|
1
|
Kim VN, Han J and Siomi MC: Biogenesis of
small RNAs in animals. Nat Rev Mol Cell Biol. 10:126–139.
2009.PubMed/NCBI View
Article : Google Scholar
|
|
2
|
Hammond SM: An overview of microRNAs. Adv
Drug Deliv Rev. 87:3–14. 2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase
III Drosha initiates microRNA processing. Nature. 425:415–419.
2003.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Morlando M, Ballarino M, Gromak N, Pagano
F, Bozzoni I and Proudfoot NJ: Primary microRNA transcripts are
processed co-transcriptionally. Nat Struct Mol Biol. 15:902–909.
2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Yang JS, Phillips MD, Betel D, Mu P,
Ventura A, Siepel AC, Chen KC and Lai EC: Widespread regulatory
activity of vertebrate microRNA* species. RNA.
17:312–326. 2011.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Fabian MR and Sonenberg N: The mechanics
of miRNA-mediated gene silencing: A look under the hood of miRISC.
Nat Struct Mol Biol. 19:586–593. 2012.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Pfaff J and Meister G: Argonaute and GW182
proteins: An effective alliance in gene silencing. Biochem Soc
Trans. 41:855–860. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Selbach M, Schwanhausser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Yates LA, Norbury CJ and Gilbert RJ: The
long and short of microRNA. Cell. 153:516–519. 2013.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Greenhill C: Adipose tissue: Exosomal
microRNAs-novel adipokines. Nat Rev Endocrinol.
13(188)2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Guay C and Regazzi R: Circulating
microRNAs as novel biomarkers for diabetes mellitus. Nat Rev
Endocrinol. 9:513–521. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Lian JB, Stein GS, van Wijnen AJ, Stein
JL, Hassan MQ, Gaur T and Zhang Y: MicroRNA control of bone
formation and homeostasis. Nat Rev Endocrinol. 8:212–227.
2012.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Cheng G: Circulating miRNAs: Roles in
cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev.
81:75–93. 2015.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Song CL, Liu B, Wang JP, Zhang BL, Zhang
JC, Zhao LY, Shi YF, Li YX, Wang G, Diao HY, et al: Anti-apoptotic
effect of microRNA-30b in early phase of rat myocardial
ischemia-reperfusion injury model. J Cell Biochem. 116:2610–2619.
2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zhu ED, Li N, Li BS, Li W, Zhang WJ, Mao
XH, Guo G, Zou QM and Xiao B: miR-30b, down-regulated in gastric
cancer, promotes apoptosis and suppresses tumor growth by targeting
plasminogen activator inhibitor-1. PLoS One.
9(e106049)2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Mazzeo A, Beltramo E, Lopatina T, Gai C,
Trento M and Porta M: Molecular and functional characterization of
circulating extracellular vesicles from diabetic patients with and
without retinopathy and healthy subjects. Exp Eye Res. 176:69–77.
2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Gu D, Zou X, Ju G, Zhang G, Bao E and Zhu
Y: Mesenchymal stromal cells derived extracellular vesicles
ameliorate acute renal ischemia reperfusion injury by inhibition of
mitochondrial fission through miR-30. Stem Cells Int.
2016(2093940)2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Serafin A, Foco L, Zanigni S, Blankenburg
H, Picard A, Zanon A, Giannini G, Pichler I, Facheris MF, Cortelli
P, et al: Overexpression of blood microRNAs 103a, 30b, and 29a in
L-dopa-treated patients with PD. Neurology. 84:645–653.
2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zheng Y, Wang Z, Tu Y, Shen H, Dai Z, Lin
J and Zhou Z: miR-101a and miR-30b contribute to inflammatory
cytokine-mediated β-cell dysfunction. Lab Invest. 95:1387–1397.
2015.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wa Q, He P, Huang S, Zuo J, Li X, Zhu J,
Hong S, Lv G, Cai D, Xu D, et al: miR-30b regulates chondrogenic
differentiation of mouse embryo-derived stem cells by targeting
SOX9. Exp Ther Med. 14:6131–6137. 2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Han F, Huo Y, Huang CJ, Chen CL and Ye J:
MicroRNA-30b promotes axon outgrowth of retinal ganglion cells by
inhibiting Semaphorin3A expression. Brain Res. 1611:65–73.
2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Howe GA, Kazda K and Addison CL:
MicroRNA-30b controls endothelial cell capillary morphogenesis
through regulation of transforming growth factor beta 2. PLoS One.
12(e0185619)2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Besteiro S, Brooks CF, Striepen B and
Dubremetz JF: Autophagy protein Atg3 is essential for maintaining
mitochonrial integrity and for normal intracellular development of
Toxoplasma gondii tachyzoites. PLoS Pathog.
7(e1002416)2011.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Parzych KR and Klionsky DJ: An overview of
autophagy: Morphology, mechanism, and regulation. Antioxid Redox
Signal. 20:460–473. 2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Li SP, He JD, Wang Z, Yu Y, Fu SY, Zhang
HM, Zhang JJ and Shen ZY: miR-30b inhibits autophagy to alleviate
hepatic ischemia-reperfusion injury via decreasing the Atg12-Atg5
conjugate. World J Gastroenterol. 22:4501–4514. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wang J, Sun YT, Xu TH, Sun W, Tian BY,
Sheng ZT, Sun L, Liu LL, Ma JF, Wang LN and Yao L: MicroRNA-30b
regulates high phosphorus level-induced autophagy in vascular
smooth muscle cells by targeting BECN1. Cell Physiol Biochem.
42:530–536. 2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Chen Z, Jin T and Lu Y: AntimiR-30b
Inhibits TNF-α mediated apoptosis and attenuated cartilage
degradation through enhancing autophagy. Cell Physiol Biochem.
40:883–894. 2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Naqvi AR, Fordham JB and Nares S: MicroRNA
target Fc receptors to regulate Ab-dependent Ag uptake in primary
macrophages and dendritic cells. Innate Immun. 22:510–521.
2016.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Naqvi AR, Fordham JB and Nares S: miR-24,
miR-30b, and miR-142-3p regulate phagocytosis in myeloid
inflammatory cells. J Immunol. 194:1916–1927. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fordham JB, Naqvi AR and Nares S:
Regulation of miR-24, miR-30b, and miR-142-3p during macrophage and
dendritic cell differentiation potentiates innate immunity. J
Leukoc Biol. 98:195–207. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Sun Y, Guo D, Liu B, Yin X, Wei H, Tang K
and Bi H: Regulatory role of rno-miR-30b-5p in IL-10 and Toll-like
receptor 4 expressions of T lymphocytes in experimental autoimmune
uveitis in vitro. Mediators Inflamm. 2018(2574067)2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Duan ZQ, Shi JD, Wu MN, Hu NZ and Hu YZ:
Influence of miR-30b regulating humoral immune response by genetic
difference. Immunol Res. 64:181–190. 2016.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Liu H, Zhang N and Tian D: miR-30b is
involved in methylglyoxal-induced epithelial-mesenchymal transition
of peritoneal mesothelial cells in rats. Cell Mol Biol Lett.
19:315–329. 2014.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Xiong Y, Wang Y, Wang L, Huang Y, Xu Y, Xu
L, Guo Y, Lu J, Li X, Zhu M and Qian H: MicroRNA-30b targets Snail
to impede epithelial-mesenchymal transition in pancreatic cancer
stem cells. J Cancer. 9:2147–2159. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Sun X, Zhao S, Li H, Chang H, Huang Z,
Ding Z, Dong L, Chen J, Zang Y and Zhang J: MicroRNA-30b suppresses
epithelial-mesenchymal transition and metastasis of hepatoma cells.
J Cell Physiol. 232:625–634. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Van Cutsem E, Sagaert X, Topal B,
Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664.
2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2019. CA Cancer J Clin. 69:7–34. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Qiao F, Zhang K, Gong P, Wang L, Hu J, Lu
S and Fan H: Decreased miR-30b-5p expression by DNMT1 methylation
regulation involved in gastric cancer metastasis. Mol Biol Rep.
41:5693–5700. 2014.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Tian SB, Yu JC, Liu YQ, Kang WM, Ma ZQ, Ye
X and Yan C: miR-30b suppresses tumor migration and invasion by
targeting EIF5A2 in gastric cancer. World J Gastroenterol.
21:9337–9347. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Xi Z, Si J and Nan J: LncRNA MALAT1
potentiates autophagy-associated cisplatin resistance by regulating
the microRNA30b/autophagy-related gene 5 axis in gastric cancer.
Int J Oncol. 54:239–248. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Huang YH, Lin KH, Chen HC, Chang ML, Hsu
CW, Lai MW, Chen TC, Lee WC, Tseng YH and Yeh CT: Identification of
postoperative prognostic microRNA predictors in hepatocellular
carcinoma. PLoS One. 7(e37188)2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Qin X, Chen J, Wu L and Liu Z: miR-30b-5p
acts as a tumor suppressor, repressing cell proliferation and cell
cycle in human hepatocellular carcinoma. Biomed Pharmacother.
89:742–750. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hur K, Toiyama Y, Boland CR and Goel A:
Identification of a novel metastasis-specific microRNA signature in
human colorectal cancer. Gastroenterology. 142:S525–S526. 2012.
|
|
44
|
Perez-Villamil B, Paz-Cabezas M,
Calvo-López T, Ogando-Castro J, Sastre J, Mañes S and Díaz-Rubio E:
microRNA(miR) subtypes correlates with colorectal cancer(CRC)
molecular subtypes: Validation of miR-30b interaction with genes
up-regulated in the high-stroma subtype. Ann Oncol. 28 (Suppl
5):v194–v195. 2017.
|
|
45
|
van den Braak RRC, Sieuwerts AM,
Lalmahomed ZS, Smid M, de Weerd V, van der Vlugt-Daane M, van Galen
A, Xiang S, Biermann K, Foekens JA, et al: Validation and pathway
analysis of a metastasis-specific microRNA signature in primary
colon cancer. Cancer Res. 77 (13 Suppl)(S2530)2017.
|
|
46
|
Coebergh van den Braak RRJ, Sieuwerts AM,
Lalmahomed ZS, Smid M, Wilting SM, Bril SI, Xiang S, van der
Vlugt-Daane M, de Weerd V, van Galen A, et al: Confirmation of a
metastasis-specific microRNA signature in primary colon cancer. Sci
Rep. 8(5242)2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Tryndyak V, Kindrat I, McDannell B, Beland
FA and Pogribny IP: A microRNA signature panel predicts
differential sensitivity of liver cancer cells to chemotherapeutic
drugs. Cancer Res. 78 (13 Suppl)(S5887)2018.
|
|
48
|
Zhuo LJ, Chen H, Wu MX, Gao MQ, Chen SP
and Huang AM: Morphology and microRNA expression profiles of
drug-resistant cells in hepatocellular carcinoma. Zhonghua Bing Li
Xue Za Zhi. 42:604–608. 2013.PubMed/NCBI(In Chinese).
|
|
49
|
Yeh CT and Huang YH: Extraneous delivery
of anti-miR-30b by polyethyleneimine or antagomir-based strategies
inhibits hepatoma growth in a xenograft model. J Gastroenterol
Hepatol (Australia). 31 (Suppl 3)(S419)2016.
|
|
50
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386.
2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Yilmaz U, Yilmaz N, Ergen A, Aksakal N and
Zeybek U: Expression levels of Micrornas related to autophaphy
pathway in tumor and adjacent normal tissues of colorectal cancer
patients. Acta Physiologica. 221(36)2017.
|
|
52
|
Yoon SM, Park SY, Bae JA, Ko YS, Kim HG
and Kim KK: A strategy to screen and subsequently identify
therapeutically valuable microRNAs that target a clinically
established KITENIN oncogene in colorectal cancer. Eur J Cancer. 50
(Suppl 5)(S189)2014.
|
|
53
|
Park SY, Kim H, Yoon S, Bae JA, Choi SY,
Jung YD and Kim KK: KITENIN-targeting microRNA-124 suppresses
colorectal cancer cell motility and tumorigenesis. Mol Ther.
22:1653–1664. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Liao WT, Ye YP, Zhang NJ, Li TT, Wang SY,
Cui YM, Qi L, Wu P, Jiao HL, Xie YJ, et al: MicroRNA-30b functions
as a tumour suppressor in human colorectal cancer by targeting
KRAS, PIK3CD and BCL2. J Pathol. 232:415–427. 2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Zhao H, Xu Z, Qin H, Gao Z and Gao L:
miR-30b regulates migration and invasion of human colorectal cancer
via SIX1. Biochem J. 460:117–125. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wu P, Ye Y, Ding Y and Liao W: The
function of miR-30b in colorectal cancer metastasis. Chin J Clin
Oncol. 41:679–683. 2014.
|
|
57
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Hu L, Ai J, Long H, Liu W, Wang X, Zuo Y,
Li Y, Wu Q and Deng Y: Integrative microRNA and gene profiling data
analysis reveals novel biomarkers and mechanisms for lung cancer.
Oncotarget. 7:8441–8454. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Zhong K, Chen K, Han L and Li B:
MicroRNA-30b/c inhibits non-small cell lung cancer cell
proliferation by targeting Rab18. BMC Cancer.
14(703)2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Chen S, Li P, Yang R, Cheng R, Zhang F,
Wang Y, Chen X, Sun Q, Zang W, Du Y, et al: microRNA-30b inhibits
cell invasion and migration through targeting collagen triple helix
repeat containing 1 in non-small cell lung cancer. Cancer Cell Int.
15(85)2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Park G, Son B, Kang J, Lee S, Jeon J, Kim
JH, Yi GR, Youn H, Moon C, Nam SY and Youn B: LDR-induced miR-30a
and miR-30b target the PAI-1 pathway to control adverse effects of
NSCLC radiotherapy. Mol Ther. 27:342–354. 2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Li C, Qin F, Hu F, Xu H, Sun G, Han G,
Wang T and Guo M: Characterization and selective incorporation of
small non-coding RNAs in non-small cell lung cancer extracellular
vesicles. Cell Biosci. 8(2)2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Hojbjerg JA, Ebert EBF, Clement MS,
Winther-Larsen A, Meldgaard P and Sorensen B: Circulating miR-30b
and miR-30c predict erlotinib response in EGFR-mutated non-small
cell lung cancer patients. Lung Cancer. 135:92–96. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Gu YF, Zhang H, Su D, Mo ML, Song P, Zhang
F and Zhang SC: miR-30b and miR-30c expression predicted response
to tyrosine kinase inhibitors as first line treatment in non-small
cell lung cancer. Chin Med J (Engl). 126:4435–4439. 2013.PubMed/NCBI
|
|
65
|
Qi Z, Zhang B, Zhang J, Hu Q, Xu F, Chen B
and Zhu C: MicroRNA-30b inhibits non-small cell lung cancer cell
growth by targeting the epidermal growth factor receptor.
Neoplasma. 65:192–200. 2018.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Garofalo M, Romano G, Di Leva G, Nuovo G,
Jeon YJ, Ngankeu A, Sun J, Lovat F, Alder H, Condorelli G, et al:
EGFR and MET receptor tyrosine kinase-altered microRNA expression
induces tumorigenesis and gefitinib resistance in lung cancers. Nat
Med. 18:74–82. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Chen JC, Su YH, Chiu CF, Chang YW, Yu YH,
Tseng CF, Chen HA and Su JL: Suppression of Dicer increases
sensitivity to gefitinib in human lung cancer cells. Ann Surg
Oncol. 21 (Suppl 4):S555–S563. 2014.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Donagh LM, Gray S, Cuffe S, Finn S,
Fitzgerald N, Young V, Ryan R, Nicholson S, Leonard N, O'Byrne K
and Barr M: MA02.02 A novel 5-miR signature shows promise as a
diagnostic tool and as a predictor of cisplatin response in NSCLC.
J Thorac Oncol. 12 (1 Suppl):S348–S349. 2017.
|
|
69
|
Antoni S, Ferlay J, Soerjomataram I, Znaor
A, Jemal A and Bray F: Bladder cancer incidence and mortality: A
global overview and recent trends. Eur Urol. 71:96–108.
2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Wszolek MF, Gould JJ, Kenney PA,
Rieger-Christ KM, Neto BS, LaVoie AK, Libertino JA, Lavoie K,
Libertino JA and Summerhayes IC: A microrna expression profile
involved in the invasive bladder tumor phenotype. J Urol.
181(347)2009.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Mahdavinezhad A, Mousavibahar SH,
Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidijam M:
Association between tissue miR-141, miR-200c and miR-30b and
bladder cancer: A matched case-control study. Urol J. 12:2010–2013.
2015.PubMed/NCBI
|
|
72
|
Mahdavinezhad A, Mousavi-Bahar SH,
Poorolajal J, Yadegarazari R, Jafari M, Shabab N and Saidijam M:
Evaluation of miR-141, miR-200c, miR-30b expression and
clinicopathological features of bladder cancer. Int J Mol Cell Med.
4:32–39. 2015.PubMed/NCBI
|
|
73
|
Wei S, Yao Y, Gupta PK and Bing Z: miRNA
expression in lower and upper urothelial carcinoma and the
potential clinical application. Lab Investigation.
93(A257)2013.
|
|
74
|
Brisuda A, Pospíšilová Š, Soukup V,
Hrbáček J, Čapoun O, Mareš J, Pazourková E, Korabečná M, Hořínek T
A, Hanuš T and Babjuk M: C221: The differences in expression of
microRNA in urine of bladder cancer patients and healthy controls.
Eur Urol Suppl. 13:e1385–e1385a. 2014.
|
|
75
|
Wszolek MF, Rieger-Christ KM, Kenney PA,
Gould JJ, Silva Neto B, LaVoie AK, Logvinenko T and Summerhayes IC:
A MicroRNA expression profile defining the invasive bladder tumor
phenotype. Urol Oncol. 29:794–801.e1. 2011.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Pospisilova S, Pazzourkova E, Horinek A,
Brisuda A, Svobodova I, Soukup V, Hrbacek J, Capoun O, Hanus T,
Mares J, et al: MicroRNAs in urine supernatant as potential
non-invasive markers for bladder cancer detection. Neoplasma.
63:799–808. 2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Torre LA, Islami F, Siegel RL, Ward EM and
Jemal A: Global cancer in women: Burden and trends. Cancer
Epidemiol Biomarkers Prev. 26:444–457. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hafez MM, Hassan ZK, Zekri AR, Gaber AA,
Al Rejaie SS, Sayed-Ahmed MM and Al Shabanah O: MicroRNAs and
metastasis-related gene expression in Egyptian breast cancer
patients. Asian Pac J Cancer Prev. 13:591–598. 2012.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhang K, Wang YW, Wang YY, Song Y, Zhu J,
Si PC and Ma R: Identification of microRNA biomarkers in the blood
of breast cancer patients based on microRNA profiling. Gene.
619:10–20. 2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Ribas G, Peña-Chilet M, Sanchis SO,
Martinez MT, Lluch A and Ayala G: Differential microRNA expression
in breast cancer patients aged 35 years or younger. Ann Oncol. 26
(Suppl 3)(iii12)2015.
|
|
81
|
Croset M, Pantano F, Kan CWS, Bonnelye E,
Descotes F, Alix-Panabieres C, Lecellier CH, Bachelier R, Allioli
N, Hong SS, et al: miRNA-30 family members inhibit breast cancer
invasion, osteomimicry, and bone destruction by directly targeting
multiple bone metastasis-associated genes. Cancer Res.
78:5259–5273. 2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Luo J, Zhao Q, Zhang W, Zhang Z, Gao J,
Zhang C, Li Y and Tian Y: A novel panel of microRNAs provides a
sensitive and specific tool for the diagnosis of breast cancer. Mol
Med Rep. 10:785–791. 2014.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Costa B, Amorim I, Gärtner F and Vale N:
Understanding breast cancer: From conventional therapies to
repurposed drugs. Eur J Pharm Sci. 151(105401)2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Espin E, Perez-Fidalgo JA, Tormo E, Pineda
B, Cejalvo JM, Sabbaghi MA, Alonso E, Rovira A, Rojo F, Albanell J,
et al: Effect of trastuzumab on the antiproliferative effects of
PI3K inhibitors in HER2+ breast cancer cells with de novo
resistance to trastuzumab. J Clin Oncol. 33 (Suppl
15)(e11592)2015.
|
|
85
|
Guo QS, Wang P, Huang Y, Guo YB, Zhu MY
and Xiong YC: Regulatory effect of miR-30b on migration and
invasion of pancreatic cancer stem cells. Zhonghua Yi Xue Za Zhi.
99:3019–3023. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
86
|
Li Q, Zhang X, Li N, Liu Q and Chen D:
miR-30b inhibits cancer cell growth, migration, and invasion by
targeting homeobox A1 in esophageal cancer. Biochem Biophys Res
Commun. 485:506–512. 2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Xu J, Lv H, Zhang B, Xu F, Zhu H, Chen B,
Zhu C and Shen J: miR-30b-5p acts as a tumor suppressor microRNA in
esophageal squamous cell carcinoma. J Thorac Dis. 11:3015–3029.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Liu W, Li H, Wang Y, Zhao X, Guo Y, Jin J
and Chi R: miR-30b-5p functions as a tumor suppressor in cell
proliferation, metastasis and epithelial-to-mesenchymal transition
by targeting G-protein subunit α-13 in renal cell carcinoma. Gene.
626:275–281. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Reddemann K, Gola D, Schillert A, Knief J,
Kuempers C, Ribbat-Idel J, Ber S, Schemme J, Bernard V, Gebauer N,
et al: Dysregulation of microRNAs in angioimmunoblastic T-cell
lymphoma. Anticancer Res. 35:2055–2061. 2015.PubMed/NCBI
|
|
90
|
Oduor CI, Kaymaz Y, Chelimo K, Otieno JA,
Ong'echa JM, Moormann AM and Bailey JA: Integrative microRNA and
mRNA deep-sequencing expression profiling in endemic Burkitt
lymphoma. BMC Cancer. 17(761)2017.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Xu G and Li JY: Differential expression of
PDGFRB and EGFR in microvascular proliferation in glioblastoma.
Tumour Biol. 37:10577–10586. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Li Z, Guo J, Ma Y, Zhang L and Lin Z:
Oncogenic role of MicroRNA-30b-5p in glioblastoma through targeting
proline-rich transmembrane protein 2. Oncol Res. 26:219–230.
2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Zhang D, Liu Z, Zheng N, Wu H, Zhang Z and
Xu J: miR-30b-5p modulates glioma cell proliferation by direct
targeting MTDH. Saudi J Biol Sci. 25:947–952. 2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Jian Y, Xu CH, Li YP, Tang B, Xie SH and
Zeng EM: Down-regulated microRNA-30b-3p inhibits proliferation,
invasion and migration of glioma cells via inactivation of the AKT
signaling pathway by up-regulating RECK. Biosci Rep.
39(BSR20182226)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Hu Y, Zhang X, Cui M, Su Z, Wang M, Liao Q
and Zhao Y: Verification of candidate microRNA markers for
parathyroid carcinoma. Endocrine. 60:246–254. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Li L and Wang B: Overexpression of
microRNA-30b improves adenovirus-mediated p53 cancer gene therapy
for laryngeal carcinoma. Int J Mol Sci. 15:19729–19740.
2014.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Wang N, Xiang X, Chen K, Liu P and Zhu A:
Targeting of NT5E by miR-30b and miR-340 attenuates proliferation,
invasion and migration of gallbladder carcinoma. Biochimie.
146:56–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Cui H, Miao S, Esworthy T, Zhou X, Lee SJ,
Liu C, Yu ZX, Fisher JP, Mohiuddin M and Zhang LG: 3D bioprinting
for cardiovascular regeneration and pharmacology. Adv Drug Deliv
Rev. 132:252–269. 2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Li T, Sun ZL and Xie QY: Protective effect
of microRNA-30b on hypoxia/reoxygenation-induced apoptosis in H9C2
cardiomyocytes. Gene. 561:268–275. 2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Li F, Chen Q, Song X, Zhou L and Zhang J:
miR-30b is involved in the homocysteine-induced apoptosis in human
coronary artery endothelial cells by regulating the expression of
caspase 3. Int J Mol Sci. 16:17682–17695. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Li B, Hu J and Chen X: MicroRNA-30b
protects myocardial cell function in patients with acute myocardial
ischemia by targeting plasminogen activator inhibitor-1. Exp Ther
Med. 15:5125–5132. 2018.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu
Y, Guo W and Zhu YZ: miRNA-30 family inhibition protects against
cardiac ischemic injury by regulating cystathionine-γ-lyase
expression. Antioxid Redox Signal. 22:224–240. 2015.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Wei C, Li L and Gupta S: NF-KB-mediated
miR-30b regulation in cardiomyocytes cell death by targeting Bcl-2.
Mol Cell Biochem. 387:135–141. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Ma F, Li T, Zhang H and Wu G: miR-30s
family inhibit the proliferation and apoptosis in human coronary
artery endothelial cells through targeting the 3'UTR region of
ITGA4 and PLCG1. J Cardiovasc Pharmacol. 68:327–333.
2016.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kim NH, Ahn J, Choi YM, Son HJ, Choi WH,
Cho HJ, Yu JH, Seo JA, Jang YJ, Jung CH and Ha TY: Differential
circulating and visceral fat microRNA expression of non-obese and
obese subjects. Clin Nutr. 39:910–916. 2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Kirby TJ, Walton RG, Finlin B, Zhu B, Unal
R, Rasouli N, Peterson CA and Kern PA: Integrative mRNA-microRNA
analyses reveal novel interactions related to insulin sensitivity
in human adipose tissue. Physiol Genomics. 48:145–153.
2016.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Stepien EL, Durak-Kozica M, Kaminska A,
Targosz-Korecka M, Libera M, Tylko G, Opalinska A, Kapusta M,
Solnica B, Georgescu A, et al: Circulating ectosomes: Determination
of angiogenic microRNAs in type 2 diabetes. Theranostics.
8:3874–3890. 2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Zang J, Maxwell AP, Simpson DA and McKay
GJ: Differential expression of urinary exosomal microRNAs miR-21-5p
and miR-30b-5p in individuals with diabetic kidney disease. Sci
Rep. 9(10900)2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Dai LL, Li SD, Ma YC, Tang JR, Lv JY,
Zhang YQ, Miu YL, Ma YQ, Li CM, Chu YY, et al: MicroRNA-30b
regulates insulin sensitivity by targeting SERCA2b in non-alcoholic
fatty liver disease. Liver Int. 39:1504–1513. 2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Latorre J, Moreno-Navarrete JM, Mercader
JM, Sabater M, Rovira O, Girones J, Ricart W, Fernández-Real JM and
Ortega FJ: Decreased lipid metabolism but increased FA biosynthesis
are coupled with changes in liver microRNAs in obese subjects with
NAFLD. Int J Obes (Lond). 41:620–630. 2017.PubMed/NCBI View Article : Google Scholar
|