|
1
|
Verma M, Maruvada P and Srivastava S:
Epigenetics and cancer. Genes Dev. 18:2315–2335. 2016.
|
|
2
|
Shanmugam MK, Arfuso F, Arumugam S,
Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS,
Sethi G and Lakshmanan M: Role of novel histone modifications in
cancer. Oncotarget. 9:11414–11426. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Wang R, Xin M, Li Y, Zhang P and Zhang M:
The functions of histone modification enzymes in cancer. Curr
Protein Pept Sci. 17:438–45. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Füllgrabe J, Kavanagh E and Joseph B:
Histone onco-modifications. Oncogene. 30:3391–403. 2011.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Feijs KL, Verheugd P and Lüscher B:
Expanding functions of intracellular resident mono-ADP-ribosylation
in cell physiology. FEBS J. 280:3519–3529. 2014.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Verheugd P, Forst AH, Milke L, Herzog N,
Feijs KL, Kremmer E, Kleine H and Lüscher B: Regulation of
NF-kappaB signalling by the mono-ADP-ribosyltransferase ARTD10. Nat
Commun. 4(1683)2013.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Jwa M and Chang PE: PARP16 is a
tail-anchored endoplasmic reticulum protein required for the PERK-
and IRE1α-mediated unfolded protein response. Nat Cell Biol.
14:1223–1230. 2012.PubMed/NCBI View
Article : Google Scholar
|
|
8
|
Kistemaker HAV, Nardozza AP, Overkleeft
HS, van der Marel GA, Ladurner AG and Filippov DV: Synthesis and
macrodomain binding of Mono-ADP-Ribosylated peptides. Angew Chem
Int Ed Engl. 55:10634–10638. 2016.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Hottiger MO: ADP-ribosylation of histones
by ARTD1: An additional module of the histone code? FEBS Lett.
585:1595–1599. 2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Posavec Marjanović M, Crawford K and Ahel
I: PARP, transcription and chromatin modeling. Semin Cell Dev Biol.
63:102–113. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Ling F, Tang Y, Li M, Li QS, Li X, Yang L,
Zhao W, Jin CC, Zeng Z, Liu C, et al: Mono-ADP-ribosylation of
histone 3 at arginine-117 promotes proliferation through its
interaction with P300. Oncotarget. 8:72773–72787. 2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Verdone L, La Fortezza M, Ciccarone F,
Caiafa P, Zampieri M and Caserta M: Poly(ADP-Ribosyl)ation affects
histone acetylation and transcription. PLoS One.
10(e0144287)2015.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Kassner I, Andersson A, Fey M, Tomas M,
Ferrando-May E and Hottiger MO: SET7/9-dependent methylation of
ARTD1 at K508 stimulates poly-ADP-ribose formation after oxidative
stress. Open Biol. 3(120173)2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Tikoo K, Lau SS and Monks TJ: Histone H3
phosphorylation is coupled to poly-(ADP-ribosylation) during
reactive oxygen species-induced cell death in renal proximal
tubular epithelial cells. Mol Pharmacol. 60:394–402.
2001.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Mareike B, Laura E, Patricia V and
Bernhard L: Intracellular Mono-ADP-ribosylation in signaling and
disease. Cells. 4:569–595. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Girolamo MD and Fabrizio G: The
ADP-Ribosyl-transferases diphtheria toxin-like (ARTDs) family: An
overview. Challenges. 9(24)2018.
|
|
17
|
Sadakierska-Chudy A and Filip MG: A
comprehensive view of the epigenetic landscape. Part II: Histone
post-translational modification, nucleosome level, and chromatin
regulation by ncRNAs. Neurotox Res. 27:172–197. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Carter-O'Connell I and Cohen MS:
Identifying direct protein targets of poly-ADP-ribose polymerases
(PARPs) using engineered PARP variants-orthogonal nicotinamide
adenine dinucleotide (NAD+) analog pairs. Curr Protoc Chem Biol.
7:121–139. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Wang S, Xue X, Pharmacy SO and University
CP: PARP family and clinically used PARP Inhibitors. Guangdong
Chemical Industry. 46:134–136. 2019.(In Chinese).
|
|
20
|
Pinto AF and Schüler H: Comparative
structural analysis of the putative mono-ADP-ribosyltransferases of
the ARTD/PARP family. Curr Top Microbiol Immunol. 384:153–166.
2015.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Loseva O, Jemth AS, Bryant HE, Schüler H,
Lehtiö L, Karlberg T and Helleday T: PARP-3 Is a
Mono-ADP-ribosylase That Activates PARP-1 in the Absence of DNA. J
Biol Chem. 285:8054–8060. 2010.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Krska D, Ravulapalli R, Fieldhouse RJ,
Lugo MR and Merrill AR: C3larvin Toxin, an ADP-ribosyltransferase
from Paenibacillus larvae. J Biol Chem. 290:1639–1653.
2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Prisilla A and Chellapandi P: Structure,
function and evolution of clostridium botulinum C2 and C3 toxins:
Insight to poultry and veterinary vaccines. Curr Protn Pept.
18:412–424. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Li S and Zheng W: Mammalian sirtuins SIRT4
and SIRT7. Prog Mol Biol Transl Sci. 154:147–168. 2018.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Rahnasto-Rilla M, Lahtela-Kakkonen M and
Moaddel R: Sirtuin 6 (SIRT6) activity assays. Methods Mol Biol.
1436:259–269. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Xinxin QI and Li S: Sirtuin family and its
biological characteristics. Acta Med Sin, 2016.
|
|
27
|
Balaiya S, Abu-Amero KK, Kondkar AA and
Chalam KV: Sirtuins expression and their role in retinal diseases.
Oxid Med Cell Longev. 2017(3187594)2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
MacPherson L, Tamblyn L, Rajendra S,
Bralha F, McPherson JP and Matthews J:
2,3,7,8-Tetrachlorodibenzo-p-dioxin poly(ADP-ribose) polymerase
(TiPARP, ARTD14) is a mono-ADP-ribosyltransferase and repressor of
aryl hydrocarbon receptor transactivation. Nuclc Acids Res.
41:1604–1621. 2013.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Feijs K: Characterization of the
mono-ADP-ribosylation by ARTD10: Substrates, consequences and
reversibility. Hochschulbibliothek der Rheinisch-Westfälischen
Technischen Hochschule Aachen, 2012.
|
|
30
|
Grundy GJ, Polo LM, Zeng Z, Rulten S, Hoch
NC, Paomephan P, Xu YQ, Sweet SM, Thorne AW, Oliver AW, et al:
PARP3 is a sensor of nicked nucleosomes and monoribosylates histone
H2B(Glu2). Nat Commun. 7(12404)2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Ahuja N, Schwer B, Carobbio S, Waltregny
D, North BJ, Castronovo V, Maechler P and Verdin E: Regulation of
insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase.
J Biol Chem. 282:33583–33592. 2007.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Rezazadeh S, Yang D, Biashad SA, Firsanov
D and Gorbunova V: SIRT6 mono-ADP ribosylates KDM2A to locally
increase H3K36me2 at DNA damage sites to inhibit transcription and
promote repair. Aging. 12:11165–11184. 2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Hassa PO, Haenni SS, Elser M and Hottiger
MO: Nuclear ADP-ribosylation reactions in mammalian cells: Where
are we today and where are we going? Microbiol Mol Biol Rev.
70:789–829. 2006.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Ogata N, Ueda K, Kagamiyama H and Hayaishi
O: ADP-ribosylation of histone H1. Identification of glutamic acid
residues 2, 14, and the COOH-terminal lysine residue as
modification sites. J Biol Chem. 255:7616–7620. 1980.PubMed/NCBI
|
|
35
|
Ushiroyama T, Tanigawa Y, Tsuchiya M,
Matsuura R, Ueki M, Sugimoto O and Shimoyama M: Amino acid sequence
of histone H1 at the ADP-ribose-accepting site and ADP-ribose X
histone-H1 adduct as an inhibitor of cyclic-AMP-dependent
phosphorylation. Eur J Biochem. 151:173–177. 2010.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Riquelme PT, Burzio LO and Koide SS: ADP
ribosylation of rat liver lysine-rich histone in vitro. J Biol
Chem. 254:3018–3028. 1979.PubMed/NCBI
|
|
37
|
Ogata N, Ueda K and Hayaishi O:
ADP-ribosylation of histone H2B. Identification of glutamic acid
residue 2 as the modification site. J Biol Chem. 255:7610–7615.
1980.PubMed/NCBI
|
|
38
|
Rakhimova A, Ura S, Hsu DW, Wang HY, Pears
CJ and Lakin ND: Site-specific ADP-ribosylation of histone H2B in
response to DNA double strand breaks. Sci Rep.
7(43750)2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Golderer G and Gröbner P: ADP-ribosylation
of core histones and their acetylated subspecies. Biochem J.
277:607–610. 1991.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Dan MB: European geosciences union general
assembly. Nuclc Acids Res. 38:6350–6362. 2016.
|
|
41
|
Kleine H, Poreba E, Lesniewicz K, Hassa
PO, Hottiger MO, Litchfield DW, Shilton B and Lüscher B:
Substrate-assisted catalysis by PARP10 limits its activity to
mono-ADP-ribosylation. Mol Cell. 32:57–69. 2008.PubMed/NCBI View Article : Google Scholar
|
|
42
|
García-Salcedo JA, Gijón P, Nolan DP,
Tebabi P and Pays E: A chromosomal SIR2 homologue with both histone
NAD-dependent ADP-ribosyltransferase and deacetylase activities is
involved in DNA repair in Trypanosoma brucei. EMBO J. 22:5851–5862.
2003.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Graves DJ, Huiatt TW, Zhou H, Huang HY and
Mcmahon KK: Regulatory role of arginine-specific
mono(ADP-Ribosyl)transferase in muscle cells. Adv Exp Med Biol.
419:305–313. 1997.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Schwab CJ, Colville MJ, Fullerton AT and
Mcmahon KK: Evidence of endogenous mono-ADP-ribosylation of cardiac
proteins via anti-ADP-ribosylarginine immunoreactivity. Proc Soc
Exp Biol Med. 223:389–396. 2010.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Meyer T and Hilz H: Production of
anti-(ADP-ribose) antibodies with the aid of a
dinucleotide-pyrophosphatase-resistant hapten and their application
for the detection of mono(ADP-ribosyl)ated polypeptides. Eur J
Biochem. 155:157–165. 2010.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Osago H, Terashima M, Hara N, Yamada K and
Tsuchiya M: A new detection method for arginine-specific
ADP-ribosylation of protein-a combinational use of
anti-ADP-ribosylarginine antibody and ADP-ribosylarginine
hydrolase. J Biochem Biophys Methods. 70:1014–1019. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
van der Heden van Noort GJ: Chemical tools
to study protein ADP-ribosylation. ACS Omega. 5:1743–1751.
2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Liu Q, Marel GAVD and Filippov DV:
Chemical ADP-ribosylation: Mono-ADPr-peptides and oligo-ADP-ribose.
Organ Biomol Chem. 17:5460–5474. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Moyle PM and Muir TW: Method for the
synthesis of mono-ADP-ribose conjugated peptides. J Am Chem Soc.
132:15878–15880. 2010.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Vivelo CA and Leung AK: Proteomics
approaches to identify mono-(ADP-ribosyl)ated and
poly(ADP-ribosyl)ated proteins. Proteomics. 15:203–217.
2015.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Lu AZ, Abo R, Ren Y, Gui B, Mo JR,
Blackwell D, Wigle T, Keilhack H and Niepel M: Enabling drug
discovery for the PARP protein family through the detection of
mono-ADP-ribosylation. Biochem Pharmacol. 168:97–106.
2019.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Han W, Li X and Fu X: The macro domain
protein family: Structure, functions, and their potential
therapeutic implications. Mutat Res. 727:86–103. 2011.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Feijs KLH, Forst AH, Verheugd P and
Lüscher B: Macrodomain-containing proteins: Regulating new
intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell
Biol. 14:443–451. 2013.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Forst AH, Karlberg T, Herzog N, Thorsell
AG, Gross A, Feijs KL, Verheugd P, Kursula P, Nijmeijer B, Kremmer
E, et al: Recognition of mono-ADP-ribosylated ARTD10 substrates by
ARTD8 macrodomains. Structure. 21:426–475. 2013.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Osago H, Yamada K, Shibata T, Yoshino KI,
Hara N and Tsuchiya M: Precursor ion scanning and sequencing of
arginine-ADP-ribosylated peptide by mass spectrometry. Anal
Biochem. 393:248–254. 2009.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Perkins DN, Pappin DJC, Creasy DM and
Cottrell JS: Probability-based protein identification by searching
sequence databases using mass spectrometry data. Electrophoresis
20: 3551-3567. Electrophoresis. 20:3551–3567. 1999.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Chen J, Lam AT and Zhang Y: A
macrodomain-linked immunosorbent assay (MLISA) for
mono-ADP-ribosyltransferases. Anal Biochem. 543:132–139.
2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Leutert M, Bilan V, Gehrig P and Hottiger
MO: Identification of ADP-ribose acceptor sites on in vitro
modified proteins by liquid chromatograph-tandem mass spectrometry.
Methods Mol Biol. 1608:137–148. 2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Larsen SC, Leutert M, Bilan V, Martello R,
Jungmichel S, Young C, Hottiger MO and Nielsen ML: Proteome-wide
identification of in vivo ADP-ribose acceptor sites by liquid
chromatography-tandem mass spectrometry. Methods Mol Biol.
1608:149–162. 2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Daniels CM, Ong SE and Leung AK:
Phosphoproteomic approach to characterize protein mono- and
poly(ADP-ribosyl)ation sites from cells. J Proteome Res.
13:3510–3522. 2014.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Morgan RK and Cohen MS: A clickable
aminooxy probe for monitoring cellular ADP-ribosylation. ACS Chem
Biol. 10:1778–1784. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Messner S and Hottiger MO: Histone
ADP-ribosylation in DNA repair, replication and transcription.
Trends Cell Biol. 21:534–542. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Karch KR, Langelier MF, Pascal JM and
Garcia BA: The nucleosomal surface is the main target of histone
ADP-ribosylation in response to DNA damage. Mol Biosys.
13:2660–2671. 2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Adamietz P and Rudolph A: ADP-ribosylation
of nuclear proteins in vivo. Identification of histone H2B as a
major acceptor for mono- and poly(ADP-ribose) in dimethyl
sulfate-treated hepatoma AH 7974 cells. J Biol Chem. 259:6841–6846.
1984.PubMed/NCBI
|
|
65
|
Kreimeyer A, Adamietz P and Hilz H:
Alkylation-induced mono(ADP-ribosyl)-histones H1 and H2B.
Hydroxylamine-resistant linkage in hepatoma cells. Biol Chem.
366:537–544. 1985.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Kreimeyer A, Wielckens K, Adamietz P and
Hilz H: DNA repair-associated ADP-ribosylation in vivo.
Modification of histone H1 differs from that of the principal
acceptor proteins. J Biol Chem. 259:890–896. 1984.PubMed/NCBI
|
|
67
|
Rulten SL, Fisher AEO, Robert I, Zuma MC,
Rouleau M, Ju LM, Poirier G, Reina-San-Martin B and Caldecott KW:
PARP-3 and APLF function together to accelerate nonhomologous
end-joining. Mol Cell. 41:33–45. 2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Boulikas T: DNA strand breaks alter
histone ADP-ribosylation. Proc Natl Acad Sci USA. 86:3499–3503.
1989.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Boulikas T: Poly(ADP-ribosylated) histones
in chromatin replication. J Biol Chem. 265:14638–14647.
1990.PubMed/NCBI
|
|
70
|
Boulikas T: Relation between
carcinogenesis, chromatin structure and poly(ADP-ribosylation)
(review). Anticancer Res. 11:489–527. 1991.PubMed/NCBI
|
|
71
|
Zhang NN, Lin T, Xiao M, Li QS, Li X, Yang
L, Wang CL and Wang YL: Transcriptome sequencing analysis of
monoADPribosylation in colorectal cancer cells. Oncol Rep.
43:1413–1428. 2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Böhm L, Schneeweiss FA, Sharan RN and
Feinendegen LE: Influence of histone acetylation on the
modification of cytoplasmic and nuclear proteins by
ADP-ribosylation in response to free radicals. Biochim Biophys
Acta. 1334:149–154. 1997.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Li M, Tang Y, Li Q, Xiao M, Yang Y and
Wang Y: Mono-ADP-ribosylation of H3R117 traps 5mC hydroxylase TET1
to impair demethylation of tumor suppressor gene TFPI2. Oncogene.
38:3488–3503. 2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Tanny JC, Dowd GJ, Huang J, Hilz H and
Moazed D: An enzymatic activity in the yeast Sir2 protein that is
essential for gene silencing. Cell. 99:735–45. 1999.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Michan S and Sinclair D: Sirtuins in
mammals: Insights into their biological function. Biochem J.
404:1–13. 2007.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Laing S, Unger M, Koch-Nolte F and Haag F:
ADP-ribosylation of arginine. Amino Acids. 41:257–69.
2011.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Stevens LA, Kato J, Kasamatsu A, Oda H,
Lee DY and Moss J: The ARH and macrodomain families of
α-ADP-ribose-acceptor hydrolases catalyze α-NAD+
hydrolysis. ACS Chem Biol. 14:2576–2584. 2019.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Thomas A, Deeksha M, Kerryanne C, Luca P,
Andreja M and Ivan A: MacroD1 is a promiscuous ADP-Ribosyl
hydrolase localized to mitochondria. Front Microbiol.
9(20)2018.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Abplanalp J, Leutert M, Frugier E, Nowak
K, Feurer R, Kato J, Kistemaker HVA, Filippov DV, Moss J, Caflisch
A and Hottiger MO: Proteomic analyses identify ARH3 as a serine
mono-ADP-ribosylhydrolase. Nat Commun. 8(2055)2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Fehr AR, Channappanavar R, Jankevicius G,
Fett C, Zhao J, Athmer J, Meyerholz DK, Ahel I and Perlman S: The
conserved coronavirus macrodomain promotes virulence and suppresses
the innate immune response during severe acute respiratory syndrome
coronavirus infection. mBio. 7:e01721–16. 2016.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Eckei L, Krieg S, Bütepage M, Lehmann A,
Gross A, Lippok BE, Grimm AR, Kümmerer BM, Rossetti G, Lüscher B
and Verheugd P: The conserved macrodomains of the non-structural
proteins of Chikungunya virus and other pathogenic positive strand
RNA viruses function as mono-ADP-ribosylhydrolases. Sci Rep.
7(41746)2017.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Li C, Debing Y, Jankevicius G, Neyts J,
Ahel I, Coutard B and Canard B: Viral macro domains reverse protein
ADP-ribosylation. J Virol. 90:8478–8486. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Alhammad YMO, Kashipathy MM, Roy A, Gagné
JP, McDonald P, Gao P, Nonfoux L, Battaile KP, Johnson DK,
Holmstrom ED, et al: The SARS-CoV-2 conserved macrodomain is a
highly efficient ADP-ribosylhydrolase enzyme. bioRxiv:
2020.05.11.089375, 2020.
|
|
84
|
Munnur D and Ahel I: Reversible
mono-ADP-ribosylation of DNA breaks. FEBS J. 284:4002–4016.
2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Scarpa ES, Fabrizio G and Di Girolamo M: A
role of intracellular mono-ADP-ribosylation in cancer biology. FEBS
J. 280:3551–3562. 2013.PubMed/NCBI View Article : Google Scholar
|