific immunity in cells
from HIV-infected individuals on suppressive antiretroviral
therapy. J Virol. 91:e02166–16. 2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Sloan DD, Irrinki A, Tsai A, Kaur J,
Lalezari J, Murry J and Cihlar T: TLR7 agonist GS-9620 activates
HIV-1 in PBMCs from HIV-infected patients on cART. 22nd Annu Conf
Retrovir Opportunist Infect, Seattle, WA, abs. 417, February 23-26,
2015. urihttps://www.croiconference.org/abstract/tlr7-agonist-gs-9620-activates-hiv-1-pbmcs-hiv-infected-patients-cart/simplehttps://www.croiconference.org/abstract/tlr7-agonist-gs-9620-activates-hiv-1-pbmcs-hiv-infected-patients-cart/.
|
|
26
|
Ram RR, Duatschek P, Margot N, Abram M,
Geleziunas R, Hesselgesser J and Callebaut C: Activation of
HIV-specific CD8+ T-cells from HIV+ donors by
vesatolimod. Antivir Ther: May 18, 2020 (Epub ahead of print). doi:
10.3851/IMP3359.
|
|
27
|
Lim SY, Osuna CE, Hraber PT, Hesselgesser
J, Gerold JM, Barnes TL, Sanisetty S, Seaman MS, Lewis MG,
Geleziunas R, et al: TLR7 agonists induce transient viremia and
reduce the viral reservoir in SIV-infected rhesus macaques on
antiretroviral therapy. Sci Transl Med. 10(eaao4521)2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Borducchi EN, Liu J, Nkolola JP, Cadena
AM, Yu WH, Fischinger S, Broge T, Abbink P, Mercado NB,
Chandrashekar A, et al: Antibody and TLR7 agonist delay viral
rebound in SHIV-infected monkeys. Nature. 563:360–364.
2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Riddler S, Para M, Benson C, Mills A,
Ramgopal M, Dejesus E, Brinson C, Cyktor J, Mellors J, Guo S, et
al: Vesatolimod (GS-9620) is safe and pharmacodynamically active in
HIV infected individuals. 10th International AIDS Society
Conference on HIV Science (IAS 2019), Mexico City. abstract
WEAA0304, 2019. urihttps://www.natap.org/2019/IAS/IAS_47.htmsimplehttps://www.natap.org/2019/IAS/IAS_47.htm.
|
|
30
|
Li SY, Li H, Xiong YL, Liu F, Peng ML,
Zhang DZ, Ren H and Hu P: Peginterferon is preferable to entecavir
for prevention of unfavourable events in patients with
HBeAg-positive chronic hepatitis B: A five-year observational
cohort study. J Viral Hepat. 24 (Suppl 1):12–20. 2017.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Azzoni L, Foulkes AS, Papasavvas E, Mexas
AM, Lynn KM, Mounzer K, Tebas P, Jacobson JM, Frank I, Busch MP, et
al: Pegylated Interferon alfa-2a monotherapy results in suppression
of HIV type 1 replication and decreased cell-associated HIV DNA
integration. J Infect Dis. 207:213–222. 2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Sun H, Buzon MJ, Shaw A, Berg RK, Yu XG,
Ferrando-Martinez S, Leal M, Ruiz-Mateos E and Lichterfeld M:
Hepatitis C therapy with interferon-α and ribavirin reduces CD4
T-cell-associated HIV-1 DNA in HIV-1/hepatitis C virus-coinfected
patients. J Infect Dis. 209:1315–1320. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Jiao YM, Weng WJ, Gao QS, Zhu WJ, Cai WP,
Li LH, Li HJ, Gao YQ and Wu H: Hepatitis C therapy with
interferon-α and ribavirin reduces the CD4 cell count and the
total, 2LTR circular and integrated HIV-1 DNA in HIV/HCV
co-infected patients. Antiviral Res. 118:118–122. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Dianzani F, Rozera G, Abbate I, D'Offizi
G, Abdeddaim A, Vlassi C, Antonucci G, Narciso P, Martini F and
Capobianchi MR: Interferon may prevent HIV viral rebound after
HAART interruption in HIV patients. J Interferon Cytokine Res.
28:1–3. 2008.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Asmuth DM, Murphy RL, Rosenkranz SL,
Lertora JJ, Kottilil S, Cramer Y, Chan ES, Schooley RT, Rinaldo CR,
Thielman N, et al: Safety, tolerability, and mechanisms of
antiretroviral activity of pegylated interferon Alfa-2a in
HIV-1-monoinfected participants: A phase II clinical trial. J
Infect Dis. 201:1686–1696. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
36
|
Tavel JA, Huang CY, Shen J, Metcalf JA,
Dewar R, Shah A, Vasudevachari MB, Follmann DA, Herpin B, Davey RT,
et al: Interferon-alpha produces significant decreases in HIV load.
J Interferon Cytokine Res. 30:461–464. 2010.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Frissen PH, de Wolf F, Reiss P, Bakker PJ,
Veenhof CH, Danner SA, Goudsmit J and Lange JM: High-dose
interferon-alpha2a exerts potent activity against human
immunodeficiency virus type 1 not associated with antitumor
activity in subjects with Kaposi's sarcoma. J Infect Dis.
176:811–814. 1997.PubMed/NCBI View
Article : Google Scholar
|
|
38
|
Haas DW, Lavelle J, Nadler JP, Greenberg
SB, Frame P, Mustafa N, St Clair M, McKinnis R, Dix L, Elkins M and
Rooney J: A randomized trial of interferon alpha therapy for HIV
type 1 infection. AIDS Res Hum Retroviruses. 16:183–190.
2000.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Hua S, Vigano S, Tse S, Zhengyu O,
Harrington S, Negron J, Garcia-Broncano P, Marchetti G, Genebat M,
Leal M, et al: Pegylated interferon-α-induced natural killer cell
activation is associated with human immunodeficiency virus-1 DNA
decline in antiretroviral therapy-treated HIV-1/hepatitis C
virus-coinfected patients. Clin Infect Dis. 66:1910–1917.
2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Montes ML, Schapiro J, Pérez-Valero I,
García-Bujalance S and Arribas JR: Long-term control of HIV
replication with dolutegravir and pegylated interferon alpha-2a in
an HIV-infected patient with sixtuple-class resistance. AIDS.
28:932–934. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sandler NG, Bosinger SE, Estes JD, Zhu RT,
Tharp GK, Boritz E, Levin D, Wijeyesinghe S, Makamdop KN, del Prete
GQ, et al: Type I interferon responses in rhesus macaques prevent
SIV infection and slow disease progression. Nature. 511:601–605.
2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hardy GA, Sieg S, Rodriguez B, Anthony D,
Asaad R, Jiang W, Mudd J, Schacker T, Funderburg NT, Pilch-Cooper
HA, et al: Interferon-α is the primary plasma type-I IFN in HIV-1
infection and correlates with immune activation and disease
markers. PLoS One. 8(e56527)2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Fraietta JA, Mueller YM, Yang G, Boesteanu
AC, Gracias DT, Do DH, Hope JL, Kathuria N, McGettigan SE, Lewis
MG, et al: Type I interferon upregulates Bak and contributes to T
cell loss during human immunodeficiency virus (HIV) infection. PLoS
Pathog. 9(e1003658)2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Cheng L, Ma J, Li J, Li D, Li G, Li F,
Zhang Q, Yu H, Yasui F, Ye C, et al: Blocking type I interferon
signaling enhances T cell recovery and reduces HIV-1 reservoirs. J
Clin Invest. 127:269–279. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
D'Offizi G, Gioia C, Corpolongo A, Martini
F, Paganelli R, Volpi I, Sacchi A, Tozzi V, Narciso P and Poccia F:
An IL-15 dependent CD8 T cell response to selected HIV epitopes is
related to viral control in early-treated HIV-infected subjects.
Int. J Immunopathol Pharmacol. 20:473–485. 2007.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Han W, Ni Q, Liu K, Yao Y, Zhao D, Liu X
and Chen Y: Decreased CD122 on CD56dim NK associated with its
impairment in asymptomatic chronic HBV carriers with high levels of
HBV DNA, HBsAg and HBeAg. Life Sci. 195:53–60. 2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Garrido C, Abad-Fernandez M, Tuyishime M,
Pollara JJ, Ferrari G, Soriano-Sarabia N and Margolis DM:
Interleukin-15-stimulated natural killer cells clear HIV-1-infected
cells following latency reversal ex vivo. J Virol.
92(e00235)2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Jones RB, Mueller S, O'Connor R, Rimpel K,
Sloan DD, Karel D, Wong HC, Jeng EK, Thomas AS, Whitney JB, et al:
A subset of latency-reversing agents expose HIV-infected resting
CD4+ T-cells to recognition by cytotoxic T-lymphocytes.
PLoS Pathog. 12(e1005545)2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
McBrien JB, Mavigner M, Franchitti L,
Smith SA, White E, Tharp GK, Walum H, Busman-Sahay K,
Aguilera-Sandoval CR, Thayer WO, et al: Robust and persistent
reactivation of SIV and HIV by N-803 and depletion of
CD8+ cells. Nature. 578:154–159. 2020.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ellis-Connell AL, Balgeman AJ, Zarbock KR,
Barry G, Weiler A, Egan JO, Jeng EK, Friedrich T, Miller JS, Haase
AT, et al: ALT-803 transiently reduces simian immunodeficiency
virus replication in the absence of antiretroviral treatment. J
Virol. 92:e01748–17. 2018.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Walter J, Ghosh MK, Kuhn L, Semrau K,
Sinkala M, Kankasa C, Thea DM and Aldrovandi GM: High
concentrations of interleukin 15 in breast milk are associated with
protection against postnatal HIV transmission. J Infect Dis.
200:1498–1502. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
52
|
Oh S, Berzofsky JA, Burke DS, Waldmann TA
and Perera LP: Coadministration of HIV vaccine vectors with
vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting
cellular immunity. Proc Natl Acad Sci USA. 100:3392–3397.
2003.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Mueller YM, Do DH, Altork SR, Artlett CM,
Gracely EJ, Katsetos CD, Legido A, Villinger F, Altman JD, Brown
CR, et al: IL-15 treatment during acute simian immunodeficiency
virus (SIV) infection increases viral set point and accelerates
disease progression despite the induction of stronger SIV-specific
CD8+ T cell responses. J Immunol. 180:350–360.
2008.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Hryniewicz A, Price DA, Moniuszko M,
Boasso A, Edghill-Spano Y, West SM, Venzon D, Vaccari M, Tsai WP,
Tryniszewska E, et al: Interleukin-15 but not interleukin-7
abrogates vaccine-induced decrease in virus level in simian
immunodeficiency virus mac251-infected macaques. J Immunol.
178:3492–3504. 2007.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Swaminathan S, Qiu J, Rupert AW, Hu Z,
Higgins J, Dewar RL, Stevens R, Rehm CA, Metcalf JA, Sherman BT, et
al: Interleukin-15 (IL-15) strongly correlates with increasing
HIV-1 viremia and markers of inflammation. PLoS One.
11(e0167091)2016.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Agostini C, Trentin L, Sancetta R, Facco
M, Tassinari C, Cerutti A, Bortolin M, Milani A, Siviero M,
Zambello R and Semenzato G: Interleukin-15 triggers activation and
growth of the CD8 T-cell pool in extravascular tissues of patients
with acquired immunodeficiency syndrome. Blood. 90:1115–1123.
1997.PubMed/NCBI
|
|
57
|
Yin W, Xu L, Sun R, Wei H and Tian Z:
Interleukin-15 suppresses hepatitis B virus replication via IFN-β
production in a C57BL/6 mouse model. Liver Int. 32:1306–1314.
2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Di Scala M, Otano I, Gil-Fariña I, Vanrell
L, Hommel M, Olagüe C, Vales A, Galarraga M, Guembe L, Ortiz de
Solorzano C, et al: Complementary effects of interleukin-15 and
alpha interferon induce immunity in hepatitis B virus transgenic
mice. J Virol. 90:8563–8574. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ichimura H and Levy JA: Polymerase
substrate depletion: A novel strategy for inhibiting the
replication of the human immunodeficiency virus. Virology.
211:554–560. 1995.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Margolis D, Heredia A, Gaywee J, Oldach D,
Drusano G and Redfield R: Abacavir and mycophenolic acid, an
inhibitor of inosine monophosphate dehydrogenase, have profound and
synergistic anti-HIV activity. J Acquir Immune Defic Syndr.
21:362–370. 1999.PubMed/NCBI
|
|
61
|
Cohn RG, Mirkovich A, Dunlap B, Burton P,
Chiu SH, Eugui E and Caulfield JP: Mycophenolic acid increases
apoptosis, lysosomes and lipid droplets in human lymphoid and
monocytic cell lines. Transplantation. 68:411–418. 1999.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Allison AC and Eugui EM: Mechanisms of
action of mycophenolate mofetil in preventing acute and chronic
allograft rejection. Transplantation. 80 (Suppl 2):S181–S190.
2005.PubMed/NCBI View Article : Google Scholar
|
|
63
|
García F, Plana M, Arnedo M, Brunet M,
Castro P, Gil C, Vidal E, Millán O, López A, Martorell J, et al:
Effect of mycophenolate mofetil on immune response and plasma and
lymphatic tissue viral load during and after interruption of highly
active antiretroviral therapy for patients with chronic HIV
infection: A randomized pilot study. J Acquir Immune Defic Syndr.
36:823–830. 2004.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Ui H, Asanuma S, Chiba H, Takahashi A,
Yamaguchi Y, Masuma R, Omura S and Tanaka H: Mycophenolic acid
inhibits syncytium formation accompanied by reduction of gp120
expression. J Antibiot (Tokyo). 58:514–518. 2005.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Margolis DM, Mukherjee AL, Fletcher CV,
Hogg E, Ogata-Arakaki D, Petersen T, Rusin D, Martinez A and
Mellors JW: The use of beta-D-2,6-diaminopurine dioxolane with or
without mycophenolate mofetil in drug-resistant HIV infection.
AIDS. 21:2025–2032. 2007.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Kaur R, Klichko V and Margolis D: Ex vivo
modeling of the effects of mycophenolic acid on HIV infection:
considerations for antiviral therapy. AIDS Res. Hum Retroviruses.
21:116–124. 2005.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Borroto-Esoda K, Myrick F, Feng J, Jeffrey
J and Furman P: In vitro combination of amdoxovir and the inosine
monophosphate dehydrogenase inhibitors mycophenolic acid and
ribavirin demonstrates potent activity against wild-type and
drug-resistant variants of human immunodeficiency virus type 1.
Antimicrob Agents Chemother. 48:4387–4394. 2004.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Coull JJ, Turner D, Melby T, Betts MR,
Lanier R and Margolis DM: A pilot study of the use of mycophenolate
mofetil as a component of therapy for multidrug-resistant HIV-1
infection. J Acquir Immune Defic Syndr. 26:423–434. 2001.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chapuis AG, Paolo Rizzardi G, D'Agostino
C, Attinger A, Knabenhans C, Fleury S, Acha-Orbea H and Pantaleo G:
Effects of mycophenolic acid on human immunodeficiency virus
infection in vitro and in vivo. Nat Med. 6:762–768. 2000.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Jurriaans S, Sankatsing SU, Prins JM,
Schuitemaker H, Lange J, Van Der Kuyl AC and Cornelissen M: HIV-1
seroreversion in an HIV-1-seropositive patient treated during acute
infection with highly active antiretroviral therapy and
mycophenolate mofetil. AIDS. 18:1607–1608. 2004.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Heredia A, Margolis D, Oldach D, Hazen R,
Le N and Redfield R: Abacavir in combination with the inosine
monophosphate dehydrogenase (IMPDH)-inhibitor mycophenolic acid is
active against multidrug-resistant HIV-1. J Acquir Immune Defic
Syndr. 22:406–407. 1999.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Hossain MM, Coull JJ, Drusano GL and
Margolis DM: Dose proportional inhibition of HIV-1 replication by
mycophenolic acid and synergistic inhibition in combination with
abacavir, didanosine, and tenofovir. Antiviral Res. 55:41–52.
2002.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Margolis DM, Kewn S, Coull JJ, Ylisastigui
L, Turner D, Wise H, Hossain MM, Lanier ER, Shaw LM and Back D: The
addition of mycophenolate mofetil to antiretroviral therapy
including abacavir is associated with depletion of intracellular
deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J
Acquir Immune Defic Syndr. 31:45–49. 2002.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Gong ZJ, De Meyer S, Clarysse C, Verslype
C, Neyts J, De Clercq E and Yap SH: Mycophenolic acid, an
immunosuppressive agent, inhibits HBV replication in vitro. J Viral
Hepat. 6:229–236. 1999.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Lau SC, Tse KC, Lai WM and Chiu MC: Use of
prophylactic lamivudine and mycophenolate mofetil in renal
transplant recipients with chronic hepatitis B infection. Pediatr
Transplant. 7:376–380. 2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Wang J, Wang B, Huang S, Song Z, Wu J,
Zhang E, Zhu Z, Zhu B, Yin Y, Lin Y, et al: Immunosuppressive drugs
modulate the replication of hepatitis B virus (HBV) in a
hydrodynamic injection mouse model. PLoS One.
9(e85832)2014.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wu J, Xie HY, Jiang GP, Xu X and Zheng SS:
The effect of mycophenolate acid on hepatitis B virus replication
in vitro. Hepatobiliary Pancreat Dis Int. 2:410–413.
2003.PubMed/NCBI
|
|
78
|
Ying C, De Clercq E and Neyts J: Ribavirin
and mycophenolic acid potentiate the activity of guanine- and
diaminopurine-based nucleoside analogues against hepatitis B virus.
Antiviral Res. 48:117–124. 2000.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Ying C, Colonno R, De Clercq E and Neyts
J: Ribavirin and mycophenolic acid markedly potentiate the
anti-hepatitis B virus activity of entecavir. Antiviral Res.
73:192–196. 2007.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Ben-Ari Z, Zemel R and Tur-Kaspa R: The
addition of mycophenolate mofetil for suppressing hepatitis B virus
replication in liver recipients who developed lamivudine
resistance-no beneficial effect. Transplantation. 71:154–156.
2001.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Sayarlioglu H, Erkoc R, Dogan E,
Sayarlioglu M and Topal C: Mycophenolate mofetil use in hepatitis B
associated-membranous and membranoproliferative glomerulonephritis
induces viral replication. Ann Pharmacother. 39(573)2005.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Dong S, Geng L, Shen MD and Zheng SS:
Natural killer cell activating receptor NKG2D is involved in the
immunosuppressive effects of mycophenolate mofetil and hepatitis B
virus infection. Am J Med Sci. 349:432–437. 2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Pan Q, van Vuuren AJ, van der Laan LJ,
Peppelenbosch MP and Janssen HL: Antiviral or proviral action of
mycophenolic acid in hepatitis B infection? Hepatology.
56:1586–1587. 2012.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Hoppe-Seyler K, Sauer P, Lohrey C and
Hoppe-Seyler F: The inhibitors of nucleotide biosynthesis
leflunomide, FK778, and mycophenolic acid activate hepatitis B
virus replication in vitro. Hepatology. 56:9–16. 2012.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Zwerner J and Fiorentino D: Mycophenolate
mofetil. Dermatol Ther. 20:229–238. 2007.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Wang XF, Lei Y, Chen M, Chen CB, Ren H and
Shi TD: PD-1/PDL1 and CD28/CD80 pathways modulate natural killer T
cell function to inhibit hepatitis B virus replication. J Viral
Hepat. 20 (Suppl 1):S27–S39. 2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Féray C and López-Labrador FX: Is PD-1
blockade a potential therapy for HBV? JHEP Rep. 1:142–144.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Banga R, Procopio FA, Noto A, Pollakis G,
Cavassini M, Ohmiti K, Corpataux JM, de Leval L, Pantaleo G and
Perreau M: PD-1(+) and follicular helper T cells are responsible
for persistent HIV-1 transcription in treated aviremic individuals.
Nat Med. 22:754–761. 2016.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Evans VA, van der Sluis RM, Solomon A,
Dantanarayana A, McNeil C, Garsia R, Palmer S, Fromentin R, Chomont
N, Sékaly RP, et al: Programmed cell death-1 contributes to the
establishment and maintenance of HIV-1 latency. AIDS. 32:1491–1497.
2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Thibult ML, Mamessier E, Gertner-Dardenne
J, Pastor S, Just-Landi S, Xerri L, Chetaille B and Olive D: PD-1
is a novel regulator of human B-cell activation. Int Immunol.
25:129–137. 2013.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Cubas RA, Mudd JC, Savoye AL, Perreau M,
van Grevenynghe J, Metcalf T, Connick E, Meditz A, Freeman GJ,
Abesada-Terk G Jr, et al: Inadequate T follicular cell help impairs
B cell immunity during HIV infection. Nat Med. 19:494–499.
2013.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Velu V, Titanji K, Zhu B, Husain S,
Pladevega A, Lai L, Vanderford TH, Chennareddi L, Silvestri G,
Freeman GJ, et al: Enhancing SIV-specific immunity in vivo by PD-1
blockade. Nature. 458:206–210. 2009.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Dyavar Shetty R, Velu V, Titanji K,
Bosinger SE, Freeman GJ, Silvestri G and Amara RR: PD-1 blockade
during chronic SIV infection reduces hyperimmune activation and
microbial translocation in rhesus macaques. J Clin Invest.
122:1712–1716. 2012.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Gane E, Verdon DJ, Brooks AE, Gaggar A,
Nguyen AH, Subramanian GM, Schwabe C and Dunbar PR: Anti-PD-1
blockade with nivolumab with and without therapeutic vaccination
for virally suppressed chronic hepatitis B: A pilot study. J
Hepatol. 71:900–907. 2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Liu J, Zhang E, Ma Z, Wu W, Kosinska A,
Zhang X, Möller I, Seiz P, Glebe D, Wang B, et al: Enhancing
virus-specific immunity in vivo by combining therapeutic
vaccination and PD-L1 blockade in chronic hepadnaviral infection.
PLoS Pathog. 10(e1003856)2014.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Fromentin R, DaFonseca S, Costiniuk CT,
El-Far M, Procopio FA, Hecht FM, Hoh R, Deeks SG, Hazuda DJ, Lewin
SR, et al: PD-1 blockade potentiates HIV latency reversal ex vivo
in CD4+ T cells from ART-suppressed individuals. Nat
Commun. 10(814)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Knolle PA and Thimme R: Hepatic immune
regulation and its involvement in viral hepatitis infection.
Gastroenterology. 146:1193–1207. 2014.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Lake AC: Hepatitis B reactivation in a
long-term nonprogressor due to nivolumab therapy. AIDS.
31:2115–2118. 2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Burova E, Hermann A, Waite J, Potocky T,
Lai V, Hong S, Liu M, Allbritton O, Woodruff A, Wu Q, et al:
Characterization of the anti-PD-1 antibody REGN2810 and its
antitumor activity in human PD-1 knock-in mice. Mol Cancer Ther.
16:861–870. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
Safety and Immunotherapeutic Activity of an Anti-PD-1 Antibody
(Cemiplimab) in Participants With HIV-1 on Suppressive cART: A
Phase I/II, Double-blind, Placebo-controlled, Ascending Multiple
Dose Study. urihttps://clinicaltrials.gov/ct2/show/NCT03787095?term=NCT03787095&draw=1&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03787095?term=NCT03787095&draw=1&rank=1.
Accessed, September 9, 2020.
|
|
101
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
Safety and Immunotherapeutic Activity of Cemiplimab in Participants
With HBV on Suppressive Antiviral Therapy: A Phase I/II Ascending
Multiple Dose Study. urihttps://clinicaltrials.gov/ct2/show/NCT04046107?term=NCT04046107&draw=1&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT04046107?term=NCT04046107&draw=1&rank=1.
Accessed, April 13, 2020.
|
|
102
|
Uldrick TS, Gonçalves PH, Abdul-Hay M,
Claeys AJ, Emu B, Ernstoff MS, Fling SP, Fong L, Kaiser JC, Lacroix
AM, et al: Assessment of the safety of pembrolizumab in patients
with HIV and advanced cancer-a phase 1 study. JAMA Oncol.
5:1332–1339. 2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Wen X, Wang Y, Ding Y, Li D, Li J, Guo Y,
Peng R, Zhao J, Zhang X and Zhang XS: Safety of immune checkpoint
inhibitors in Chinese patients with melanoma. Melanoma Res.
26:284–289. 2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Pandey A, Ezemenari S, Liaukovich M,
Richard I and Boris A: A rare case of pembrolizumab-induced
reactivation of hepatitis B. Case Rep Oncol Med.
2018(5985131)2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
PD-1 Inhibition to Determine CNS Reservoir of HIV-Infection.
urihttps://clinicaltrials.gov/ct2/show/NCT03239899?term=NCT03239899&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03239899?term=NCT03239899&draw=2&rank=1.
Accessed September 18, 2020.
|
|
106
|
Kothapalli A and Khattak MA: Safety and
efficacy of anti-PD-1 therapy for metastatic melanoma and
non-small-cell lung cancer in patients with viral hepatitis: A case
series. Melanoma Res. 28:155–158. 2018.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Zhang X, Zhou Y, Chen C, Fang W, Cai X,
Zhang X, Zhao M, Zhang B, Jiang W, Lin Z, et al: Hepatitis B virus
reactivation in cancer patients with positive Hepatitis B surface
antigen undergoing PD-1 inhibition. J Immunother Cancer.
7(322)2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Velu V, Shetty RD, Larsson M and Shankar
EM: Role of PD-1 co-inhibitory pathway in HIV infection and
potential therapeutic options. Retrovirology. 12(14)2015.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Wykes MN and Lewin SR: Immune checkpoint
blockade in infectious diseases. Nat Rev Immunol. 18:91–104.
2018.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Goshu BA, Chen H, Moussa M, Cheng J and
Catalfamo M: Combination rhIL-15 and anti-PD-L1 (Avelumab) enhances
HIVGag-specific CD8 T cell function. J Infect Dis. 222:1540–1549.
2020.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Balzarini J, Holy A, Jindrich J, Naesens
L, Snoeck R, Schols D and De Clercq E: Differential antiherpesvirus
and antiretrovirus effects of the (S) and (R) enantiomers of
acyclic nucleoside phosphonates: Potent and selective in vitro and
in vivo antiretrovirus activities of
(R)-9-(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob
Agents Chemother. 37:332–338. 1993.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Ray AS, Fordyce MW and Hitchcock MJ:
Tenofovir alafenamide: A novel prodrug of tenofovir for the
treatment of human immunodeficiency virus. Antiviral Res.
125:63–70. 2016.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Cory TJ, Midde NM, Rao P and Kumar S:
Investigational reverse transcriptase inhibitors for the treatment
of HIV. Expert Opin Investig Drugs. 24:1219–1228. 2015.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Hostetler KY: Alkoxyalkyl prodrugs of
acyclic nucleoside phosphonates enhance oral antiviral activity and
reduce toxicity: Current state of the art. Antiviral Res.
82:A84–A98. 2009.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Lanier ER, Ptak RG, Lampert BM, Keilholz
L, Hartman T, Buckheit RW Jr, Mankowski MK, Osterling MC, Almond MR
and Painter GR: Development of hexadecyloxypropyl tenofovir
(CMX157) for treatment of infection caused by wild-type and
nucleoside/nucleotide-resistant HIV. Antimicrob Agents Chemother.
54:2901–2909. 2010.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Painter GR, Almond MR, Trost LC, Lampert
BM, Neyts J, De Clercq E, Korba BE, Aldern KA, Beadle JR and
Hostetler KY: Evaluation of
hexadecyloxypropyl-9-R-[2-(Phosphonomethoxy)propyl]-adenine,
CMX157, as a potential treatment for human immunodeficiency virus
type 1 and hepatitis B virus infections. Antimicrob Agents
Chemother. 51:3505–3509. 2007.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Shire NJ: Cure strategies for hepatitis B
virus: The promise of immunotherapy. Clin Pharmacol Drug Dev.
6:186–194. 2017.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Tajiri K and Shimizu Y: New horizon for
radical cure of chronic hepatitis B virus infection. World J
Hepatol. 8:863–873. 2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
A Randomized, Double-blind, Placebo-controlled, Single-dose,
Dose-escalation Study of the Safety, Tolerability and
Pharmacokinetics of CMX157 in Healthy Adult Volunteers. Available
from: urihttps://clinicaltrials.gov/ct2/show/NCT01080820?term=NCT01080820&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT01080820?term=NCT01080820&draw=2&rank=1.
Accessed July 4, 2011.
|
|
120
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov
[updated September 13, 2017]. A Phase 2, Randomized, Open-label,
Ascending, Sequential Dose Group, Multiple Dose Study of the
Safety, Tolerability, Pharmacokinetics and Antiviral Activity of
CMX157 in HBV-infected Subjects. urihttps://clinicaltrials.gov/ct2/show/NCT02710604?term=NCT02710604&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT02710604?term=NCT02710604&draw=2&rank=1.
Accessed September 13, 2017.
|
|
121
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
A Phase 1, Randomized, Partial-Blind, Placebo-controlled,
Sequential Dose Group, Ascending, Multiple Dose Study of the
Safety, Tolerability and Pharmacokinetics, With Food Effect of
CMX157 in Healthy Subjects. Available from: urihttps://clinicaltrials.gov/ct2/show/NCT02585440?term=NCT02585440&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT02585440?term=NCT02585440&draw=2&rank=1.
Accessed February 2, 2017.
|
|
122
|
Allam C: Wraltechwire: ContraVir
terminates licensing agreement for Chimerix drug. urihttps://www.wraltechwire.com/2019/04/05/contravir-terminates-licensing-agreement-for-chimerix-drug/simplehttps://www.wraltechwire.com/2019/04/05/contravir-terminates-licensing-agreement-for-chimerix-drug/.
Accessed April 5, 2019.
|
|
123
|
Gallay P, Chatterji U, Bobardt MD, Ure D,
Trepanier D, Foster R and Ordonez C: Novel cyclophilin inhibitor
CPI-431-32 shows broad spectrum antiviral action by blocking
replication of HCV, HBV, and HIV-1. J Hepatol. 62 (Suppl
2)(S677)2015.
|
|
124
|
Trepanier DJ, Ure DR and Foster RT: In
vitro phase I metabolism of CRV431, a novel oral drug candidate for
chronic hepatitis B. Pharmaceutics. 9(51)2017.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Hansson MJ, Moss SJ, Bobardt M, Chatterji
U, Coates N, Garcia-Rivera JA, Elmér E, Kendrew S, Leyssen P, Neyts
J, et al: Bioengineering and semisynthesis of an optimized
cyclophilin inhibitor for treatment of chronic viral infection.
Chem Biol. 22:285–292. 2015.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Phillips S, Chokshi S, Chatterji U, Riva
A, Bobardt M, Williams R, Gallay P and Naoumov NV: Alisporivir
inhibition of hepatocyte cyclophilins reduces HBV replication and
hepatitis B surface antigen production. Gastroenterology.
148:403–414.e7. 2015.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Gallay PA, Bobardt MD, Chatterji U,
Trepanier DJ, Ure D, Ordonez C and Foster R: The novel cyclophilin
inhibitor CPI-431-32 concurrently blocks HCV and HIV-1 infections
via a similar mechanism of action. PLoS One.
10(e0134707)2015.PubMed/NCBI View Article : Google Scholar
|
|
128
|
BIOSPACE: ContraVir's Cyclophilin
Inhibitor CRV431 Potently Inhibits Essential Pathway In Hepatitis
B. urihttps://www.biospace.com/article/releases/contravir-s-cyclophilin-inhibitor-crv431-potently-inhibits-essential-pathway-in-hepatitis-b-/simplehttps://www.biospace.com/article/releases/contravir-s-cyclophilin-inhibitor-crv431-potently-inhibits-essential-pathway-in-hepatitis-b-/.
Accessed December 08, 2016.
|
|
129
|
Hardy A: BIOTUESDAYS: Hepion
Pharmaceuticals' CEO Robert Foster discusses CRV431's potential in
NASH. urihttps://biotuesdays.com/2019/07/30/hepion-pharmaceuticals-ceo-robert-foster-discusses-crv431s-potential-in-nash/simplehttps://biotuesdays.com/2019/07/30/hepion-pharmaceuticals-ceo-robert-foster-discusses-crv431s-potential-in-nash/.
Accessed July 30, 2019.
|
|
130
|
Gallay P, Ure D, Bobardt M, Chatterji U,
Ou J, Trepanier D and Foster R: The cyclophilin inhibitor CRV431
inhibits liver HBV DNA and HBsAg in transgenic mice. PLoS One.
14(e0217433)2019.PubMed/NCBI View Article : Google Scholar
|
|
131
|
urihttp://Clinicaltrials.govsimpleClinicaltrials.gov:
A Randomized, Partially-blinded, Placebo-controlled, Ascending
Sequential Dose Groups, Single Dose Study of the Safety,
Tolerability and Pharmacokinetics of CRV431, Alone and In
Combination With Tenofovir Disoproxil Fumarate in Healthy Subjects,
With a Pilot Study of Multiple Ascending Sequential Doses in
Healthy Volunteer Subjects. urihttps://clinicaltrials.gov/ct2/show/NCT03596697?term=CRV431&cond=HBV&draw=2&rank=1simplehttps://clinicaltrials.gov/ct2/show/NCT03596697?term=CRV431&cond=HBV&draw=2&rank=1.
Accessed June 30, 2020.
|
|
132
|
Kuo J, Bobardt M, Chatterji U, Mayo PR,
Trepanier DJ, Foster RT, Gallay P and Ure DR: A pan-cyclophilin
inhibitor, CRV431, decreases fibrosis and tumor development in
chronic liver disease models. J Pharmacol Exp Ther. 371:231–241.
2019.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Wai CT, Chu CJ, Hussain M and Lok AS: HBV
genotype B is associated with better response to interferon therapy
in HBeAg(+) chronic hepatitis than genotype C. Hepatology.
36:1425–1430. 2002.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Papatheodoridis G, Dimou E and
Papadimitropoulos V: Nucleoside analogues for chronic hepatitis B:
Antiviral efficacy and viral resistance. Am J Gastroenterol.
97:1618–1628. 2002.PubMed/NCBI View Article : Google Scholar
|