|
1
|
Egeblad M, Nakasone ES and Werb Z: Tumors
as organs: Complex tissues that interface with the entire organism.
Dev Cell. 18:884–901. 2010.PubMed/NCBI View Article : Google Scholar
|
|
2
|
de Visser KE, Eichten A and Coussens LM:
Paradoxical roles of the immune system during cancer development.
Nat Rev Cancer. 6:24–37. 2006.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
Murphy K, Weaver C and Janeway C:
Janeway's immunobiology. 9th edition. New York, Garland Science,
2017.
|
|
4
|
Xue J, Schmidt SV, Sander J, Draffehn A,
Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L,
et al: Transcriptome-based network analysis reveals a spectrum
model of human macrophage activation. Immunity. 40:274–288.
2014.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Aras S and Zaidi MR: TAMeless traitors:
Macrophages in cancer progression and metastasis. Br J Cancer.
117:1583–1591. 2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Kawai O, Ishii G, Kubota K, Murata Y,
Naito Y, Mizuno T, Aokaje K, Saijo N, Nishiwaki Y, Gemma A, et al:
Predominant infiltration of macrophages and CD8(+) T cells in
cancer nests is a significant predictor of survival in stage IV
nonsmall cell lung cancer. Cancer. 113:1387–1395. 2008.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ryder M, Ghossein RA, Ricarte-Filho JC,
Knauf JA and Fagin JA: Increased density of tumor-associated
macrophages is associated with decreased survival in advanced
thyroid cancer. Endocr Relat Cancer. 15:1069–1074. 2008.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Georgoudaki AM, Prokopec KE, Boura VF,
Hellqvist E, Sohn S, Östling J, Dahan R, Harris RA, Rantalainen M,
Klevebring D, et al: Reprogramming tumor-associated macrophages by
antibody targeting inhibits cancer progression and metastasis. Cell
Rep. 15:2000–2011. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Phan SH: Biology of fibroblasts and
myofibroblasts. Proc Am Thorac Soc. 5:334–337. 2008.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Chang HY, Chi JT, Dudoit S, Bondre C, van
de Rijn M, Botstein D and Brown PO: Diversity, topographic
differentiation, and positional memory in human fibroblasts. Proc
Nat Acad Sci USA. 99:12877–12882. 2002.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Dumont N, Liu B, Defilippis RA, Chang H,
Rabban JT, Karnezis AN, Tjoe JA, Marx J, Parvin B and Tlsty TD:
Breast fibroblasts modulate early dissemination, tumorigenesis, and
metastasis through alteration of extracellular matrix
characteristics. Neoplasia. 15:249–262. 2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Gascard P and Tlsty TD:
Carcinoma-associated fibroblasts: Orchestrating the composition of
malignancy. Genes Dev. 30:1002–1019. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Michiels C: Endothelial cell functions. J
Cell Physiol. 196:430–443. 2003.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Zhang L, Yang N, Park JW, Katsaros D,
Franchiolli S, Cao G, O'Brien-Jenkins A, Randall TC, Rubin SC and
Coukos G: Tumor-derived vascular endothelial growth factor
upregulates angiopoietin-2 in host endothelium and destabilizes
host vasculature, supporting angiogenesis in ovarian cancer. Cancer
Res. 63:3403–3412. 2003.PubMed/NCBI
|
|
15
|
Konerding MA, Malkusch W, Klapthor B, van
Ackern C, Fait E, Hill SA, Parkins C, Chaplin DJ, Presta M and
Denekamp J: Evidence for characteristic vascular patterns in solid
tumours: Quantitative studies using corrosion casts. Br J Cancer.
80:724–732. 1999.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Mócsai A: Diverse novel functions of
neutrophils in immunity, inflammation, and beyond. J Exp Med.
210:1283–1299. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Fridlender ZG, Sun J, Kim S, Kapoor V,
Cheng G, Ling L, Worthen GS and Albelda SM: Polarization of
tumor-associated neutrophil phenotype by TGF-beta: ‘N1’ versus ‘N2’
TAN. Cancer Cell. 16:183–194. 2009.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Nozawa H, Chiu C and Hanahan D:
Infiltrating neutrophils mediate the initial angiogenic switch in a
mouse model of multistage carcinogenesis. Proc Natl Acad Sci USA.
103:12493–12498. 2006.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Jensen HK, Donskov F, Marcussen N,
Nordsmark M, Lundbeck F and von der Maase H: Presence of
intratumoral neutrophils is an independent prognostic factor in
localized renal cell carcinoma. J Clin Oncol. 27:4709–4717.
2009.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Walsh SR, Cook EJ, Goulder F, Justin TA
and Keeling NJ: Neutrophil-lymphocyte and ratio as a prognostic
factor in colorectal cancer. J Surg Oncol. 91:181–184.
2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Shamri R, Xenakis JJ and Spencer LA:
Eosinophils in innate immunity: An evolving story. Cell Tissue Res.
343:57–83. 2011.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Carretero R, Sektioglu IM, Garbi N,
Salgado OC, Beckhove P and Hämmerling GJ: Eosinophils orchestrate
cancer rejection by normalizin tumor vessels and enhancing
infiltration of CD8(+) T cells. Nat Immunol. 16:609–617.
2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Akdis M, Aab A, Altunbulakli C, Azkur K,
Costa RA, Crameri R, Duan S, Eiweger T, Eljaszewicz A, Ferstl R, et
al: Interleukins (from IL-1 to IL-38), interferons, transforming
growth factor β and TNF-α: Receptors, functions, and roles in
diseases. J Allergy Clin Immunol. 138:984–1010. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Mattes J, Hulett M, Xie W, Hogan S,
Rottenberg ME, Foster P and Parish C: Immunotherapy of cytotoxic T
cell-resistant tumors by T helper 2 cells: An eotaxin and
STAT6-dependent process. J Exp Med. 197:387–393. 2003.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Tepper RI, Pattengale PK and Leder P:
Murine interleukin-4 displays potent anti-tumor activity in
vivo. Cell. 57:503–512. 1989.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fernández-Aceñero MJ, Galindo-Gallego M,
Sanz J and Aljama A: Prognostic influence of tumor-associated
eosinophilic infiltrate in colorectal carcinoma. Cancer.
88:1544–1548. 2000.PubMed/NCBI
|
|
27
|
Krystel-Whittemore M, Dileepan KN and Wood
JG: Mast cell: A multi-functional master cell. Front Immunol.
6(620)2016.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Varricchi G, Galdiero MR, Loffredo S,
Marone G, Iannone R, Marone G and Granata F: Are mast cells MASTers
in cancer? Front Immunol. 8(424)2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Oldford SA, Haidl ID, Howatt MA, Leiva CA,
Johnston B and Marshall JS: A critical role for mast cells and mast
cell-derived IL-6 in TLR2-mediated inhibition of tumor growth. J
Immunol. 185:7067–7076. 2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Gentles AJ, Newman AM, Liu CL, Bratman SV,
Feng W, Kim W, Nair SW, Xu H, Khuong A, Hoang CD, et al: The
prognostic landscape of genes and infiltrating immune cells across
human cancers. Nat Med. 21:938–945. 2015.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Patil RS, Shah SU, Shrikhande SV, Goel M,
Dikshit RP and Chiplunkar SV: IL17 producing γδT cells induce
angiogenesis and are associated with poor survival in gallbladder
cancer patients. Int J Cancer. 139:869–881. 2016.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhao Y, Niu C and Cui J: Gamma-delta (γδ)
T cells: Friend or foe in cancer development? J Transl Med.
16(3)2018.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Dhodapkar MV and Kumar V: Type II NKT
cells and their emerging role in health and disease. J Immunol.
198:1015–1021. 2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Terabe M, Matsui S, Noben-Trauth N, Chen
H, Watson C, Donaldson DD, Carbone DP, Paul WE and Berzofsky JA:
NKT cell-mediated repression of tumor immunosurveillance by IL-13
and the IL-4R-STAT6 pathway. Nat Immunol. 1:515–520.
2000.PubMed/NCBI View
Article : Google Scholar
|
|
35
|
Terabe M and Berzofsky JA: The role of NKT
cells in tumor immunity. Adv Cancer Res. 101:277–348.
2008.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Yang Q, Goding SR, Hokland ME and Basse
PH: Antitumor activity of NK cells. Immunol Res. 36:13–25.
2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Minetto P, Guolo F, Pesce S, Greppi M,
Obino V, Ferretti E, Sivori S, Genova C, Lemoli RM and Marcenaro E:
Harnessing NK cells for cancer treatment. Front Immunol.
10(2836)2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
van Beek JJP, Martens AWJ, Bakdash G and
de Vries IJM: Innate lymphoid cells in tumor immunity.
Biomedicines. 4(7)2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Eisenring M, vom Berg J, Kristiansen G,
Saller E and Becker B: IL-12 initiates tumor rejection via lymphoid
tissue-inducer cells bearing the natural cytotoxicity receptor
NKp46. Nat Immunol. 11:1030–1038. 2010.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Mellman I: Dendritic cells: Master
regulators of the immune response. Cancer Immunol Res. 1:145–149.
2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Lijun Z, Xin Z, Danhua S, Xiaoping L,
Jianliu W, Huilan W and Lihui W: Tumor-infiltrating dendritic cells
may be used as clinicopathologic prognostic factors in endometrial
carcinoma. Int J Gynecol Cancer. 22:836–841. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ma Y, Shurin GV, Peiyuan Z and Shurin MR:
Dendritic cells in the cancer microenvironment. J Cancer. 4:36–44.
2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Zhan Y and Wu L: Functional regulation of
monocyte-derived dendritic cells by microRNAs. Protein Cell.
3:497–507. 2012.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ostroumov D, Fekete-Drimusz N, Saborowski
M, Kühnel F and Woller N: CD4 and CD8 T lymphocyte interplay in
controlling tumor growth. Cell Mol Life Sci. 75:689–713.
2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Woo SR, Turnis ME, Goldberg MV, Bankoti J,
Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et
al: Immune inhibitory molecules LAG-3 and PD-1 synergistically
regulate T-cell function to promote tumoral immune escape. Cancer
Res. 72:917–927. 2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ziai J, Gilbert HN, Foreman O,
Eastham-Anderson J, Chu F, Huseni M and Kim JM: CD8+ T
cell infiltration in breast and colon cancer: A histologic and
statistical analysis. PLoS One. 13(e0190158)2018.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Durgeau A, Virk Y, Corgnac S and
Mami-Chouaib F: Recent advances in targeting CD8 T-cell immunity
for more effective cancer immunotherapy. Front Immunol.
9(14)2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Akbulut G, Özkazanç D and Esendağlı G: Th1
cells in cancer-associated inflammation. Turk J Biol. 41:20–30.
2017.
|
|
49
|
Bos R and Sherman LA: CD4+
T-cell help in the tumor milieu is required for recruitment and
cytolytic function of CD8+ T lymphocytes. Cancer Res.
70:8368–8377. 2010.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Fujisawa T, Joshi BH and Puri RK: IL-13
regulates cancer invasion and metastasis through IL-13Rα2 via
ERK/AP-1 pathway in mouse model of human ovarian cancer. Int J
Cancer. 131:344–356. 2012.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Nishimura T, Iwakabe K, Sekimoto M, Ohmi
Y, Yahata T, Nakui M, Sato T, Habu S, Tashiro H, Sato M and Ohta A:
Distinct role of antigen-specific t helper type 1 (Th1) and Th2
cells in tumor eradication in vivo. J Exp Med. 190:617–627.
1999.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Lorvik KB, Hammarström C, Fauskanger M,
Haabeth OA, Zangani M, Haraldsen G, Bogen B and Corthay A: Adoptive
transfer of tumor-specific Th2 cells eradicates tumors by
triggering an in situ inflammatory immune response. Cancer
Res. 76:6864–6876. 2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Amicarella F, Muraro MG, Hirt C, Cremonesi
E, Padovan E, Mele V, Governa V, Han J, Huber X, Droeseret RA, et
al: Dual role of tumour-infiltrating T helper 17 cells in human
colorectal cancer. Gut. 66:692–704. 2017.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lee YK, Turner H, Maynard CL, Oliver JR,
Chen D, Elson CO and Weaver CT: Late developmental plasticity in
the T helper 17 lineage. Immunity. 30:92–107. 2009.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Kryczek I, Banerjee M, Cheng P, Vatan L,
Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, et
al: Phenotype, distribution, generation, and functional and
clinical relevance of Th17 cells in the human tumor environments.
Blood. 114:1141–1149. 2009.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Martin-Orozco N, Muranski P, Chung Y, Yang
XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW and Dong C: T
helper 17 cells promote cytotoxic T cell activation in tumor
immunity. Immunity. 31:787–798. 2009.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Lu Y, Hong S, Li H, Park J, Hong B, Wang
L, Zheng Y, Liu Z, Xu J, He J, et al: Th9 cells promote antitumor
immune responses in vivo. J Clin Invest. 122:4160–4171.
2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Kim K, Kim G, Kim JY, Yun HJ, Lim SC and
Choi HS: Interleukin-22 promotes epithelial cell transformation and
breast tumorigenesis via MAP3K8 activation. Carcinogenesis.
35:1352–1361. 2014.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Gu-Trantien C, Loi S, Garaud S, Equeter C,
Libin M, de Wind A, Ravoet M, Le Buanec H, Sibille C,
Manfouo-Foutsop G, et al: CD4' follicular helper T cell
infiltration predicts breast cancer survival. J Clin Invest.
123:2873–2892. 2013.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Verma A, Mathur R, Farooque A, Kaul V,
Gupta S and Dwarakanath BS: T-regulatory cells in tumor progression
and therapy. Cancer Manag Res. 11:10731–10747. 2019.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Facciabene A, Motz GT and Coukos G:
T-regulatory cells: Key players in tumor immune escape and
angiogenesis. Cancer Res. 72:2162–2171. 2012.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Correale P, Rotundo MS, Del Vecchio MT,
Remondo C, Migali C, Ginnaneschi C, Tsang KY, Lichetta A, Manucci
S, Loiacono L, et al: Regulatory (FoxP3+) T-cell tumor
infiltration is a favorable prognostic factor in advanced colon
cancer patients undergoing chemo or chemoimmunotherapy. J
Immunother. 33:435–441. 2010.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Wouters MCA and Nelson BH: Prognostic
significance of tumor-infiltrating B cells and plasma cells in
human cancer. Clin Cancer Res. 24:6125–6135. 2018.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yuen GJ, Demissie E and Pillai S: B
lymphocytes and cancer: A love-hate relationship. Trends Cancer.
2:747–757. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Farc O and Cristea V: Pro-and antitumor
role of interleukins 1 to 41. Roum Arch Microbiol Immunol.
78:149–162. 2019.
|
|
66
|
Figueras A, Arbos MA, Quiles MT, Viñals F,
Germà JR and Capellà G: The impact of KRAS mutations on VEGF-A
production and tumour vascular network. BMC Cancer.
13(125)2013.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Talks KL, Turley H, Gatter KC, Maxwell PH,
Pugh CW, Ratcliffe PJ and Harris AL: The expression and
distribution of the hypoxia-inducible factors HIF-1alpha and
HIF-2alpha in normal human tissues, cancers, and tumor-associated
macrophages. Am J Pathol. 157:411–421. 2000.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Hill BS, Sarnella A, D'Avino G and
Zannetti A: Recruitment of stromal cells into tumour
microenvironment promote the metastatic spread of breast cancer.
Semin Cancer Biol. 60:202–213. 2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Austenaa L and Natoli G: A shortcut for
early macrophage recruitment into tumors by activated oncogenes.
Genes Dev. 31:223–225. 2017.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444.
2008.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Wörmann SM, Diakopoulos KN, Lesina M and
Algül H: The immune network in pancreatic cancer development and
progression. Oncogene. 33:2956–2967. 2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Le Naour A, Prat M, Thibault B, Mevel R,
Lemaître L, Leray H, Joubert MV, Coulson K, Golzio M, Lefevre L, et
al: Tumor cells educate mesenchymal stromal cells to release
chemoprotective and immunomodulatory factors. J Mol Cell Biol.
12:202–215. 2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Bosiljcic M, Cederberg RA, Hamilton MJ,
LePard NE, Harbourne BT, Collier JL, Halvorsen EC, Shi R, Franks
SE, Kim AY, et al: Targeting myeloid-derived suppressor cells in
combination with primary mammary tumor resection reduces metastatic
growth in the lungs. Breast Cancer Res. 21(103)2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Dunn GP, Old LJ and Schreiber RD: The
three Es of cancer immunoediting. Annu Rev Immunol. 22:329–360.
2004.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Casey SC, Li Y and Felsher DW: An
essential role for the immune system in the mechanism of tumor
regression following targeted oncogene inactivation. Immunol Res.
58:282–291. 2014.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Casey SC, Tong L, Li Y, Do R, Walz S,
Fitzgerald KN, Gouw AM, Baylot V, Gütgemann I, Eilers M and Felsher
DW: MYC regulates the antitumor immune response through CD47 and
PD-L1. Science. 352:227–231. 2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Xiong GF and Xu R: Function of cancer
cell-derived extracellular matrix in tumor progression. J Cancer
Metastasis Treat. 2:357–364. 2016.
|
|
78
|
Agrawal N, Bettegowda C, Cheong I,
Geschwind JF, Drake CG, Hipkiss EL, Tatsumi M, Dang LH, Diaz LA Jr,
Pomper M, et al: Bacteriolytic therapy can generate a potent immune
response against experimental tumors. Proc Natl Acad Sci.
101:15172–15177. 2004.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Haabeth OA, Bogen B and Corthay A: A model
for cancer - suppressive inflammation. Oncoimmunology. 1:1146–1155.
2012.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Schäfer M and Werner S: Cancer as an
overhealing wound: An old hypothesis revisited. Nat Rev Mol Cell
Biol. 9:628–63879. 2008.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Riss J, Khanna C, Koo S, Chandramoulli DV,
Yang HH, Hu Y, Kleiner DE, Rosenward A, Schaeffer CF, Ben-Sasson
SA, et al: Cancers as wounds that do not heal: Differences and
similarities between renal regeneration/repair and renal cell
carcinoma. Cancer Res. 66:7216–7224. 2006.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Pesic M and Greten FR: Inflammation and
cancer: Tissue regeneration gone awry. Curr Opin Cell Biol.
43:55–61. 2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Naga A, Siddiqui A and Bindu H: Immuno
defense mechanism against tumors. J Cancer Sci Ther. 17(2)2011.
|
|
85
|
Kondratova M, Czerwinska U, Sompairac N,
Amigorena SD, Soumelis V, Barillot E, Zinovyev A and Kuperstein I:
A multiscale signalling network map of innate immune response in
cancer reveals cell heterogeneity signatures. Nat Commun.
10(4808)2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Liu Y and Zeng G: Cancer and innate immune
system interactions: Translational potentials for cancer
immunotherapy. J Immunother. 35:299–308. 2012.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Wong R, Pepper C, Brennan P, Nagorsen D,
Man S and Fegan C: Blinatumomab induces autologous T-cell killing
of chronic lymphocytic leukemia cells. Haematologica. 98:1930–1938.
2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Burkholder B, Huang RY, Burgess R, Luo S,
Jones VS, Zhang W, Lu ZQ, Gao CY, Wang BL, Zhang YM and Huang RP:
Tumor-induced perturbations of cytokines and immune cell networks.
Biochim Biophys Acta. 1845:182–201. 2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Thorsson V, Gibbs DL, Brown SD, Wolf D,
Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy
JA, et al: The immune landscape of cancer. Immunity.
48:812–830.e14. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Ringelhan M, Pfister D, O'Connor T,
Pikarsky E and Heikenwalder M: The immunology of hepatocellular
carcinoma. Nat Immunol. 19:222–232. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Neagu M, Caruntu C, Constantin C, Boda D,
Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin
carcinogenesis: Updates in experimental models (Review). Oncol Rep.
35:2516–2528. 2016.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Boda D, Docea AO, Calina D, Ilie MA,
Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE,
Voiculescu V, et al: Human papilloma virus: Apprehending the link
with carcinogenesis and unveiling new research avenues. Int J
Oncol. 52:637–655. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Palucka AK and Coussens LM: The basis of
oncoimmunology. Cell. 164:1233–1247. 2016.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Ion A, Popa IM, Papagheorghe LM, Lisievici
C, Lupu M, Voiculescu V, Caruntu C and Boda D: Proteomic approaches
to biomarker discovery in cutaneous T-cell lymphoma. Dis Markers.
2016(9602472)2016.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Grigore O, Mihailescu AI, Solomon I, Boda
D and Caruntu C: Role of stress in modulation of skin neurogenic
inflammation. Exp Ther Med. 17:997–1003. 2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Solomon I, Voiculescu VM, Caruntu C, Lupu
M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C,
et al: Neuroendocrine factors and head and neck squamous cell
carcinoma: An affair to remember. Dis Markers.
2018(9787831)2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Caruntu C, Boda D, Constantin C, Caruntu A
and Neagu M: Catecholamines increase in vitro proliferation of
murine B16F10 melanoma cells. Acta Endocrinol. 10:545–558.
2014.
|
|
98
|
Lupu M, Caruntu A, Caruntu C, Papagheorghe
LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki
M, et al: Neuroendocrine factors: The missing link in non melanoma
skin cancer (Review). Oncol Rep. 38:1327–1340. 2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Maj E, Papiernik D and Wietrzyk J:
Antiangiogenic cancer treatment: The great discovery and greater
complexity (Review). Int J Oncol. 49:1773–1784. 2016.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Cotechini T, Medler TR and Coussens LM:
Myeloid cells as targets for therapy in solid tumors. Cancer J.
21:343–350. 2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Kruger S, Ilmer M, Kobold S, Cadilha BL,
Endres S, Ormanns S, Schuebe G, Renz BW, D'Haese JG, Schloesser H,
et al: Advances in cancer immunotherapy 2019 - latest trends. J Exp
Clin Cancer Res. 38(268)2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Farkona S, Diamandis EP and Blasutig IM:
Cancer immunotherapy: The beginning of the end of cancer? BMC Med.
14(73)2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Clancy T and Hovig E: Profiling networks
of distinct immune-cells in tumors. BMC Bioinformatics.
17(263)2016.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Munks M, Levitsky V, Hill A and Knoetgen
H: Cytomegalovirus-specific CD8 T cells kill B16 melanoma cells in
vivo whe activated by bifunctional major histocompatibility class
I-antibody fusion molecules (pMHCI-IgGs). J Immunotherapy Cancer.
3(237)2015.
|
|
105
|
Boda D: Cellomics as integrative omics for
cancer. Curr Proteomics. 10:237–245. 2013.
|
|
106
|
Ancuceanu R, Dinu M, Neaga I, Laszlo FG
and Boda D: Development of QSAR machine learning-based models to
forecast the effect of substances on malignant melanoma cells.
Oncol Lett. 17:4188–4196. 2019.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Robin X, Creixell P, Radetskaya O, Santini
CC, Longden J and Linding R: Personalized network-based treatments
in oncology. Clin Pharmacol Ther. 94:646–650. 2013.PubMed/NCBI View Article : Google Scholar
|