|
1
|
Weber KT, Sun Y and Díez J: Fibrosis: A
living tissue and the infarcted heart. J Am Coll Cardiol.
52:2029–2031. 2008.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Khan R and Sheppard R: Fibrosis in heart
disease: Understanding the role of transforming growth factor-beta
in cardiomyopathy, valvular disease and arrhythmia. Immunology.
118:10–24. 2006.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Klesen A, Jakob D, Emig R, Kohl P, Ravens
U and Peyronnet R: Cardiac fibroblasts: Active players in (atrial)
electrophysiology? Herzschrittmacherther Elektrophysiol. 29:62–69.
2018.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Sontia B, Montezano AC, Paravicini T,
Tabet F and Touyz RM: Downregulation of renal TRPM7 and increased
inflammation and fibrosis in aldosterone-infused mice: Effects of
magnesium. Hypertension. 51:915–921. 2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Leask A: Getting to the heart of the
matter: New insights into cardiac fibrosis. Circ Res.
116:1269–1276. 2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Liu J, Zhuang T, Pi J, Chen X, Zhang Q, Li
Y, Wang H, Shen Y, Tomlinson B, Chan P, et al: Endothelial Forkhead
Box Transcription Factor P1 Regulates Pathological Cardiac
Remodeling Through Transforming Growth Factor-β1-Endothelin-1
Signal Pathway. Circulation. 140:665–680. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Frangogiannis NG: Fibroblasts and the
extracellular matrix in right ventricular disease. Cardiovasc Res.
113:1453–1464. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Travers JG, Kamal FA, Robbins J, Yutzey KE
and Blaxall BC: Cardiac Fibrosis: The Fibroblast Awakens. Circ Res.
118:1021–1040. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Moore-Morris T, Guimarães-Camboa N,
Banerjee I, Zambon AC, Kisseleva T, Velayoudon A, Stallcup WB, Gu
Y, Dalton ND, Cedenilla M, et al: Resident fibroblast lineages
mediate pressure overload-induced cardiac fibrosis. J Clin Invest.
124:2921–2934. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zeisberg EM, Tarnavski O, Zeisberg M,
Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT,
Roberts AB, et al: Endothelial-to-mesenchymal transition
contributes to cardiac fibrosis. Nat Med. 13:952–961.
2007.PubMed/NCBI View
Article : Google Scholar
|
|
11
|
Quijada P, Trembley MA and Small EM: The
Role of the Epicardium During Heart Development and Repair. Circ
Res. 126:377–394. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Simões FC, Cahill TJ, Kenyon A,
Gavriouchkina D, Vieira JM, Sun X, Pezzolla D, Ravaud C, Masmanian
E, Weinberger M, et al: Macrophages directly contribute collagen to
scar formation during zebrafish heart regeneration and mouse heart
repair. Nat Commun. 11(600)2020.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Sundberg C, Ivarsson M, Gerdin B and Rubin
K: Pericytes as collagen-producing cells in excessive dermal
scarring. Lab Invest. 74:452–466. 1996.PubMed/NCBI
|
|
14
|
Samanta A, Hughes TET and Moiseenkova-Bell
VY: Transient Receptor Potential (TRP) Channels. Subcell Biochem.
87:141–165. 2018.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Kraft R and Harteneck C: The mammalian
melastatin-related transient receptor potential cation channels: An
overview. Pflugers Arch. 451:204–211. 2005.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Clark K, Middelbeek J, Morrice NA, Figdor
CG, Lasonder E and van Leeuwen FN: Massive autophosphorylation of
the Ser/Thr-rich domain controls protein kinase activity of TRPM6
and TRPM7. PLoS One. 3(e1876)2008.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Li M, Jiang J and Yue L: Functional
characterization of homo- and heteromeric channel kinases TRPM6 and
TRPM7. J Gen Physiol. 127:525–537. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang Z, Yu H, Huang J, Faouzi M, Schmitz
C, Penner R and Fleig A: The TRPM6 kinase domain determines the
Mg·ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol
Chem. 289:5217–5227. 2014.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Hofmann T, Chubanov V, Gudermann T and
Montell C: TRPM5 is a voltage-modulated and
Ca(2+)-activated monovalent selective cation channel.
Curr Biol. 13:1153–1158. 2003.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Fonfria E, Murdock PR, Cusdin FS, Benham
CD, Kelsell RE and McNulty S: Tissue distribution profiles of the
human TRPM cation channel family. J Recept Signal Transduct Res.
26:159–178. 2006.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yue Z, Zhang Y, Xie J, Jiang J and Yue L:
Transient receptor potential (TRP) channels and cardiac fibrosis.
Curr Top Med Chem. 13:270–282. 2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Rios FJ, Zou ZG, Harvey AP, Harvey KY,
Nosalski R, Anyfanti P, Camargo LL, Lacchini S, Ryazanov AG,
Ryazanova L, et al: Chanzyme TRPM7 protects against cardiovascular
inflammation and fibrosis. Cardiovasc Res. 116:721–735.
2020.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Antunes TT, Callera GE, He Y, Yogi A,
Ryazanov AG, Ryazanova LV, Zhai A, Stewart DJ, Shrier A and Touyz
RM: Transient Receptor Potential Melastatin 7 Cation Channel
Kinase: New Player in Angiotensin II-Induced Hypertension.
Hypertension. 67:763–773. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Clapham DE: TRP channels as cellular
sensors. Nature. 426:517–524. 2003.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Duan J, Li Z, Li J, Hulse RE, Santa-Cruz
A, Valinsky WC, Abiria SA, Krapivinsky G, Zhang J and Clapham DE:
Structure of the mammalian TRPM7, a magnesium channel required
during embryonic development. Proc Natl Acad Sci USA.
115:E8201–E8210. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Zou ZG, Rios FJ, Montezano AC and Touyz
RM: TRPM7, Magnesium, and Signaling. Int J Mol Sci.
20(1877)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Suzuki S, Lis A, Schmitz C, Penner R and
Fleig A: The TRPM7 kinase limits receptor-induced calcium release
by regulating heterotrimeric G-proteins. Cell Mol Life Sci.
75:3069–3078. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Nadolni W and Zierler S: The
Channel-Kinase TRPM7 as Novel Regulator of Immune System
Homeostasis. Cells. 7(109)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Sah R, Mesirca P, Mason X, Gibson W,
Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME
and Clapham DE: Timing of myocardial trpm7 deletion during
cardiogenesis variably disrupts adult ventricular function,
conduction, and repolarization. Circulation. 128:101–114.
2013.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Huang Y, Leng TD, Inoue K, Yang T, Liu M,
Horgen FD, Fleig A, Li J and Xiong ZG: TRPM7 channels play a role
in high glucose-induced endoplasmic reticulum stress and neuronal
cell apoptosis. J Biol Chem. 293:14393–14406. 2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chiang YF, Chen HY, Lee IT, Chien LS,
Huang JH, Kolisek M, Cheng FC and Tsai SW: Magnesium-responsive
genes are downregulated in diabetic patients after a three-month
exercise program on a bicycle ergometer. J Chin Med Assoc.
82:495–499. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Sun HS: Role of TRPM7 in cerebral
ischaemia and hypoxia. J Physiol. 595:3077–3083. 2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Chen M, Zhang W, Shi J and Jiang S:
TGF-β1-Induced Airway Smooth Muscle Cell Proliferation Involves
TRPM7-Dependent Calcium Influx via TGFβR/SMAD3. Mol Immunol.
103:173–181. 2018.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Voringer S, Schreyer L, Nadolni W, Meier
MA, Woerther K, Mittermeier C, Ferioli S, Singer S, Holzer K,
Zierler S, et al: Inhibition of TRPM7 blocks MRTF/SRF-dependent
transcriptional and tumorigenic activity. Oncogene. 39:2328–2344.
2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Yee NS: Role of TRPM7 in Cancer: Potential
as Molecular Biomarker and Therapeutic Target. Pharmaceuticals
(Basel). 10(39)2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lal N, Bhardwaj S, Lalgudi Ganesan S,
Sharma R and Jain P: Case of hypomagnesemia with secondary
hypocalcemia with a novel TRPM6 mutation. Neurol India.
66:1795–1800. 2018.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ryazanova LV, Rondon LJ, Zierler S, Hu Z,
Galli J, Yamaguchi TP, Mazur A, Fleig A and Ryazanov AG: TRPM7 is
essential for Mg(2+) homeostasis in mammals. Nat Commun.
1(109)2010.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Wang Y, Chen L, Wang K, Da Y, Zhou M, Yan
H, Zheng D, Zhong S, Cai S, Zhu H, et al: Suppression of TRPM2
reduces renal fibrosis and inflammation through blocking
TGF-β1-regulated JNK activation. Biomed Pharmacother.
120(109556)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Nadler MJ, Hermosura MC, Inabe K, Perraud
AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg
AM, et al: LTRPC7 is a Mg.ATP-regulated divalent cation channel
required for cell viability. Nature. 411:590–595. 2001.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Chokshi R, Matsushita M and Kozak JA:
Sensitivity of TRPM7 channels to Mg2+ characterized in
cellfree patches of Jurkat T lymphocytes. Am J Physiol Cell
Physiol. 302:C1642–C1651. 2012.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Runnels LW, Yue L and Clapham DE: The
TRPM7 channel is inactivated by PIP(2) hydrolysis. Nat Cell Biol.
4:329–336. 2002.PubMed/NCBI View
Article : Google Scholar
|
|
42
|
Deason-Towne F, Perraud AL and Schmitz C:
Identification of Ser/Thr phosphorylation sites in the C2-domain of
phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal.
24:2070–2075. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Abiria SA, Krapivinsky G, Sah R,
Santa-Cruz AG, Chaudhuri D, Zhang J, Adstamongkonkul P, DeCaen PG
and Clapham DE: TRPM7 senses oxidative stress to release
Zn2+ from unique intracellular vesicles. Proc Natl Acad
Sci USA. 114:E6079–E6088. 2017.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Clark K, Langeslag M, van Leeuwen B, Ran
L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K and van Leeuwen
FN: TRPM7, a novel regulator of actomyosin contractility and cell
adhesion. EMBO J. 25:290–301. 2006.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Clark K, Middelbeek J, Dorovkov MV, Figdor
CG, Ryazanov AG, Lasonder E and van Leeuwen FN: The alpha-kinases
TRPM6 and TRPM7, but not eEF-2 kinase, phosphorylate the assembly
domain of myosin IIA, IIB and IIC. FEBS Lett. 582:2993–2997.
2008.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Clark K, Middelbeek J, Lasonder E,
Dulyaninova NG, Morrice NA, Ryazanov AG, Bresnick AR, Figdor CG and
van Leeuwen FN: TRPM7 regulates myosin IIA filament stability and
protein localization by heavy chain phosphorylation. J Mol Biol.
378:790–803. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Dorovkov MV and Ryazanov AG:
Phosphorylation of annexin I by TRPM7 channel-kinase. J Biol Chem.
279:50643–50646. 2004.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Dorovkov MV, Kostyukova AS and Ryazanov
AG: Phosphorylation of annexin A1 by TRPM7 kinase: A switch
regulating the induction of an α-helix. Biochemistry. 50:2187–2193.
2011.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Krapivinsky G, Krapivinsky L, Manasian Y
and Clapham DE: The TRPM7 chanzyme is cleaved to release a
chromatin-modifying kinase. Cell. 157:1061–1072. 2014.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ryazanova LV, Dorovkov MV, Ansari A and
Ryazanov AG: Characterization of the protein kinase activity of
TRPM7/ChaK1, a protein kinase fused to the transient receptor
potential ion channel. J Biol Chem. 279:3708–3716. 2004.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Matsushita M, Kozak JA, Shimizu Y,
McLachlin DT, Yamaguchi H, Wei FY, Tomizawa K, Matsui H, Chait BT,
Cahalan MD, et al: Channel function is dissociated from the
intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J
Biol Chem. 280:20793–20803. 2005.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Desai BN, Krapivinsky G, Navarro B,
Krapivinsky L, Carter BC, Febvay S, Delling M, Penumaka A, Ramsey
IS, Manasian Y, et al: Cleavage of TRPM7 releases the kinase domain
from the ion channel and regulates its participation in Fas-induced
apoptosis. Dev Cell. 22:1149–1162. 2012.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yu Y, Chen S, Xiao C, Jia Y, Guo J, Jiang
J and Liu P: TRPM7 is involved in angiotensin II induced cardiac
fibrosis development by mediating calcium and magnesium influx.
Cell Calcium. 55:252–260. 2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Song C, Bae Y, Jun J, Lee H, Kim ND, Lee
KB, Hur W, Park JY and Sim T: Identification of TG100-115 as a new
and potent TRPM7 kinase inhibitor, which suppresses breast cancer
cell migration and invasion. Biochim Biophys Acta Gen Subj.
1861:947–957. 2017.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Yang CW, Liu H, Li XD, Sui SG and Liu YF:
Salvianolic acid B protects against acute lung injury by decreasing
TRPM6 and TRPM7 expressions in a rat model of sepsis. J Cell
Biochem. 119:701–711. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Liu A, Wu J, Yang C, Wu Y, Zhang Y, Zhao
F, Wang H, Yuan L, Song L, Zhu T, et al: TRPM7 in CHBP-induced
renoprotection upon ischemia reperfusion-related injury. Sci Rep.
8(5510)2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Al Hattab D and Czubryt MP: A primer on
current progress in cardiac fibrosis. Can J Physiol Pharmacol.
95:1091–1099. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Jalife J and Kaur K: Atrial remodeling,
fibrosis, and atrial fibrillation. Trends Cardiovasc Med.
25:475–484. 2015.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Schirone L, Forte M, Palmerio S, Yee D,
Nocella C, Angelini F, Pagano F, Schiavon S, Bordin A, Carrizzo A,
et al: A Review of the Molecular Mechanisms Underlying the
Development and Progression of Cardiac Remodeling. Oxid Med Cell
Longev. 2017(3920195)2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Yue L, Xie J and Nattel S: Molecular
determinants of cardiac fibroblast electrical function and
therapeutic implications for atrial fibrillation. Cardiovasc Res.
89:744–753. 2011.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Zhang YH, Sun HY, Chen KH, Du XL, Liu B,
Cheng LC, Li X, Jin MW and Li GR: Evidence for functional
expression of TRPM7 channels in human atrial myocytes. Basic Res
Cardiol. 107(282)2012.PubMed/NCBI View Article : Google Scholar
|
|
62
|
González A, López B and Díez J: Fibrosis
in hypertensive heart disease: Role of the
renin-angiotensin-aldosterone system. Med Clin North Am. 88:83–97.
2004.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Olson ER, Shamhart PE, Naugle JE and
Meszaros JG: Angiotensin II-induced extracellular signal-regulated
kinase 1/2 activation is mediated by protein kinase Cdelta and
intracellular calcium in adult rat cardiac fibroblasts.
Hypertension. 51:704–711. 2008.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Manabe I, Shindo T and Nagai R: Gene
expression in fibroblasts and fibrosis: Involvement in cardiac
hypertrophy. Circ Res. 91:1103–1113. 2002.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Parekh AB: Calcium signalling in health
and disease. Semin Cell Dev Biol. 94:1–2. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Fan D, Takawale A, Lee J and Kassiri Z:
Cardiac fibroblasts, fibrosis and extracellular matrix remodeling
in heart disease. Fibrogenesis Tissue Repair. 5(15)2012.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Du J, Xie J, Zhang Z, Tsujikawa H, Fusco
D, Silverman D, Liang B and Yue L: TRPM7-mediated Ca2+
signals confer fibrogenesis in human atrial fibrillation. Circ Res.
106:992–1003. 2010.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wu Y, Liu Y, Pan Y, Lu C, Xu H, Wang X,
Liu T, Feng K and Tang Y: MicroRNA-135a inhibits cardiac fibrosis
induced by isoproterenol via TRPM7 channel. Biomed Pharmacother.
104:252–260. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Dragún M, Gažová A, Kyselovič J, Hulman M
and Máťuš M: TRP Channels Expression Profile in Human End-Stage
Heart Failure. Medicina (Kaunas). 55(380)2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Morgan JP, Erny RE, Allen PD, Grossman W
and Gwathmey JK: Abnormal intracellular calcium handling, a major
cause of systolic and diastolic dysfunction in ventricular
myocardium from patients with heart failure. Circulation.
81:121–132. 1990.PubMed/NCBI
|
|
71
|
Altura BM, Kostellow AB, Zhang A, Li W,
Morrill GA, Gupta RK and Altura BT: Expression of the nuclear
factor-kappaB and proto-oncogenes c-fos and c-jun are induced by
low extracellular Mg2+ in aortic and cerebral vascular
smooth muscle cells: Possible links to hypertension, atherogenesis,
and stroke. Am J Hypertens. 16:701–707. 2003.
|
|
72
|
Touyz RM and Yao G: Up-regulation of
vascular and renal mitogen-activated protein kinases in
hypertensive rats is normalized by inhibitors of the
Na+/Mg2+ exchanger. Clin Sci (Lond).
105:235–242. 2003.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Baldoli E and Maier JA: Silencing TRPM7
mimics the effects of magnesium deficiency in human microvascular
endothelial cells. Angiogenesis. 15:47–57. 2012.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Bates-Withers C and Sah RandClapham DE:
TRPM7, the Mg(2+) inhibited channel and kinase. Adv Exp
Med Biol. 704:173–183. 2011.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Montezano AC, Zimmerman D, Yusuf H, Burger
D, Chignalia AZ, Wadhera V, van Leeuwen FN and Touyz RM: Vascular
smooth muscle cell differentiation to an osteogenic phenotype
involves TRPM7 modulation by magnesium. Hypertension. 56:453–462.
2010.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Schiffrin EL and Touyz RM: Calcium,
magnesium, and oxidative stress in hyperaldosteronism. Circulation.
111:830–831. 2005.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Miller BA and Zhang W: TRP channels as
mediators of oxidative stress. Adv Exp Med Biol. 704:531–544.
2011.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Sun Y: Myocardial repair/remodelling
following infarction: Roles of local factors. Cardiovasc Res.
81:482–490. 2009.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Swynghedauw B: Molecular mechanisms of
myocardial remodeling. Physiol Rev. 79:215–262. 1999.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Parajuli N, Valtuille L, Basu R, Famulski
KS, Halloran PF, Sergi C and Oudit GY: Determinants of ventricular
arrhythmias in human explanted hearts with dilated cardiomyopathy.
Eur J Clin Invest. 45:1286–1296. 2015.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Demir T, Yumrutas O, Cengiz B, Demiryurek
S, Unverdi H, Kaplan DS, Bayraktar R, Ozkul N and Bagcı C:
Evaluation of TRPM (transient receptor potential melastatin) genes
expressions in myocardial ischemia and reperfusion. Mol Biol Rep.
41:2845–2849. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Ortega A, Roselló-Lletí E, Tarazón E,
Gil-Cayuela C, Lago F, González-Juanatey JR, Martinez-Dolz L,
Portolés M and Rivera M: TRPM7 is down-regulated in both left atria
and left ventricle of ischaemic cardiomyopathy patients and highly
related to changes in ventricular function. ESC Heart Fail.
3:220–224. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Guo JL, Yu Y, Jia YY, Ma YZ, Zhang BY, Liu
PQ, Chen SR and Jiang JM: Transient receptor potential melastatin 7
(TRPM7) contributes to H2O2-induced cardiac
fibrosis via mediating Ca(2+) influx and extracellular
signal-regulated kinase 1/2 (ERK1/2) activation in cardiac
fibroblasts. J Pharmacol Sci. 125:184–192. 2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wei Y, Wu Y, Feng K, Zhao Y, Tao R, Xu H
and Tang Y: Astragaloside IV inhibits cardiac fibrosis via
miR-135a-TRPM7-TGF-β/Smads pathway. J Ethnopharmacol.
249(112404)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Lu J, Wang QY, Zhou Y, Lu XC, Liu YH, Wu
Y, Guo Q, Ma YT and Tang YQ: AstragalosideIV against cardiac
fibrosis by inhibiting TRPM7 channel. Phytomedicine. 30:10–17.
2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Olson ER, Shamhart PE, Naugle JE and
Meszaros JG: Angiotensin II-induced extracellular signal-regulated
kinase 1/2 activation is mediated by protein kinase Cdelta and
intracellular calcium in adult rat cardiac fibroblasts.
Hypertension. 51:704–711. 2008.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Li S, Li M, Yi X, Guo F, Zhou Y, Chen S
and Wu X: TRPM7 channels mediate the functional changes in cardiac
fibroblasts induced by angiotensin II. Int J Mol Med. 39:1291–1298.
2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Zhou Y, Yi X, Wang T and Li M: Effects of
angiotensin II on transient receptor potential melastatin 7 channel
function in cardiac fibroblasts. Exp Ther Med. 9:2008–2012.
2015.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Zhong H, Wang T, Lian G, Xu C, Wang H and
Xie L: TRPM7 regulates angiotensin II-induced sinoatrial node
fibrosis in sick sinus syndrome rats by mediating Smad signaling.
Heart Vessels. 33:1094–1105. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xu F, Liu C, Zhou D and Zhang L:
TGF-β/SMAD Pathway and Its Regulation in Hepatic Fibrosis. J
Histochem Cytochem. 64:157–167. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Liu KH, Zhou N, Zou Y, Yang YY, OuYang SX
and Liang YM: Spleen Tyrosine Kinase (SYK) in the Progression of
Peritoneal Fibrosis Through Activation of the TGF-β1/Smad3
Signaling Pathway. Med Sci Monit. 25:9346–9356. 2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Penke LR and Peters-Golden M: Molecular
determinants of mesenchymal cell activation in fibroproliferative
diseases. Cell Mol Life Sci. 76:4179–4201. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Overstreet JM, Samarakoon R, Meldrum KK
and Higgins PJ: Redox control of p53 in the transcriptional
regulation of TGF-β1 target genes through SMAD cooperativity. Cell
Signal. 26:1427–1436. 2014.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Yu M, Huang C, Huang Y, Wu X, Li X and Li
J: Inhibition of TRPM7 channels prevents proliferation and
differentiation of human lung fibroblasts. Inflamm Res. 62:961–970.
2013.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Chubanov V, Ferioli S and Gudermann T:
Assessment of TRPM7 functions by drug-like small molecules. Cell
Calcium. 67:166–173. 2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Hofmann T, Schäfer S, Linseisen M, Sytik
L, Gudermann T and Chubanov V: Activation of TRPM7 channels by
small molecules under physiological conditions. Pflugers Arch.
466:2177–2189. 2014.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Schäfer S, Ferioli S, Hofmann T, Zierler
S, Gudermann T and Chubanov V: Mibefradil represents a new class of
benzimidazole TRPM7 channel agonists. Pflugers Arch. 468:623–634.
2016.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Tanai E and Frantz S: Pathophysiology of
Heart Failure. Compr Physiol. 6:187–214. 2015.PubMed/NCBI View Article : Google Scholar
|