Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway

  • Authors:
    • Shuai Peng
    • Lei Shen
    • Min-Xiu Tian
    • Hui-Min Li
    • Shan-Shan Wang
  • View Affiliations / Copyright

    Affiliations: Renmin Hospital of Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, Hubei 430060, P.R. China
    Copyright: © Peng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 134
    |
    Published online on: December 10, 2020
       https://doi.org/10.3892/etm.2020.9566
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Poly(ADP‑ribose) polymerase‑1 (PARP‑1) plays a critical role in inflammatory pathways. The PARP‑1 inhibitor, 5‑aminoisoquinolinone (5‑AIQ), has been demonstrated to exert significant pharmacological effects. The present study aimed to further examine the potential mechanisms of 5‑AIQ in a mouse model of dextran sodium sulfate (DSS)‑induced colitis. Colitis conditions were assessed by changes in weight, disease activity index, colon length, histopathology and pro‑inflammatory mediators. The colonic expression of PARP/NF‑κB and STAT3 pathway components was measured by western blot analysis. Flow cytometry was used to analyze the proportion of T helper 17 cells (Th17) and regulatory T cells (Tregs) in the spleen. Western blot analysis and reverse transcription‑quantitative PCR were employed to determine the expression of the transcription factors retinoic acid‑related orphan receptor and forkhead box protein P3. The results demonstrated that 5‑AIQ reduced tissue damage and the inflammatory response in mice with experimental colitis. Moreover, 5‑AIQ increased the proportion of Treg cells and decreased the percentage of Th17 cells in the spleen. Furthermore, following 5‑AIQ treatment, the main components of the PARP/NF‑κB and STAT3 pathways were downregulated. Collectively, these results demonstrate that the PARP‑1 inhibitor, 5‑AIQ, may suppress intestinal inflammation and protect the colonic mucosa by modulating Treg/Th17 immune balance and inhibiting PARP‑1/NF‑κB and STAT3 signaling pathways in mice with experimental colitis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Ungaro R, Mehandru S, Allen PB, Peyrin-Biroulet L and Colombel JF: Ulcerative colitis. Lancet. 389:1756–1770. 2017.PubMed/NCBI View Article : Google Scholar

2 

Kaplan GG and Ng SC: Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology. 152:313–321.e2. 2017.PubMed/NCBI View Article : Google Scholar

3 

de Souza HSP, Fiocchi C and Iliopoulos D: The IBD interactome: An integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 14:739–749. 2017.PubMed/NCBI View Article : Google Scholar

4 

Torres J and Colombel JF: Genetics and phenotypes in inflammatory bowel disease. Lancet. 387:98–100. 2016.PubMed/NCBI View Article : Google Scholar

5 

Silva FA, Rodrigues BL, Ayrizono ML and Leal RF: The immunological basis of inflammatory bowel disease. Gastroenterol Res Pract. 2016(2097274)2016.PubMed/NCBI View Article : Google Scholar

6 

Fasching P, Stradner M, Graninger W, Dejaco C and Fessler J: Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules. 22(134)2017.PubMed/NCBI View Article : Google Scholar

7 

Ueno A, Jeffery L, Kobayashi T, Hibi T, Ghosh S and Jijon H: Th17 plasticity and its relevance to inflammatory bowel disease. J Autoimmun. 87:38–49. 2018.PubMed/NCBI View Article : Google Scholar

8 

Yamada A, Arakaki R, Saito M, Tsunematsu T, Kudo Y and Ishimaru N: Role of regulatory T cell in the pathogenesis of inflammatory bowel disease. World J Gastroenterol. 22:2195–2205. 2016.PubMed/NCBI View Article : Google Scholar

9 

Zhang L, Zhang Y, Zhong W, Di C, Lin X and Xia Z: Heme oxygenase-1 ameliorates dextran sulfate sodium-induced acute murine colitis by regulating Th17/Treg cell balance. J Biol Chem. 289:26847–26858. 2014.PubMed/NCBI View Article : Google Scholar

10 

Yao J, Wei C, Wang JY, Zhang R, Li YX and Wang LS: Effect of resveratrol on Treg/Th17 signaling and ulcerative colitis treatment in mice. World J Gastroenterol. 21:6572–6581. 2015.PubMed/NCBI View Article : Google Scholar

11 

Salas A, Hernandez-Rocha C, Duijvestein M, Faubion W, McGovern D, Vermeire S, Vetrano S and Vande Casteele N: JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 17:323–337. 2020.PubMed/NCBI View Article : Google Scholar

12 

Harbour SN, DiToro DF, Witte SJ, Zindl CL, Gao M, Schoeb TR, Jones GW, Jones SA, Hatton RD and Weaver CT: TH17 cells require ongoing classic IL-6 receptor signaling to retain transcriptional and functional identity. Sci Immunol. 5(eaaw2262)2020.PubMed/NCBI View Article : Google Scholar

13 

Britton GJ, Contijoch EJ, Mogno I, Vennaro OH, Llewellyn SR, Ng R, Li Z, Mortha A, Merad M, Das A, et al: Microbiotas from humans with inflammatory bowel disease alter the balance of gut Th17 and RORγt+ regulatory T cells and exacerbate colitis in mice. Immunity. 50:212–224.e4. 2019.PubMed/NCBI View Article : Google Scholar

14 

Gong Y, Lin Y, Zhao N, He X, Lu A, Wei W and Jiang M: The Th17/Treg immune imbalance in ulcerative colitis disease in a Chinese han population. Mediators Inflamm. 2016(7089137)2016.PubMed/NCBI View Article : Google Scholar

15 

Gupte R, Liu Z and Kraus WL: PARPs and ADP-ribosylation: Recent advances linking molecular functions to biological outcomes. Genes Dev. 31:101–126. 2017.PubMed/NCBI View Article : Google Scholar

16 

Rosado MM, Bennici E, Novelli F and Pioli C: Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology. 139:428–437. 2013.PubMed/NCBI View Article : Google Scholar

17 

Abd Elmageed ZY, Naura AS, Errami Y and Zerfaoui M: The poly(ADP-ribose) polymerases (PARPs): New roles in intracellular transport. Cell Signal. 24:1–8. 2012.PubMed/NCBI View Article : Google Scholar

18 

Ba X and Garg NJ: Signaling mechanism of poly(ADP-ribose) polymerase-1 (PARP-1) in inflammatory diseases. Am J Pathol. 178:946–955. 2011.PubMed/NCBI View Article : Google Scholar

19 

Sodhi RK, Singh N and Jaggi AS: Poly(ADP-ribose) polymerase-1 (PARP-1) and its therapeutic implications. Vascul Pharmacol. 53:77–87. 2010.PubMed/NCBI View Article : Google Scholar

20 

Quesada A, O'Valle F, Montoro-Molina S, Gómez-Morales M, Caba-Molina M, González JF, de Gracia MC, Osuna A, Vargas F and Wangensteen R: 5-aminoisoquinoline improves renal function and fibrosis during recovery phase of cisplatin-induced acute kidney injury in rats. Biosci Rep. 38(BSR20171313)2018.PubMed/NCBI View Article : Google Scholar

21 

Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H and Aikawa M: The impact of PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes Dev. 34:341–359. 2020.PubMed/NCBI View Article : Google Scholar

22 

Luo X, Nie J, Wang S, Chen Z, Chen W, Li D, Hu H and Li B: Poly(ADP-ribosyl)ation of FOXP3 protein mediated by PARP-1 protein regulates the function of regulatory T cells. J Biol Chem. 290:28675–28682. 2015.PubMed/NCBI View Article : Google Scholar

23 

Threadgill MD: 5-Aminoisoquinolin-1-one (5-AIQ), a water-soluble inhibitor of the poly(ADP-Ribose)polymerases (PARPs). Curr Med Chem. 22:3807–3829. 2015.PubMed/NCBI View Article : Google Scholar

24 

Brady PN, Goel A and Johnson MA: Poly(ADP-Ribose) polymerases in host-pathogen interactions, inflammation, and immunity. Microbiol Mol Biol Rev. 83:e00038–18. 2019.PubMed/NCBI View Article : Google Scholar

25 

Wirtz S, Popp V, Kindermann M, Gerlach K, Weigmann B, Fichtner-Feigl S and Neurath MF: Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 12:1295–1309. 2017.PubMed/NCBI View Article : Google Scholar

26 

Ahmad SF, Zoheir KM, Bakheet SA, Ashour AE and Attia SM: Poly(ADP-ribose) polymerase-1 inhibitor modulates T regulatory and IL-17 cells in the prevention of adjuvant induced arthritis in mice model. Cytokine. 68:76–85. 2014.PubMed/NCBI View Article : Google Scholar

27 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

28 

Gibson BA and Kraus WL: New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol. 13:411–424. 2012.PubMed/NCBI View Article : Google Scholar

29 

Hassa PO and Hottiger MO: The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 59:1534–1553. 2002.PubMed/NCBI View Article : Google Scholar

30 

Niyazoglu M, Baykara O, Koc A, Aydoğdu P, Onaran I, Dellal FD, Tasan E and Sultuybek GK: Association of PARP-1, NF-κB, NF-κBIA and IL-6, IL-1β and TNF-α with graves disease and graves ophthalmopathy. Gene. 547:226–232. 2014.PubMed/NCBI View Article : Google Scholar

31 

Dharwal V and Naura AS: PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol. 150:24–34. 2018.PubMed/NCBI View Article : Google Scholar

32 

Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK and Kiela PR: Transcriptional reprogramming and resistance to colonic mucosal injury in poly(ADP-ribose) polymerase 1 (PARP1)-deficient mice. J Biol Chem. 291:8918–8930. 2016.PubMed/NCBI View Article : Google Scholar

33 

Cuzzocrea S, McDonald MC, Mazzon E, Dugo L, Serraino I, Threadgill M, Caputi AP and Thiemermann C: Effects of 5-aminoisoquinolinone, a water-soluble, potent inhibitor of the activity of poly(ADP-ribose) polymerase, in a rodent model of lung injury. Biochem Pharmacol. 63:293–304. 2002.PubMed/NCBI View Article : Google Scholar

34 

Di Paola R, Genovese T, Caputi AP, Threadgill M, Thiemermann C and Cuzzocrea S: Beneficial effects of 5-aminoisoquinolinone, a novel, potent, water-soluble, inhibitor of poly(ADP-ribose) polymerase, in a rat model of splanchnic artery occlusion and reperfusion. Eur J Pharmacol. 492:203–210. 2004.PubMed/NCBI View Article : Google Scholar

35 

Ahmad SF, Zoheir KM, Ansari MA, Korashy HM, Bakheet SA, Ashour AE, Al-Shabanah OA, Al-harbi MM and Attia SM: The role of poly(ADP-ribose) polymerase-1 inhibitor in carrageenan-induced lung inflammation in mice. Mol Immunol. 63:394–405. 2015.PubMed/NCBI View Article : Google Scholar

36 

Yang B, Guo WY, Yu J, Zhao KL, Shi Q, Zuo T and Wang WX: Expression of PARP/NF-κB and intervention effect of 5-AIQ/PDTC in SAP rats with adrenal damage. Zhonghua Yi Xue Za Zhi. 93:3063–3067. 2013.PubMed/NCBI(In Chinese).

37 

Neurath MF: Cytokines in inflammatory bowel disease. Nat Rev Immunol. 14:329–342. 2014.PubMed/NCBI View Article : Google Scholar

38 

Fonseca-Camarillo G and Yamamoto-Furusho JK: Immunoregulatory pathways involved in inflammatory bowel disease. Inflamm Bowel Dis. 21:2188–2193. 2015.PubMed/NCBI View Article : Google Scholar

39 

Hayden MS and Ghosh S: NF-kappaB in immunobiology. Cell Res. 21:223–244. 2011.PubMed/NCBI View Article : Google Scholar

40 

Atreya I, Atreya R and Neurath MF: NF-kappaB in inflammatory bowel disease. J Intern Med. 263:591–596. 2008.PubMed/NCBI View Article : Google Scholar

41 

de Souza HS and Fiocchi C: Immunopathogenesis of IBD: Current state of the art. Nat Rev Gastroenterol Hepatol. 13:13–27. 2016.PubMed/NCBI View Article : Google Scholar

42 

Wallace KL, Zheng LB, Kanazawa Y and Shih DQ: Immunopathology of inflammatory bowel disease. World J Gastroenterol. 20:6–21. 2014.PubMed/NCBI View Article : Google Scholar

43 

van Wijk F and Cheroutre H: Intestinal T cells: Facing the mucosal immune dilemma with synergy and diversity. Semin Immunol. 21:130–138. 2009.PubMed/NCBI View Article : Google Scholar

44 

Zenewicz LA, Antov A and Flavell RA: CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol Med. 15:199–207. 2009.PubMed/NCBI View Article : Google Scholar

45 

Liu TC and Stappenbeck TS: Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 11:127–148. 2016.PubMed/NCBI View Article : Google Scholar

46 

Yang BH, Hagemann S, Mamareli P, Lauer U, Hoffmann U, Beckstette M, Föhse L, Prinz I, Pezoldt J, Suerbaum S, et al: Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9:444–457. 2016.PubMed/NCBI View Article : Google Scholar

47 

Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, Gaboriau-Routhiau V, Marques R, Dulauroy S, Fedoseeva M, et al: Mucosal immunology. The microbiota regulates type 2 immunity through RORγt+ T cells. Science. 349:989–993. 2015.PubMed/NCBI View Article : Google Scholar

48 

Higashimura Y, Takagi T, Naito Y, Uchiyama K, Mizushima K, Tanaka M, Hamaguchi M and Itoh Y: Zinc deficiency activates the IL-23/Th17 axis to aggravate experimental colitis in mice. J Crohns Colitis. 14:856–866. 2020.PubMed/NCBI View Article : Google Scholar

49 

Britton GJ, Contijoch EJ, Spindler MP, Aggarwala V, Dogan B, Bongers G, San Mateo L, Baltus A, Das A, Gevers D, et al: Defined microbiota transplant restores Th17/RORγt+ regulatory T cell balance in mice colonized with inflammatory bowel disease microbiotas. Proc Natl Acad Sci USA. 117:21536–21545. 2020.PubMed/NCBI View Article : Google Scholar

50 

Xu M, Duan XY, Chen QY, Fan H, Hong ZC, Deng SJ, Nan Z, Wu H, Dong YL, Liu YJ and Zhou CZ: Effect of compound sophorae decoction on dextran sodium sulfate (DSS)-induced colitis in mice by regulating Th17/Treg cell balance. Biomed Pharmacother. 109:2396–2408. 2019.PubMed/NCBI View Article : Google Scholar

51 

Luo S, Wen R, Wang Q, Zhao Z, Nong F, Fu Y, Huang S, Chen J, Zhou L and Luo X: Rhubarb peony decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance. J Ethnopharmacol. 231:39–49. 2019.PubMed/NCBI View Article : Google Scholar

52 

Serrano C, Galán S, Rubio JF, Candelario-Martínez A, Montes-Gómez AE, Chánez-Paredes S, Cedillo-Barrón L, Schnoor M, Meraz-Ríos MA, Villegas-Sepúlveda N, et al: Compartmentalized response of IL-6/STAT3 signaling in the colonic mucosa mediates colitis development. J Immunol. 202:1239–1249. 2019.PubMed/NCBI View Article : Google Scholar

53 

Coskun M, Salem M, Pedersen J and Nielsen OH: Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol Res. 76:1–8. 2013.PubMed/NCBI View Article : Google Scholar

54 

Hadaschik EN and Enk AH: TGF-β1-induced regulatory T cells. Hum Immunol. 76:561–564. 2015.PubMed/NCBI View Article : Google Scholar

55 

Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, Ramos HL, Wei L, Davidson TS, Bouladoux N, et al: Generation of pathogenic T(H)17 cells in the absence of TGF-β signalling. Nature. 467:967–971. 2010.PubMed/NCBI View Article : Google Scholar

56 

Martincuks A, Andryka K, Küster A, Schmitz-Van de Leur H, Komorowski M and Müller-Newen G: Nuclear translocation of STAT3 and NF-κB are independent of each other but NF-κB supports expression and activation of STAT3. Cell Signal. 32:36–47. 2017.PubMed/NCBI View Article : Google Scholar

57 

Pazzaglia S and Pioli C: Multifaceted Role of PARP-1 in DNA repair and inflammation: Pathological and therapeutic implications in cancer and non-cancer diseases. Cells. 9(41)2019.PubMed/NCBI View Article : Google Scholar

58 

Zhang P, Maruyama T, Konkel JE, Abbatiello B, Zamarron B, Wang ZQ and Chen W: PARP-1 controls immunosuppressive function of regulatory T cells by destabilizing Foxp3. PLoS One. 8(e71590)2013.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Peng S, Shen L, Tian M, Li H and Wang S: Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway. Exp Ther Med 21: 134, 2021.
APA
Peng, S., Shen, L., Tian, M., Li, H., & Wang, S. (2021). Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway. Experimental and Therapeutic Medicine, 21, 134. https://doi.org/10.3892/etm.2020.9566
MLA
Peng, S., Shen, L., Tian, M., Li, H., Wang, S."Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway". Experimental and Therapeutic Medicine 21.2 (2021): 134.
Chicago
Peng, S., Shen, L., Tian, M., Li, H., Wang, S."Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway". Experimental and Therapeutic Medicine 21, no. 2 (2021): 134. https://doi.org/10.3892/etm.2020.9566
Copy and paste a formatted citation
x
Spandidos Publications style
Peng S, Shen L, Tian M, Li H and Wang S: Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway. Exp Ther Med 21: 134, 2021.
APA
Peng, S., Shen, L., Tian, M., Li, H., & Wang, S. (2021). Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway. Experimental and Therapeutic Medicine, 21, 134. https://doi.org/10.3892/etm.2020.9566
MLA
Peng, S., Shen, L., Tian, M., Li, H., Wang, S."Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway". Experimental and Therapeutic Medicine 21.2 (2021): 134.
Chicago
Peng, S., Shen, L., Tian, M., Li, H., Wang, S."Poly(ADP‑ribose) polymerase‑1 inhibitor ameliorates dextran sulfate sodium‑induced colitis in mice by regulating the balance of Th17/Treg cells and inhibiting the NF‑κB signaling pathway". Experimental and Therapeutic Medicine 21, no. 2 (2021): 134. https://doi.org/10.3892/etm.2020.9566
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team