Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review)

  • Authors:
    • Feng Hu
    • Meiyong Li
    • Fengyu Han
    • Qing Zhang
    • Yuhao Zeng
    • Weifang Zhang
    • Xiaoshu Cheng
  • View Affiliations / Copyright

    Affiliations: Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Laboratory Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Cardiology, The Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China, Department of Medical Education, The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 173
    |
    Published online on: December 27, 2020
       https://doi.org/10.3892/etm.2020.9604
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cardiac fibrosis is a hallmark of cardiac remodeling associated with nearly all forms of heart disease. Clinically, no effective therapeutic drugs aim to inhibit cardiac fibrosis, owing to the complex etiological heterogeneity and pathogenesis of this disease. A two‑in‑one protein structure, a ubiquitous expression profile and unique biophysical characteristics enable the involvement of transient receptor potential melastatin‑subfamily member 7 (TRPM7) in the pathogenesis and development of fibrosis‑related cardiac diseases, such as heart failure (HF), cardiomyopathies, arrhythmia and hyperaldosteronism. In response to a variety of stimuli, multiple bioactive molecules can activate TRPM7 and related signaling pathways, leading to fibroblast proliferation, differentiation and extracellular matrix production in cardiac fibroblasts. TRPM7‑mediated Ca2+ signaling and TGF‑β1 signaling pathways are critical for the formation of fibrosis. Accumulating evidence has demonstrated that TRPM7 is a potential pharmacological target for halting the development of fibrotic cardiac diseases. Reliable drug‑like molecules for further development of high‑affinity in vivo drugs targeting TRPM7 are urgently needed. The present review discusses the widespread and significant role of TRPM7 in cardiac fibrosis and focuses on its potential as a therapeutic target for alleviating heart fibrogenesis.
View Figures

Figure 1

Figure 2

View References

1 

Weber KT, Sun Y and Díez J: Fibrosis: A living tissue and the infarcted heart. J Am Coll Cardiol. 52:2029–2031. 2008.PubMed/NCBI View Article : Google Scholar

2 

Khan R and Sheppard R: Fibrosis in heart disease: Understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology. 118:10–24. 2006.PubMed/NCBI View Article : Google Scholar

3 

Klesen A, Jakob D, Emig R, Kohl P, Ravens U and Peyronnet R: Cardiac fibroblasts: Active players in (atrial) electrophysiology? Herzschrittmacherther Elektrophysiol. 29:62–69. 2018.PubMed/NCBI View Article : Google Scholar

4 

Sontia B, Montezano AC, Paravicini T, Tabet F and Touyz RM: Downregulation of renal TRPM7 and increased inflammation and fibrosis in aldosterone-infused mice: Effects of magnesium. Hypertension. 51:915–921. 2008.PubMed/NCBI View Article : Google Scholar

5 

Leask A: Getting to the heart of the matter: New insights into cardiac fibrosis. Circ Res. 116:1269–1276. 2015.PubMed/NCBI View Article : Google Scholar

6 

Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li Y, Wang H, Shen Y, Tomlinson B, Chan P, et al: Endothelial Forkhead Box Transcription Factor P1 Regulates Pathological Cardiac Remodeling Through Transforming Growth Factor-β1-Endothelin-1 Signal Pathway. Circulation. 140:665–680. 2019.PubMed/NCBI View Article : Google Scholar

7 

Frangogiannis NG: Fibroblasts and the extracellular matrix in right ventricular disease. Cardiovasc Res. 113:1453–1464. 2017.PubMed/NCBI View Article : Google Scholar

8 

Travers JG, Kamal FA, Robbins J, Yutzey KE and Blaxall BC: Cardiac Fibrosis: The Fibroblast Awakens. Circ Res. 118:1021–1040. 2016.PubMed/NCBI View Article : Google Scholar

9 

Moore-Morris T, Guimarães-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu Y, Dalton ND, Cedenilla M, et al: Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest. 124:2921–2934. 2014.PubMed/NCBI View Article : Google Scholar

10 

Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB, et al: Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med. 13:952–961. 2007.PubMed/NCBI View Article : Google Scholar

11 

Quijada P, Trembley MA and Small EM: The Role of the Epicardium During Heart Development and Repair. Circ Res. 126:377–394. 2020.PubMed/NCBI View Article : Google Scholar

12 

Simões FC, Cahill TJ, Kenyon A, Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian E, Weinberger M, et al: Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat Commun. 11(600)2020.PubMed/NCBI View Article : Google Scholar

13 

Sundberg C, Ivarsson M, Gerdin B and Rubin K: Pericytes as collagen-producing cells in excessive dermal scarring. Lab Invest. 74:452–466. 1996.PubMed/NCBI

14 

Samanta A, Hughes TET and Moiseenkova-Bell VY: Transient Receptor Potential (TRP) Channels. Subcell Biochem. 87:141–165. 2018.PubMed/NCBI View Article : Google Scholar

15 

Kraft R and Harteneck C: The mammalian melastatin-related transient receptor potential cation channels: An overview. Pflugers Arch. 451:204–211. 2005.PubMed/NCBI View Article : Google Scholar

16 

Clark K, Middelbeek J, Morrice NA, Figdor CG, Lasonder E and van Leeuwen FN: Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS One. 3(e1876)2008.PubMed/NCBI View Article : Google Scholar

17 

Li M, Jiang J and Yue L: Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol. 127:525–537. 2006.PubMed/NCBI View Article : Google Scholar

18 

Zhang Z, Yu H, Huang J, Faouzi M, Schmitz C, Penner R and Fleig A: The TRPM6 kinase domain determines the Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem. 289:5217–5227. 2014.PubMed/NCBI View Article : Google Scholar

19 

Hofmann T, Chubanov V, Gudermann T and Montell C: TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol. 13:1153–1158. 2003.PubMed/NCBI View Article : Google Scholar

20 

Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE and McNulty S: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 26:159–178. 2006.PubMed/NCBI View Article : Google Scholar

21 

Yue Z, Zhang Y, Xie J, Jiang J and Yue L: Transient receptor potential (TRP) channels and cardiac fibrosis. Curr Top Med Chem. 13:270–282. 2013.PubMed/NCBI View Article : Google Scholar

22 

Rios FJ, Zou ZG, Harvey AP, Harvey KY, Nosalski R, Anyfanti P, Camargo LL, Lacchini S, Ryazanov AG, Ryazanova L, et al: Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res. 116:721–735. 2020.PubMed/NCBI View Article : Google Scholar

23 

Antunes TT, Callera GE, He Y, Yogi A, Ryazanov AG, Ryazanova LV, Zhai A, Stewart DJ, Shrier A and Touyz RM: Transient Receptor Potential Melastatin 7 Cation Channel Kinase: New Player in Angiotensin II-Induced Hypertension. Hypertension. 67:763–773. 2016.PubMed/NCBI View Article : Google Scholar

24 

Clapham DE: TRP channels as cellular sensors. Nature. 426:517–524. 2003.PubMed/NCBI View Article : Google Scholar

25 

Duan J, Li Z, Li J, Hulse RE, Santa-Cruz A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J and Clapham DE: Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc Natl Acad Sci USA. 115:E8201–E8210. 2018.PubMed/NCBI View Article : Google Scholar

26 

Zou ZG, Rios FJ, Montezano AC and Touyz RM: TRPM7, Magnesium, and Signaling. Int J Mol Sci. 20(1877)2019.PubMed/NCBI View Article : Google Scholar

27 

Suzuki S, Lis A, Schmitz C, Penner R and Fleig A: The TRPM7 kinase limits receptor-induced calcium release by regulating heterotrimeric G-proteins. Cell Mol Life Sci. 75:3069–3078. 2018.PubMed/NCBI View Article : Google Scholar

28 

Nadolni W and Zierler S: The Channel-Kinase TRPM7 as Novel Regulator of Immune System Homeostasis. Cells. 7(109)2018.PubMed/NCBI View Article : Google Scholar

29 

Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME and Clapham DE: Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation. 128:101–114. 2013.PubMed/NCBI View Article : Google Scholar

30 

Huang Y, Leng TD, Inoue K, Yang T, Liu M, Horgen FD, Fleig A, Li J and Xiong ZG: TRPM7 channels play a role in high glucose-induced endoplasmic reticulum stress and neuronal cell apoptosis. J Biol Chem. 293:14393–14406. 2018.PubMed/NCBI View Article : Google Scholar

31 

Chiang YF, Chen HY, Lee IT, Chien LS, Huang JH, Kolisek M, Cheng FC and Tsai SW: Magnesium-responsive genes are downregulated in diabetic patients after a three-month exercise program on a bicycle ergometer. J Chin Med Assoc. 82:495–499. 2019.PubMed/NCBI View Article : Google Scholar

32 

Sun HS: Role of TRPM7 in cerebral ischaemia and hypoxia. J Physiol. 595:3077–3083. 2017.PubMed/NCBI View Article : Google Scholar

33 

Chen M, Zhang W, Shi J and Jiang S: TGF-β1-Induced Airway Smooth Muscle Cell Proliferation Involves TRPM7-Dependent Calcium Influx via TGFβR/SMAD3. Mol Immunol. 103:173–181. 2018.PubMed/NCBI View Article : Google Scholar

34 

Voringer S, Schreyer L, Nadolni W, Meier MA, Woerther K, Mittermeier C, Ferioli S, Singer S, Holzer K, Zierler S, et al: Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene. 39:2328–2344. 2020.PubMed/NCBI View Article : Google Scholar

35 

Yee NS: Role of TRPM7 in Cancer: Potential as Molecular Biomarker and Therapeutic Target. Pharmaceuticals (Basel). 10(39)2017.PubMed/NCBI View Article : Google Scholar

36 

Lal N, Bhardwaj S, Lalgudi Ganesan S, Sharma R and Jain P: Case of hypomagnesemia with secondary hypocalcemia with a novel TRPM6 mutation. Neurol India. 66:1795–1800. 2018.PubMed/NCBI View Article : Google Scholar

37 

Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A and Ryazanov AG: TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun. 1(109)2010.PubMed/NCBI View Article : Google Scholar

38 

Wang Y, Chen L, Wang K, Da Y, Zhou M, Yan H, Zheng D, Zhong S, Cai S, Zhu H, et al: Suppression of TRPM2 reduces renal fibrosis and inflammation through blocking TGF-β1-regulated JNK activation. Biomed Pharmacother. 120(109556)2019.PubMed/NCBI View Article : Google Scholar

39 

Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, et al: LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature. 411:590–595. 2001.PubMed/NCBI View Article : Google Scholar

40 

Chokshi R, Matsushita M and Kozak JA: Sensitivity of TRPM7 channels to Mg2+ characterized in cellfree patches of Jurkat T lymphocytes. Am J Physiol Cell Physiol. 302:C1642–C1651. 2012.PubMed/NCBI View Article : Google Scholar

41 

Runnels LW, Yue L and Clapham DE: The TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol. 4:329–336. 2002.PubMed/NCBI View Article : Google Scholar

42 

Deason-Towne F, Perraud AL and Schmitz C: Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal. 24:2070–2075. 2012.PubMed/NCBI View Article : Google Scholar

43 

Abiria SA, Krapivinsky G, Sah R, Santa-Cruz AG, Chaudhuri D, Zhang J, Adstamongkonkul P, DeCaen PG and Clapham DE: TRPM7 senses oxidative stress to release Zn2+ from unique intracellular vesicles. Proc Natl Acad Sci USA. 114:E6079–E6088. 2017.PubMed/NCBI View Article : Google Scholar

44 

Clark K, Langeslag M, van Leeuwen B, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K and van Leeuwen FN: TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J. 25:290–301. 2006.PubMed/NCBI View Article : Google Scholar

45 

Clark K, Middelbeek J, Dorovkov MV, Figdor CG, Ryazanov AG, Lasonder E and van Leeuwen FN: The alpha-kinases TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly domain of myosin IIA, IIB and IIC. FEBS Lett. 582:2993–2997. 2008.PubMed/NCBI View Article : Google Scholar

46 

Clark K, Middelbeek J, Lasonder E, Dulyaninova NG, Morrice NA, Ryazanov AG, Bresnick AR, Figdor CG and van Leeuwen FN: TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J Mol Biol. 378:790–803. 2008.PubMed/NCBI View Article : Google Scholar

47 

Dorovkov MV and Ryazanov AG: Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem. 279:50643–50646. 2004.PubMed/NCBI View Article : Google Scholar

48 

Dorovkov MV, Kostyukova AS and Ryazanov AG: Phosphorylation of annexin A1 by TRPM7 kinase: A switch regulating the induction of an α-helix. Biochemistry. 50:2187–2193. 2011.PubMed/NCBI View Article : Google Scholar

49 

Krapivinsky G, Krapivinsky L, Manasian Y and Clapham DE: The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell. 157:1061–1072. 2014.PubMed/NCBI View Article : Google Scholar

50 

Ryazanova LV, Dorovkov MV, Ansari A and Ryazanov AG: Characterization of the protein kinase activity of TRPM7/ChaK1, a protein kinase fused to the transient receptor potential ion channel. J Biol Chem. 279:3708–3716. 2004.PubMed/NCBI View Article : Google Scholar

51 

Matsushita M, Kozak JA, Shimizu Y, McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT, Cahalan MD, et al: Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J Biol Chem. 280:20793–20803. 2005.PubMed/NCBI View Article : Google Scholar

52 

Desai BN, Krapivinsky G, Navarro B, Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey IS, Manasian Y, et al: Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev Cell. 22:1149–1162. 2012.PubMed/NCBI View Article : Google Scholar

53 

Yu Y, Chen S, Xiao C, Jia Y, Guo J, Jiang J and Liu P: TRPM7 is involved in angiotensin II induced cardiac fibrosis development by mediating calcium and magnesium influx. Cell Calcium. 55:252–260. 2014.PubMed/NCBI View Article : Google Scholar

54 

Song C, Bae Y, Jun J, Lee H, Kim ND, Lee KB, Hur W, Park JY and Sim T: Identification of TG100-115 as a new and potent TRPM7 kinase inhibitor, which suppresses breast cancer cell migration and invasion. Biochim Biophys Acta Gen Subj. 1861:947–957. 2017.PubMed/NCBI View Article : Google Scholar

55 

Yang CW, Liu H, Li XD, Sui SG and Liu YF: Salvianolic acid B protects against acute lung injury by decreasing TRPM6 and TRPM7 expressions in a rat model of sepsis. J Cell Biochem. 119:701–711. 2018.PubMed/NCBI View Article : Google Scholar

56 

Liu A, Wu J, Yang C, Wu Y, Zhang Y, Zhao F, Wang H, Yuan L, Song L, Zhu T, et al: TRPM7 in CHBP-induced renoprotection upon ischemia reperfusion-related injury. Sci Rep. 8(5510)2018.PubMed/NCBI View Article : Google Scholar

57 

Al Hattab D and Czubryt MP: A primer on current progress in cardiac fibrosis. Can J Physiol Pharmacol. 95:1091–1099. 2017.PubMed/NCBI View Article : Google Scholar

58 

Jalife J and Kaur K: Atrial remodeling, fibrosis, and atrial fibrillation. Trends Cardiovasc Med. 25:475–484. 2015.PubMed/NCBI View Article : Google Scholar

59 

Schirone L, Forte M, Palmerio S, Yee D, Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A, et al: A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid Med Cell Longev. 2017(3920195)2017.PubMed/NCBI View Article : Google Scholar

60 

Yue L, Xie J and Nattel S: Molecular determinants of cardiac fibroblast electrical function and therapeutic implications for atrial fibrillation. Cardiovasc Res. 89:744–753. 2011.PubMed/NCBI View Article : Google Scholar

61 

Zhang YH, Sun HY, Chen KH, Du XL, Liu B, Cheng LC, Li X, Jin MW and Li GR: Evidence for functional expression of TRPM7 channels in human atrial myocytes. Basic Res Cardiol. 107(282)2012.PubMed/NCBI View Article : Google Scholar

62 

González A, López B and Díez J: Fibrosis in hypertensive heart disease: Role of the renin-angiotensin-aldosterone system. Med Clin North Am. 88:83–97. 2004.PubMed/NCBI View Article : Google Scholar

63 

Olson ER, Shamhart PE, Naugle JE and Meszaros JG: Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension. 51:704–711. 2008.PubMed/NCBI View Article : Google Scholar

64 

Manabe I, Shindo T and Nagai R: Gene expression in fibroblasts and fibrosis: Involvement in cardiac hypertrophy. Circ Res. 91:1103–1113. 2002.PubMed/NCBI View Article : Google Scholar

65 

Parekh AB: Calcium signalling in health and disease. Semin Cell Dev Biol. 94:1–2. 2019.PubMed/NCBI View Article : Google Scholar

66 

Fan D, Takawale A, Lee J and Kassiri Z: Cardiac fibroblasts, fibrosis and extracellular matrix remodeling in heart disease. Fibrogenesis Tissue Repair. 5(15)2012.PubMed/NCBI View Article : Google Scholar

67 

Du J, Xie J, Zhang Z, Tsujikawa H, Fusco D, Silverman D, Liang B and Yue L: TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res. 106:992–1003. 2010.PubMed/NCBI View Article : Google Scholar

68 

Wu Y, Liu Y, Pan Y, Lu C, Xu H, Wang X, Liu T, Feng K and Tang Y: MicroRNA-135a inhibits cardiac fibrosis induced by isoproterenol via TRPM7 channel. Biomed Pharmacother. 104:252–260. 2018.PubMed/NCBI View Article : Google Scholar

69 

Dragún M, Gažová A, Kyselovič J, Hulman M and Máťuš M: TRP Channels Expression Profile in Human End-Stage Heart Failure. Medicina (Kaunas). 55(380)2019.PubMed/NCBI View Article : Google Scholar

70 

Morgan JP, Erny RE, Allen PD, Grossman W and Gwathmey JK: Abnormal intracellular calcium handling, a major cause of systolic and diastolic dysfunction in ventricular myocardium from patients with heart failure. Circulation. 81:121–132. 1990.PubMed/NCBI

71 

Altura BM, Kostellow AB, Zhang A, Li W, Morrill GA, Gupta RK and Altura BT: Expression of the nuclear factor-kappaB and proto-oncogenes c-fos and c-jun are induced by low extracellular Mg2+ in aortic and cerebral vascular smooth muscle cells: Possible links to hypertension, atherogenesis, and stroke. Am J Hypertens. 16:701–707. 2003.

72 

Touyz RM and Yao G: Up-regulation of vascular and renal mitogen-activated protein kinases in hypertensive rats is normalized by inhibitors of the Na+/Mg2+ exchanger. Clin Sci (Lond). 105:235–242. 2003.PubMed/NCBI View Article : Google Scholar

73 

Baldoli E and Maier JA: Silencing TRPM7 mimics the effects of magnesium deficiency in human microvascular endothelial cells. Angiogenesis. 15:47–57. 2012.PubMed/NCBI View Article : Google Scholar

74 

Bates-Withers C and Sah RandClapham DE: TRPM7, the Mg(2+) inhibited channel and kinase. Adv Exp Med Biol. 704:173–183. 2011.PubMed/NCBI View Article : Google Scholar

75 

Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, van Leeuwen FN and Touyz RM: Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension. 56:453–462. 2010.PubMed/NCBI View Article : Google Scholar

76 

Schiffrin EL and Touyz RM: Calcium, magnesium, and oxidative stress in hyperaldosteronism. Circulation. 111:830–831. 2005.PubMed/NCBI View Article : Google Scholar

77 

Miller BA and Zhang W: TRP channels as mediators of oxidative stress. Adv Exp Med Biol. 704:531–544. 2011.PubMed/NCBI View Article : Google Scholar

78 

Sun Y: Myocardial repair/remodelling following infarction: Roles of local factors. Cardiovasc Res. 81:482–490. 2009.PubMed/NCBI View Article : Google Scholar

79 

Swynghedauw B: Molecular mechanisms of myocardial remodeling. Physiol Rev. 79:215–262. 1999.PubMed/NCBI View Article : Google Scholar

80 

Parajuli N, Valtuille L, Basu R, Famulski KS, Halloran PF, Sergi C and Oudit GY: Determinants of ventricular arrhythmias in human explanted hearts with dilated cardiomyopathy. Eur J Clin Invest. 45:1286–1296. 2015.PubMed/NCBI View Article : Google Scholar

81 

Demir T, Yumrutas O, Cengiz B, Demiryurek S, Unverdi H, Kaplan DS, Bayraktar R, Ozkul N and Bagcı C: Evaluation of TRPM (transient receptor potential melastatin) genes expressions in myocardial ischemia and reperfusion. Mol Biol Rep. 41:2845–2849. 2014.PubMed/NCBI View Article : Google Scholar

82 

Ortega A, Roselló-Lletí E, Tarazón E, Gil-Cayuela C, Lago F, González-Juanatey JR, Martinez-Dolz L, Portolés M and Rivera M: TRPM7 is down-regulated in both left atria and left ventricle of ischaemic cardiomyopathy patients and highly related to changes in ventricular function. ESC Heart Fail. 3:220–224. 2016.PubMed/NCBI View Article : Google Scholar

83 

Guo JL, Yu Y, Jia YY, Ma YZ, Zhang BY, Liu PQ, Chen SR and Jiang JM: Transient receptor potential melastatin 7 (TRPM7) contributes to H2O2-induced cardiac fibrosis via mediating Ca(2+) influx and extracellular signal-regulated kinase 1/2 (ERK1/2) activation in cardiac fibroblasts. J Pharmacol Sci. 125:184–192. 2014.PubMed/NCBI View Article : Google Scholar

84 

Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H and Tang Y: Astragaloside IV inhibits cardiac fibrosis via miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol. 249(112404)2020.PubMed/NCBI View Article : Google Scholar

85 

Lu J, Wang QY, Zhou Y, Lu XC, Liu YH, Wu Y, Guo Q, Ma YT and Tang YQ: AstragalosideIV against cardiac fibrosis by inhibiting TRPM7 channel. Phytomedicine. 30:10–17. 2017.PubMed/NCBI View Article : Google Scholar

86 

Olson ER, Shamhart PE, Naugle JE and Meszaros JG: Angiotensin II-induced extracellular signal-regulated kinase 1/2 activation is mediated by protein kinase Cdelta and intracellular calcium in adult rat cardiac fibroblasts. Hypertension. 51:704–711. 2008.PubMed/NCBI View Article : Google Scholar

87 

Li S, Li M, Yi X, Guo F, Zhou Y, Chen S and Wu X: TRPM7 channels mediate the functional changes in cardiac fibroblasts induced by angiotensin II. Int J Mol Med. 39:1291–1298. 2017.PubMed/NCBI View Article : Google Scholar

88 

Zhou Y, Yi X, Wang T and Li M: Effects of angiotensin II on transient receptor potential melastatin 7 channel function in cardiac fibroblasts. Exp Ther Med. 9:2008–2012. 2015.PubMed/NCBI View Article : Google Scholar

89 

Zhong H, Wang T, Lian G, Xu C, Wang H and Xie L: TRPM7 regulates angiotensin II-induced sinoatrial node fibrosis in sick sinus syndrome rats by mediating Smad signaling. Heart Vessels. 33:1094–1105. 2018.PubMed/NCBI View Article : Google Scholar

90 

Xu F, Liu C, Zhou D and Zhang L: TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J Histochem Cytochem. 64:157–167. 2016.PubMed/NCBI View Article : Google Scholar

91 

Liu KH, Zhou N, Zou Y, Yang YY, OuYang SX and Liang YM: Spleen Tyrosine Kinase (SYK) in the Progression of Peritoneal Fibrosis Through Activation of the TGF-β1/Smad3 Signaling Pathway. Med Sci Monit. 25:9346–9356. 2019.PubMed/NCBI View Article : Google Scholar

92 

Penke LR and Peters-Golden M: Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci. 76:4179–4201. 2019.PubMed/NCBI View Article : Google Scholar

93 

Overstreet JM, Samarakoon R, Meldrum KK and Higgins PJ: Redox control of p53 in the transcriptional regulation of TGF-β1 target genes through SMAD cooperativity. Cell Signal. 26:1427–1436. 2014.PubMed/NCBI View Article : Google Scholar

94 

Yu M, Huang C, Huang Y, Wu X, Li X and Li J: Inhibition of TRPM7 channels prevents proliferation and differentiation of human lung fibroblasts. Inflamm Res. 62:961–970. 2013.PubMed/NCBI View Article : Google Scholar

95 

Chubanov V, Ferioli S and Gudermann T: Assessment of TRPM7 functions by drug-like small molecules. Cell Calcium. 67:166–173. 2017.PubMed/NCBI View Article : Google Scholar

96 

Hofmann T, Schäfer S, Linseisen M, Sytik L, Gudermann T and Chubanov V: Activation of TRPM7 channels by small molecules under physiological conditions. Pflugers Arch. 466:2177–2189. 2014.PubMed/NCBI View Article : Google Scholar

97 

Schäfer S, Ferioli S, Hofmann T, Zierler S, Gudermann T and Chubanov V: Mibefradil represents a new class of benzimidazole TRPM7 channel agonists. Pflugers Arch. 468:623–634. 2016.PubMed/NCBI View Article : Google Scholar

98 

Tanai E and Frantz S: Pathophysiology of Heart Failure. Compr Physiol. 6:187–214. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang W and Cheng X: Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Exp Ther Med 21: 173, 2021.
APA
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., & Cheng, X. (2021). Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Experimental and Therapeutic Medicine, 21, 173. https://doi.org/10.3892/etm.2020.9604
MLA
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., Cheng, X."Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review)". Experimental and Therapeutic Medicine 21.2 (2021): 173.
Chicago
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., Cheng, X."Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review)". Experimental and Therapeutic Medicine 21, no. 2 (2021): 173. https://doi.org/10.3892/etm.2020.9604
Copy and paste a formatted citation
x
Spandidos Publications style
Hu F, Li M, Han F, Zhang Q, Zeng Y, Zhang W and Cheng X: Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Exp Ther Med 21: 173, 2021.
APA
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., & Cheng, X. (2021). Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review). Experimental and Therapeutic Medicine, 21, 173. https://doi.org/10.3892/etm.2020.9604
MLA
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., Cheng, X."Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review)". Experimental and Therapeutic Medicine 21.2 (2021): 173.
Chicago
Hu, F., Li, M., Han, F., Zhang, Q., Zeng, Y., Zhang, W., Cheng, X."Role of TRPM7 in cardiac fibrosis: A potential therapeutic target (Review)". Experimental and Therapeutic Medicine 21, no. 2 (2021): 173. https://doi.org/10.3892/etm.2020.9604
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team