Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy in vitro

  • Authors:
    • Yang Li
    • Huacai Shi
    • Rui Chen
    • Shanyao Zhou
    • Si Lei
    • Yanling She
  • View Affiliations / Copyright

    Affiliations: Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 146
    |
    Published online on: December 16, 2020
       https://doi.org/10.3892/etm.2020.9577
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skeletal muscle atrophy is a well‑known adverse effect of long‑term glucocorticoid (GC) therapy. MicroRNAs (miRNAs or miRs) and long non‑coding RNAs (lncRNAs) are important regulators in a number of physiological and pathological processes. However, the role of miRNAs and lncRNAs in the regulation of GC‑treated muscle atrophy remains poorly understood. In the current study, muscular atrophy was induced and the results indicated that C2C12 myotubes were thinner than normal, while the expression of muscle ring finger protein 1 and Atrogin‑1 was increased. The expression of nine miRNAs and seven lncRNAs associated with proliferation and differentiation were analyzed in a dexamethasone (DEX)‑induced muscle atrophy cell model. In addition, the mRNA expression of the downstream targets of lncRNAs that were differentially expressed between DEX‑treated and control cells were determined. The results indicated that the expression of miR‑133a, miR‑133b, miR‑206 and five lncRNAs (increased Atrolnc‑1, Dum, MAR1, linc‑MD1 and decreased Myolinc) were significantly different between the DEX and the control group. Furthermore, the relative mRNA expression of Wnt5a and MyoD was significantly different between the two groups. The results of the current study indicated that some important miRNAs and lncRNAs are associated with DEX‑induced muscle atrophy and have the potential to be further developed as a diagnostic tool for this condition.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Schakman O, Kalista S, Barbé C, Loumaye A and Thissen JP: Glucocorticoid-induced skeletal muscle atrophy. Int J Biochem Cell Biol. 45:2163–2172. 2013.PubMed/NCBI View Article : Google Scholar

2 

Rhen T and Cidlowski JA: Antiinflammatory action of glucocorticoids-new mechanisms for old drugs. N Engl J Med. 353:1711–1723. 2005.PubMed/NCBI View Article : Google Scholar

3 

Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, et al: Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11:517–531. 2010.PubMed/NCBI View Article : Google Scholar

4 

Ma K, Mallidis C, Bhasin S, Mahabadi V, Artaza J, Gonzalez-Cadavid N, Arias J and Salehian B: Glucocorticoid-induced skeletal muscle atrophy is associated with upregulation of myostatin gene expression. Am J Physiol Endocrinol Metab. 285:E363–E371. 2003.PubMed/NCBI View Article : Google Scholar

5 

Waddell DS, Baehr LM, van den Brandt J, Johnsen SA, Reichardt HM, Furlow JD and Bodine SC: The glucocorticoid receptor and FOXO1 synergistically activate the skeletal muscle atrophy-associated MuRF1 gene. Am J Physiol Endocrinol Metab. 295:E785–E797. 2008.PubMed/NCBI View Article : Google Scholar

6 

Braun TP, Szumowski M, Levasseur PR, Grossberg AJ, Zhu X, Agarwal A and Marks DL: Muscle atrophy in response to cytotoxic chemotherapy is dependent on intact glucocorticoid signaling in skeletal muscle. PLoS One. 9(e106489)2014.PubMed/NCBI View Article : Google Scholar

7 

Braun TP and Marks DL: The regulation of muscle mass by endogenous glucocorticoids. Front Physiol. 6(12)2015.PubMed/NCBI View Article : Google Scholar

8 

Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, et al: Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 13:170–182. 2011.PubMed/NCBI View Article : Google Scholar

9 

Bodine SC and Furlow JD: Glucocorticoids and skeletal muscle. Adv Exp Med Biol. 872:145–176. 2015.PubMed/NCBI View Article : Google Scholar

10 

Schakman O, Gilson H, Kalista S and Thissen JP: Mechanisms of muscle atrophy induced by glucocorticoids. Horm Res. 72 (Suppl 1):S36–S41. 2009.PubMed/NCBI View Article : Google Scholar

11 

Zhao SQ, Xu SQ, Cheng J, Cao XL, Zhang Y, Zhou WP, Huang YJ, Wang J and Hu XM: Anti-inflammatory effect of external use of escin on cutaneous inflammation: Possible involvement of glucocorticoids receptor. Chin J Nat Med. 16:105–112. 2018.PubMed/NCBI View Article : Google Scholar

12 

Zheng B, Ohkawa S, Li H, Roberts-Wilson TK and Price SR: FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J. 24:2660–2669. 2010.PubMed/NCBI View Article : Google Scholar

13 

Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC and Furlow JD: A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure. Am J Physiol Endocrinol Metab. 302:E1210–E1220. 2012.PubMed/NCBI View Article : Google Scholar

14 

Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, et al: Identification of ubiquitin ligases required for skeletal muscle atrophy. Science. 294:1704–1708. 2001.PubMed/NCBI View Article : Google Scholar

15 

Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD and Glass DJ: The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 14:395–403. 2004.PubMed/NCBI View Article : Google Scholar

16 

Li J, Chan MC, Yu Y, Bei Y, Chen P, Zhou Q, Cheng L, Chen L, Ziegler O, Rowe GC, et al: miR-29b contributes to multiple types of muscle atrophy. Nat Commun. 8(15201)2017.PubMed/NCBI View Article : Google Scholar

17 

Horak M, Novak J and Bienertova-Vasku J: Muscle-specific microRNAs in skeletal muscle development. Dev Biol. 410:1–13. 2016.PubMed/NCBI View Article : Google Scholar

18 

Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet. 38:228–233. 2006.PubMed/NCBI View Article : Google Scholar

19 

McCarthy JJ and Esser KA: MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol (1985). 102:306–313. 2007.PubMed/NCBI View Article : Google Scholar

20 

Soares RJ, Cagnin S, Chemello F, Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M: Involvement of microRNAs in the regulation of muscle wasting during catabolic conditions. J Biol Chem. 289:21909–21925. 2014.PubMed/NCBI View Article : Google Scholar

21 

Walden TB, Timmons JA, Keller P, Nedergaard J and Cannon B: Distinct expression of muscle-specific microRNAs (myomirs) in brown adipocytes. J Cell Physiol. 218:444–449. 2009.PubMed/NCBI View Article : Google Scholar

22 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004.PubMed/NCBI View Article : Google Scholar

23 

Ivey KN and Srivastava D: microRNAs as developmental regulators. Cold Spring Harb Perspect Biol. 7(a008144)2015.PubMed/NCBI View Article : Google Scholar

24 

Lei Z, Sluijter JP and van Mil A: MicroRNA therapeutics for cardiac regeneration. Mini Rev Med Chem. 15:441–451. 2015.PubMed/NCBI View Article : Google Scholar

25 

Shen H, Liu T, Fu L, Zhao S, Fan B, Cao J and Li X: Identification of microRNAs involved in dexamethasone-induced muscle atrophy. Mol Cell Biochem. 381:105–113. 2013.PubMed/NCBI View Article : Google Scholar

26 

Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, Hindi SM, Mamchaoui K, Mouly V, Döring C, et al: A novel long non-coding RNA myolinc regulates myogenesis through TDP-43 and Filip1. J Mol Cell Biol. 10:102–117. 2018.PubMed/NCBI View Article : Google Scholar

27 

Xiong W, Jiang YX, Ai YQ, Liu S, Wu XR, Cui JG, Qin JY, Liu Y, Xia YX, Ju YH, et al: Microarray analysis of long non-coding RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Asian Pac J Cancer Prev. 16:3395–3402. 2015.PubMed/NCBI View Article : Google Scholar

28 

Chen R, Jiang T, She Y, Xie S, Zhou S, Li C, Ou J and Liu Y: Comprehensive analysis of lncRNAs and mRNAs with associated co-expression and ceRNA networks in C2C12 myoblasts and myotubes. Gene. 647:164–173. 2018.PubMed/NCBI View Article : Google Scholar

29 

Boltaña S, Valenzuela-Miranda D, Aguilar A, Mackenzie S and Gallardo-Escárate C: Long noncoding RNAs (lncRNAs) dynamics evidence immunomodulation during ISAV-Infected Atlantic salmon (Salmo salar). Sci Rep. 6(22698)2016.PubMed/NCBI View Article : Google Scholar

30 

Sun L, Si M, Liu X, Choi JM, Wang Y, Thomas SS, Peng H and Hu Z: Long-noncoding RNA Atrolnc-1 promotes muscle wasting in mice with chronic kidney disease. J Cachexia Sarcopenia Muscle. 9:962–974. 2018.PubMed/NCBI View Article : Google Scholar

31 

Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A and Bozzoni I: A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 147:358–369. 2011.PubMed/NCBI View Article : Google Scholar

32 

Li Y, Meng X, Li G, Zhou Q and Xiao J: Noncoding RNAs in muscle atrophy. Adv Exp Med Biol. 1088:249–266. 2018.PubMed/NCBI View Article : Google Scholar

33 

Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G and Zhang BT: Long noncoding RNA lncMUMA reverses established skeletal muscle atrophy following mechanical unloading. Mol Ther. 26:2669–2680. 2018.PubMed/NCBI View Article : Google Scholar

34 

Legnini I, Morlando M, Mangiavacchi A, Fatica A and Bozzoni I: A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell. 53:506–514. 2014.PubMed/NCBI View Article : Google Scholar

35 

Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, Chen X, Huang Y, Jauch R, Esteban MA, et al: LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 25:335–350. 2015.PubMed/NCBI View Article : Google Scholar

36 

Zhang ZK, Li J, Guan D, Liang C, Zhuo Z, Liu J, Lu A, Zhang G and Zhang BT: A newly identified lncRNA MAR1 acts as a miR-487b sponge to promote skeletal muscle differentiation and regeneration. J Cachexia Sarcopenia Muscle. 9:613–626. 2018.PubMed/NCBI View Article : Google Scholar

37 

Fappi A, Neves JC, Sanches LN, Massaroto E, Silva PV, Sikusawa GY, Brandão TPC, Chadi G and Zanoteli E: Skeletal muscle response to deflazacort, dexamethasone and methylprednisolone. Cells. 8(406)2019.PubMed/NCBI View Article : Google Scholar

38 

Troncoso R, Paredes F, Parra V, Gatica D, Vásquez-Trincado C, Quiroga C, Bravo-Sagua R, López-Crisosto C, Rodriguez AE, Oyarzún AP, et al: Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle. 13:2281–2295. 2014.PubMed/NCBI View Article : Google Scholar

39 

Becker DE: Basic and clinical pharmacology of glucocorticosteroids. Anesth Prog. 60:25–32. 2013.PubMed/NCBI View Article : Google Scholar

40 

Son YH, Jang EJ, Kim YW and Lee JH: Sulforaphane prevents dexamethasone-induced muscle atrophy via regulation of the Akt/Foxo1 axis in C2C12 myotubes. Biomed Pharmacother. 95:1486–1492. 2017.PubMed/NCBI View Article : Google Scholar

41 

Chen R, Jiang T, Lei S, She Y, Shi H, Zhou S, Ou J and Liu Y: Expression of circular RNAs during C2C12 myoblast differentiation and prediction of coding potential based on the number of open reading frames and N6-methyladenosine motifs. Cell Cycle. 17:1832–1845. 2018.PubMed/NCBI View Article : Google Scholar

42 

Massaccesi L, Goi G, Tringali C, Barassi A, Venerando B and Papini N: Dexamethasone-induced skeletal muscle atrophy increases O-GlcNAcylation in C2C12 cells. J Cell Biochem. 117:1833–1842. 2016.PubMed/NCBI View Article : Google Scholar

43 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

44 

Townley-Tilson WD, Callis TE and Wang D: MicroRNAs 1, 133, and 206: Critical factors of skeletal and cardiac muscle development, function, and disease. Int J Biochem Cell Biol. 42:1252–1255. 2010.PubMed/NCBI View Article : Google Scholar

45 

Amirouche A, Jahnke VE, Lunde JA, Koulmann N, Freyssenet DG and Jasmin BJ: Muscle-specific microRNA-206 targets multiple components in dystrophic skeletal muscle representing beneficial adaptations. Am J Physiol Cell Physiol. 312:C209–C221. 2017.PubMed/NCBI View Article : Google Scholar

46 

Liu C, Wang M, Chen M, Zhang K, Gu L, Li Q, Yu Z, Li N and Meng Q: miR-18a induces myotubes atrophy by down-regulating IgfI. Int J Biochem Cell Biol. 90:145–154. 2017.PubMed/NCBI View Article : Google Scholar

47 

Antoniou A, Mastroyiannopoulos NP, Uney JB and Phylactou LA: miR-186 inhibits muscle cell differentiation through myogenin regulation. J Biol Chem. 289:3923–3935. 2014.PubMed/NCBI View Article : Google Scholar

48 

Lei S, She Y, Zeng J, Chen R, Zhou S and Shi H: Expression patterns of regulatory lncRNAs and miRNAs in muscular atrophy models induced by starvation in vitro and in vivo. Mol Med Rep. 20:4175–4185. 2019.PubMed/NCBI View Article : Google Scholar

49 

Mercatelli N, Fittipaldi S, De Paola E, Dimauro I, Paronetto MP, Jackson MJ and Caporossi D: MiR-23-TrxR1 as a novel molecular axis in skeletal muscle differentiation. Sci Rep. 7(7219)2017.PubMed/NCBI View Article : Google Scholar

50 

Hou L, Xu J, Jiao Y, Li H, Pan Z, Duan J, Gu T, Hu C and Wang C: MiR-27b promotes muscle development by inhibiting MDFI expression. Cell Physiol Biochem. 46:2271–2283. 2018.PubMed/NCBI View Article : Google Scholar

51 

Oray M, Abu Samra K, Ebrahimiadib N, Meese H and Foster CS: Long-term side effects of glucocorticoids. Expert Opin Drug Saf. 15:457–465. 2016.PubMed/NCBI View Article : Google Scholar

52 

Stout A, Friedly J and Standaert CJ: Systemic absorption and side effects of locally injected glucocorticoids. PM R. 11:409–419. 2019.PubMed/NCBI View Article : Google Scholar

53 

Matsuzaka Y, Kishi S, Aoki Y, Komaki H, Oya Y, Takeda S and Hashido K: Three novel serum biomarkers, miR-1, miR-133a, and miR-206 for Limb-girdle muscular dystrophy, Facioscapulohumeral muscular dystrophy, and becker muscular dystrophy. Environ Health Prev Med. 19:452–458. 2014.PubMed/NCBI View Article : Google Scholar

54 

Li G, Li QS, Li WB, Wei J, Chang WK, Chen Z, Qiao HY, Jia YW, Tian JH and Liang BS: miRNA targeted signaling pathway in the early stage of denervated fast and slow muscle atrophy. Neural Regen Res. 11:1293–1303. 2016.PubMed/NCBI View Article : Google Scholar

55 

Luo W, Chen J, Li L, Ren X, Cheng T, Lu S, Lawal RA, Nie Q, Zhang X and Hanotte O: c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 26:426–442. 2019.PubMed/NCBI View Article : Google Scholar

56 

Lin CH, Jackson AL, Guo J, Linsley PS and Eisenman RN: Myc-regulated microRNAs attenuate embryonic stem cell differentiation. EMBO J. 28:3157–3170. 2009.PubMed/NCBI View Article : Google Scholar

57 

Eischen CM, Packham G, Nip J, Fee BE, Hiebert SW, Zambetti GP and Cleveland JL: Bcl-2 is an apoptotic target suppressed by both c-Myc and E2F-1. Oncogene. 20:6983–6993. 2001.PubMed/NCBI View Article : Google Scholar

58 

Alessio E, Buson L, Chemello F, Peggion C, Grespi F, Martini P, Massimino ML, Pacchioni B, Millino C, Romualdi C, et al: Single cell analysis reveals the involvement of the long non-coding RNA Pvt1 in the modulation of muscle atrophy and mitochondrial network. Nucleic Acids Res. 47:1653–1670. 2019.PubMed/NCBI View Article : Google Scholar

59 

van de Worp WR, Theys J, van Helvoort A and Langen RC: Regulation of muscle atrophy by microRNAs: ‘AtromiRs’ as potential target in cachexia. Curr Opin Clin Nutr Metab Care. 21:423–429. 2018.PubMed/NCBI View Article : Google Scholar

60 

Hildebrandt T, Shope S, Varangis E, Klein D, Pfaff DW and Yehuda R: Exercise reinforcement, stress, and β-endorphins: An initial examination of exercise in anabolic-androgenic steroid dependence. Drug Alcohol Depend. 139:86–92. 2014.PubMed/NCBI View Article : Google Scholar

61 

Ng TP, Lu Y, Choo RW, Tan CT, Nyunt MS, Gao Q, Mok EW and Larbi A: Dysregulated homeostatic pathways in sarcopenia among frail older adults. Aging Cell. 17(e12842)2018.PubMed/NCBI View Article : Google Scholar

62 

Zhu M, Liu J, Xiao J, Yang L, Cai M, Shen H, Chen X, Ma Y, Hu S, Wang Z, et al: Lnc-mg is a long non-coding RNA that promotes myogenesis. Nat Commun. 8(14718)2017.PubMed/NCBI View Article : Google Scholar

63 

Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GW II, Thum T and Heymans S: Cardiolinc network. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 12:415–425. 2015.PubMed/NCBI View Article : Google Scholar

64 

Ebert MS, Neilson JR and Sharp PA: MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods. 4:721–726. 2007.PubMed/NCBI View Article : Google Scholar

65 

Cichewicz MA, Kiran M, Przanowska RK, Sobierajska E, Shibata Y and Dutta A: MUNC, an enhancer RNA upstream from the MYOD gene, induces a subgroup of myogenic transcripts in trans independently of MyoD. Mol Cell Biol. 38:e00655–17. 2018.PubMed/NCBI View Article : Google Scholar

66 

Mueller AC, Cichewicz MA, Dey BK, Layer R, Reon BJ, Gagan JR and Dutta A: MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol. 35:498–513. 2015.PubMed/NCBI View Article : Google Scholar

67 

Li Z, Cai B, Abdalla BA, Zhu X, Zheng M, Han P, Nie Q and Zhang X: LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway. J Cachexia Sarcopenia Muscle. 10:391–410. 2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li Y, Shi H, Chen R, Zhou S, Lei S and She Y: Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>. Exp Ther Med 21: 146, 2021.
APA
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., & She, Y. (2021). Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>. Experimental and Therapeutic Medicine, 21, 146. https://doi.org/10.3892/etm.2020.9577
MLA
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., She, Y."Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>". Experimental and Therapeutic Medicine 21.2 (2021): 146.
Chicago
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., She, Y."Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>". Experimental and Therapeutic Medicine 21, no. 2 (2021): 146. https://doi.org/10.3892/etm.2020.9577
Copy and paste a formatted citation
x
Spandidos Publications style
Li Y, Shi H, Chen R, Zhou S, Lei S and She Y: Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>. Exp Ther Med 21: 146, 2021.
APA
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., & She, Y. (2021). Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>. Experimental and Therapeutic Medicine, 21, 146. https://doi.org/10.3892/etm.2020.9577
MLA
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., She, Y."Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>". Experimental and Therapeutic Medicine 21.2 (2021): 146.
Chicago
Li, Y., Shi, H., Chen, R., Zhou, S., Lei, S., She, Y."Role of miRNAs and lncRNAs in dexamethasone‑induced myotube atrophy <em>in vitro</em>". Experimental and Therapeutic Medicine 21, no. 2 (2021): 146. https://doi.org/10.3892/etm.2020.9577
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team