|
1
|
Dalkilic I and Kunkel LM: Muscular
dystrophies: Genes to pathogenesis. Curr Opin Genet Dev.
13:231–238. 2003.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Hoffman EP, Brown RH Jr and Kunkel LM:
Dystrophin: The protein product of the Duchenne muscular dystrophy
locus. Cell. 51:919–928. 1987.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Ervasti JM and Campbell KP: A role for the
dystrophin-glycoprotein complex as a transmembrane linker between
laminin and actin. J Cell Biol. 122:809–823. 1993.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Ibraghimov-Beskrovnaya O, Ervasti JM,
Leveille CJ, Slaughter CA, Sernett SW and Campbell KP: Primary
structure of dystrophin-associated glycoproteins linking dystrophin
to the extracellular matrix. Nature. 355:696–702. 1992.PubMed/NCBI View
Article : Google Scholar
|
|
5
|
Lapidos KA, Kakkar R and McNally EM: The
Dystrophin glycoprotein complex: Signaling strength and integrity
for the sarcolemma. Circ Res. 94:1023–1031. 2004.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Constantin B: Dystrophin complex functions
as a scaffold for signalling protein. Biochim Biophys Acta.
1838:635–642. 2014.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Gaina G: Clinical and molecular diagnosis
in muscular dystrophies. Ed Intech, 2019.
|
|
8
|
Bushby K, Norwood F and Straub V: The
limb-girdle muscular dystrophies-Diagnostic strategies. Biochim
Biophys Acta. 1772:238–242. 2007.PubMed/NCBI View Article : Google Scholar
|
|
9
|
McNally EM and Pytel P: Muscle diseases:
The muscular dystrophies. Annu Rev Pathol. 2:87–109.
2007.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Matthews RA: Medical progress depends on
animal models-doesn't it? J R Soc Med. 101:95–98. 2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Barré-Sinoussi F and Montagutelli S:
Animal models are essential to biological research: Issues and
perspectives. Future Sci OA. 1(FSO63)2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Wells D: Tracking progress: An update on
animal models for Duchenne muscular dystrophy. Dis Model Mech.
11(dmm035774)2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Van Putten M, Lloyd EM, de Greef JC, Raz
V, Willmann R and Grounds MD: Mouse models for muscular
dystrophies: An overview. Dis Model Mech.
13(dmm043562)2020.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Spurney C, Gordish-Dressman H, Guerron AD,
Sali A, Pandey GS, Rawat R, Van Der Meulen JH, Cha HJ, Pistilli EE,
Partridge TA, et al: Preclinical drug trials in the mdx mouse:
Assessment of reliable and sensitive outcome measures. Muscle
Nerve. 39:591–602. 2009.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gussoni E, Soneoka Y, Strickland CD,
Buzney EA, Khan MK, Flint AF, Kunkel LM and Mulligan RC: Dystrophin
expression in the mdx mouse restored by stem cell transplantation.
Nature. 401:390–394. 1999.PubMed/NCBI View
Article : Google Scholar
|
|
16
|
Hakim CH, Wasala NB, Pan X, Kodippili K,
Yue Y, Zhang K, Yao G, Haffner B, Duan SX, Ramos J, et al: A
five-repeat micro-dystrophin gene ameliorated dystrophic phenotype
in the severe DBA/2J-mdx model of Duchenne muscular dystrophy. Mol
Ther Methods Clin Dev. 6:216–230. 2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Kornegay JN: The golden retriever model of
Duchenne muscular dystrophy. Skelet Muscle. 7(9)2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Kornegay JN, Bogan JR, Bogan DJ, Childers
MK, Li J, Nghiem P, Detwiler DA, Larsen CA, Grange RW,
Bhavaraju-Sanka RK, et al: Canine models of Duchenne muscular
dystrophy and their use in therapeutic strategies. Mamm Genome.
23:85–108. 2012.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Howell JM, Fletcher S, Kakulas BA, O'Hara
M, Lochmuller H and Karpati G: Use of the dog model for Duchenne
muscular dystrophy in gene therapy trials. Neuromuscul Disord.
7:325–328. 1997.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Wernersson R, Schierup MH, Jørgensen FG,
Gorodkin J, Panitz F, Stærfeldt HH, Christensen OF, Mailund T,
Hornshøj H, Klein A, et al: Pigs in sequence space: A 0.66X
coverage pig genome survey based on shotgun sequencing. BMC
Genomics. 6(70)2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Guiraud S, Squire SE, Edwards B, Chen H,
Burns DT, Shah N, Babbs A, Davies SG, Wynne GM, Russell AJ, et al:
Second generation compound for the modulation of utrophin in the
therapy of DMD. Hum Mol Genet. 24:4212–4224. 2015.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Witting N, Kruuse C, Nyhuus B, Prahm KP,
Citirak G, Lundgaard SJ, von Huth S, Vejlstrup N, Lindberg U, Krag
TO and Vissing J: Effect of sildenafil on skeletal and cardiac
muscle in Becker muscular dystrophy. Ann Neurol. 76:550–557.
2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Mata López S, Hammond JJ, Rigsby MB,
Balog-Alvarez CJ, Kornegay JN and Nghiem PP: A novel canine model
for Duchenne muscular dystrophy (DMD): Single nucleotide deletion
in DMD gene exon 20. Skelet Muscle. 8(16)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Whitworth KM, Lee K, Benne JA, Beaton BP,
Spate LD, Murphy SL, Samuel MS, Mao J, O'Gorman C, Walters EM, et
al: Use of the CRISPR/Cas9 system to produce genetically engineered
pigs from in vitro-derived oocytes and embryos. Biol Reprod.
91(78)2014.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Moretti A, Fonteyne L, Giesert F, Hoppmann
P, Meier AB, Bozoglu T, Baehr A, Schneider CM, Sinnecker D, Klett
K, et al: Somatic gene editing ameliorates skeletal and cardiac
muscle failure in pig and human models of Duchenne muscular
dystrophy. Nat Med. 26:207–214. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Du M, Keeling KM, Fan L, Liu X, Kovaçs T,
Sorscher E and Bedwell DM: Clinical doses of amikacin provide more
effective suppression of the human CFTR-G542X stop mutation than
gentamicin in a transgenic CF mouse model. J Mol Med (Berl).
84:573–582. 2006.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Kayali R, Ku JM, Khitrov G, Jung ME,
Prikhodko O and Bertoni C: Read-through compound 13 restores
dystrophin expression and improves muscle function in the mdx mouse
model for Duchenne muscular dystrophy. Hum Mol Genet. 21:4007–4020.
2012.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Valentine BA, Cooper BJ, de Lahunta A,
O'Quinn R and Blue JT: Canine X-linked muscular dystrophy. An
animal model of Duchenne muscular dystrophy: Clinical studies. J
Neurol Sci. 88:69–81. 1988.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Beastrom N, Lu H, Macke A, Canan BD,
Johnson EK, Penton CM, Kaspar BK, Rodino-Klapac LR, Zhou L, Janssen
PM and Montanaro F: mdx(5cv) mice manifest more severe
muscle dysfunction and diaphragm force deficits than do mdx Mice.
Am J Pathol. 179:2464–2474. 2011.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Wolfe JH: Gene therapy in large animal
models of human genetic diseases. Introduction. ILAR J. 50:107–111.
2009.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Allamand V and Campbell K: Animal models
for muscular dystrophy: Valuable tools for the development of
therapies. Hum Mol Genet. 9:2459–2467. 2000.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Acosta CA, Izal I, Ripalda P,
Douglas-Price AL and Forriol F: Gene expression and proliferation
analysis in young, aged, and osteoarthritic sheep chondrocytes
effect of growth factor treatment. J Orthop Res. 24:2087–2094.
2006.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Mouse Genome Sequencing Consortium.
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal
P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial
sequencing and comparative analysis of the mouse genome. Nature.
420:520–562. 2002.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Emery AEH and Muntoni F (eds.): Duchenne
Muscular Dystrophy. Oxford University Press, New York, NY,
2003.
|
|
35
|
Koenig M, Beggs AH, Moyer M, Scherpf S,
Heindrich K, Bettecken T, Meng G, Müller CR, Lindlöf M, Kaariainen
H, et al: The molecular basis for Duchenne versus Becker muscular
dystrophy: Correlation of severity with type of deletion. Am J Hum
Genet. 45:498–506. 1989.PubMed/NCBI
|
|
36
|
Di Blasi L, Morandi L, Barresi R,
Blasevich F, Cornelio F and Mora M: Dystrophin-associated protein
abnormalities in dystrophin-deficient muscle fibers from
symptomatic and asymptomatic Duchenne/Becker muscular dystrophy
carriers. Acta Neuropathol (Berl). 92:369–377. 1996.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Rodgers BD, Bishaw Y, Kagel D, Ramos JN
and Maricelli JW: Micro-dystrophin gene therapy partially enhances
exercise capacity in older adult mdx mice. Mol Ther Methods Clin
Dev. 17:122–132. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
McGreevy JW, Hakim CH, McIntosh MA and
Duan D: Animal models of Duchenne muscular dystrophy: From basic
mechanisms to gene therapy. Dis Model Mech. 8:195–213.
2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Koenig M, Monaco AP and Kunkel LM: The
complete sequence of dystrophin predicts a rod-shaped cytoskeletal
protein. Cell. 53:219–226. 1988.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Bulfield G, Siller WG, Wight PA and Moore
KJ: X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc
Natl Acad Sci USA. 81:1189–1192. 1984.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sicinski P, Geng Y, Ryder-Cook AS, Barnard
EA, Darlison MG and Barnard PJ: The molecular basis of muscular
dystrophy in the mdx mouse: A point mutation. Science.
244:1578–1580. 1989.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Morgan SJ, Elangbam CS, Berens S, Janovitz
E, Vitsky A, Zabka T and Conour L: Use of animal models of human
disease for nonclinical safety assessment of novel pharmaceuticals.
Toxicol Pathol. 41:508–518. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Fukada S, Morikawa D, Yamamoto Y, Yoshida
T, Sumie N, Yamaguchi M, Ito T, Miyagoe-Suzuki Y, Takeda S,
Tsujikawa K and Yamamoto H: Genetic background affects properties
of satellite cells and mdx phenotypes. Am J Pathol. 176:2414–2424.
2010.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Carnwath JW and Shotton DM: Muscular
dystrophy in the mdx mouse: Histopathology of the soleus and
extensor digitorum longus muscles. J Neurol Sci Aug. 80:39–54.
1987.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Manning J and O'Malley D: What has the mdx
mouse model of Duchenne muscular dystrophy contributed to our
understanding of this disease? J Muscle Res Cell Motil. 36:155–167.
2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
De Luca A, Nico B, Liantonio A, Didonna
MP, Fraysse B, Pierno S, Burdi R, Mangieri D, Rolland JF, Camerino
C, et al: A multidisciplinary evaluation of the effectiveness of
cyclosporine A in dystrophic mdx mice. Am J Pathol. 166:477–489.
2005.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Partridge TA, Morgan JE, Coulton GR,
Hoffman EP and Kunkel LM: Conversion of mdx myofibres from
dystrophin-negative to -positive by injection of normal myoblasts.
Nature. 337:176–179. 1989.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Roy P, Rau F, Ochala J, Messéant J,
Fraysse B, Lainé J, Agbulut O, Butler-Browne G, Furling D and Ferry
A: Dystrophin restoration therapy improves both the reduced
excitability and the force drop induced by lengthening contractions
in dystrophic mdx skeletal muscle. Skelet Muscle.
6(23)2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Im WB, Phelps FS, Copen RH, Adams EG,
Slightom JL and Chamberlain JS: Differential expression of
Dystrophin isoforms in strains of mdx mice with different
mutations. Hum Mol Genet. 5:1149–1153. 1996.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Bürger R, Willensdorfer M and Nowak MA:
Why are phenotypic mutation rates much higher than genotypic
mutation rates? Genetics. 172:197–206. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Grady RM, Teng H, Nichol MC, Cunningham
JC, Wilkinson RS and Sanes JR: Skeletal and cardiac myopathies in
mice lacking utrophin and dystrophin: A model for Duchenne muscular
dystrophy. Cell. 90:729–738. 1997.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Davies KE and Chamberlain JS: Surrogate
gene therapy for muscular dystrophy. Nat Med. 25:1473–1474.
2019.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yucel N, Chang AC, Day JW, Rosenthal N and
Blau HM: Humanizing the mdx mouse model of DMD: The long and the
short of it. NPJ Regen Med. 3(4)2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chang AC, Ong SG, LaGory EL, Kraft PE,
Giaccia AJ, Wu JC and Blau HM: Telomere shortening, and metabolic
compromise underlie dystrophic cardiomyopathy. Proc Natl Acad Sci
USA. 113:13120–13125. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Mourkioti F, Kustan J, Kraft P, Day JW,
Zhao MM, Kost-Alimova M, Protopopov A, DePinho RA, Bernstein D,
Meeker AK and Blau HM: Role of telomere dysfunction in cardiac
failure in Duchenne muscular dystrophy. Nat Cell Biol. 15:895–904.
2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wentink GH, van der Linde-Sipman JS,
Meijer AEFH, Kamphuisen HAC, van Vorstenbosch CJAHV, Hartman W and
Hendriks HJ: Myopathy with a possible recessive X-linked
inheritance in a litter of Irish Terriers. Vet Pathol. 9:328–349.
1972.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Cooper BJ, Gallagher EA, Smith CA,
Valentine BA and Winand NJ: Mosaic expression of dystrophin in
carriers of canine X-linked muscular dystrophy. Lab Invest.
62:171–178. 1990.PubMed/NCBI
|
|
58
|
Walmsley GL, Arechavala-Gomeza V,
Fernandez-Fuente M, Burke MM, Nagel N, Holder A, Stanley R,
Chandler K, Marks SL, Muntoni F, et al: A duchenne muscular
dystrophy gene hot spot mutation in dystrophin-deficient cavalier
king charles spaniels is amenable to exon 51 skipping. PLoS One.
5(e8647)2010.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Meier H: Myopathies in the dog. Cornell
Vet. 48:313–330. 1958.PubMed/NCBI
|
|
60
|
Cooper BJ, Winand NJ, Stedman H, Valentine
BA, Hoffman EP, Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN,
Avery RJ, et al: The homologue of the Duchenne locus is defective
in X-linked muscular dystrophy of dogs. Nature. 334:154–156.
1988.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sharp NJ, Kornegay JN, Van Camp SD,
Herbstreith MH, Secore SL, Kettle S, Hung WY, Constantinou CD,
Dykstra MJ, Roses AD, et al: An error in dystrophin mRNA processing
in golden retriever muscular dystrophy, an animal homologue of
Duchenne muscular dystrophy. Genomics. 13:115–121. 1992.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Schatzberg SJ, Olby NJ, Breen M, Anderson
LV, Langford CF, Dickens HF, Wilton SD, Zeiss CJ, Binns MM,
Kornegay JN, et al: Molecular analysis of a spontaneous dystrophin
‘knockout’ dog. Neuromuscul Disord. 9:289–295. 1999.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Vulin A, Barthélémy I, Goyenvalle A,
Thibaud JL, Beley C, Griffith G, Benchaouir R, le Hir M,
Unterfinger Y, Lorain S, et al: Muscle function recovery in golden
retriever muscular dystrophy after AAV1-U7 exon skipping. Mol Ther.
20:2120–2133. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wasala N, Chen SJ and Duan D: Duchenne
muscular dystrophy animal models for high-throughput drug discovery
and precision medicine. Expert Opin Drug Discov. 15:443–456.
2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Nghiem PP and Kornegay JN: Gene therapies
in canine models for Duchenne muscular dystrophy. Hum Genet.
138:483–489. 2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lunney JK: Advances in swine biomedical
model genomics. Int J Biol Sci. 3:179–184. 2007.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Klymiuk N, Blutke A, Graf A, Krause S,
Burkhardt K, Wuensch A, Krebs S, Kessler B, Zakhartchenko V, Kurome
M, et al: Dystrophin-deficient pigs provide new insights into the
hierarchy of physiological derangements of dystrophic muscle. Hum
Mol Genet. 22:4368–4382. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Muntoni F, Torelli S and Ferlini A:
Dystrophin and mutations: One gene, several proteins, multiple
phenotypes. Lancet Neurol. 2:731–740. 2003.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Yu HH, Zhao H, Qing YB, Pan WR, Jia BY,
Zhao HY, Huang XX and Wei HJ: Porcine zygote injection with
Cas9/sgRNA results in DMD-modified pig with muscle dystrophy. Int J
Mol Sci. 17(1668)2016.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Nonneman DN, Brown-Brandl T, Jones SA,
Wiedmann RT and Rohrer GA: A defect in dystrophin causes a novel
porcine stress syndrome. BMC Genomics. 13(233)2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Hollinger K, Yang CX, Montz RE, Nonneman
D, Ross JW and Selsby JT: Dystrophin insufficiency causes selective
muscle histopathology and loss of dystrophin-glycoprotein complex
assembly in pig skeletal muscle. FASEB J. 28:1600–1609.
2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Horiuchi N, Aihara N, Mizutani H, Kousaka
S, Nagafuchi T, Ochiai M, Kobayashi Y, Furuoka H, Asai T and Oishi
K: Becker muscular dystrophy-like myopathy regarded as so-called
‘fatty muscular dystrophy’ in a Pig: A case report and its
diagnostic method. J Vet Med Sci. 76:243–248. 2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Guiraud S, Aartsma-Rus A, Vieira NM,
Davies KE, van Ommen GJB and Kunkel LM: The pathogenesis and
therapy of muscular Dystrophies. Annu Rev Genomics Hum Genet.
16:281–308. 2015.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Shimizu-Motohashi Y, Komaki H, Motohashi
N, Takeda S, Yokota T and Aoki Y: Restoring Dystrophin expression
in duchenne muscular dystrophy: Current status of therapeutic
approaches. J Pers Med. 9(1)2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Dabrowski M, Bukowy-Bieryllo Z and
Zietkiewicz E: Advances in therapeutic use of a drug-stimulated
translational readthrough of premature termination codons. Mol Med.
24(25)2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Bladen CL, Salgado D, Monges S, Foncuberta
ME, Kekou K, Kosma K, Dawkins H, Lamont L, Roy AJ, Chamova T, et
al: The TREAT-NMD DMD global database: Analysis of more than 7,000
Duchenne muscular dystrophy mutations. Hum Mutat. 36:395–402.
2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Barton-Davis ER, Cordier L, Shoturma DI,
Leland SE and Sweeney HL: Aminoglycoside antibiotics restore
dystrophin function to skeletal muscles of mdx mice. J Clin Invest.
104:375–381. 1999.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Malik V, Rodino-Klapac LR, Viollet L, Wall
C, King W, Al-Dahhak R, Lewis S, Shilling CJ, Kota J,
Serrano-Munuera C, et al: Gentamicin-induced readthrough of stop
codons in Duchenne muscular dystrophy. Ann Neurol. 67:771–780.
2010.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Namgoong JH and Bertoni C: Clinical
potential of ataluren in the treatment of Duchenne muscular
dystrophy. Degener Neurol Neuromuscul Dis. 6:37–48. 2016.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Welch EM, Barton ER, Zhuo J, Tomizawa Y,
Friesen WJ, Trifillis P, Paushkin S, Patel M, Trotta CR, Hwang S,
et al: PTC124 targets genetic disorders caused by nonsense
mutations. Nature. 447:87–91. 2007.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Dranchak PK, Di Pietro E, Snowden A, Oesch
N, Braverman NE, Steinberg SJ and Hacia JG: Nonsense suppressor
therapies rescue peroxisome lipid metabolism and assembly in cells
from patients with specific PEX gene mutations. J Cell Biochem.
112:1250–1258. 2011.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Aartsma-Rus A, Janson AA, Kaman WE,
Bremmer-Bout M, den Dunnen JT, Baas F, van Ommen GJ and van
Deutekom JC: Therapeutic antisense-induced exon skipping in
cultured muscle cells from six different DMD patients. Hum Mol
Genet. 12:907–914. 2003.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Aoki Y, Nakamura A, Yokota T, Saito T,
Okazawa H, Nagata T and Takeda S: In-frame dystrophin following
exon 51-skipping improves muscle pathology and function in the exon
52-deficient mdx mouse. Mol Ther. 18:1995–2005. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
McClorey G, Moulton HM, Iversen PL,
Fletcher S and Wilton SD: Antisense oligonucleotide-induced exon
skipping restores dystrophin expression in vitro in a canine model
of DMD. Gene Ther. 13:1373–1381. 2006.PubMed/NCBI View Article : Google Scholar
|
|
85
|
van Deutekom JC, Janson AA, Ginjaar IB,
Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop
K, van der Kooi AJ, Goemans NM, et al: Local dystrophin restoration
with antisense oligonucleotide PRO051. N Engl J Med. 357:2677–2686.
2007.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Nguyen Q and Yokota T: Immortalized muscle
cell model to test the exon skipping efficacy for duchenne muscular
dystrophy. J Pers Med. 7(13)2017.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Blain AM, Greally E, McClorey G, Manzano
R, Betts CA, Godfrey C, O'Donovan L, Coursindel T, Gait MJ, Wood
MJ, et al: Peptide-conjugated phosphodiamidate oligomer-mediated
exon skipping has benefits for cardiac function in mdx and
Cmah−/−mdx mouse models of Duchenne muscular dystrophy. PLoS One.
13(e0198897)2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Ishino Y, Shinagawa H, Makino K, Amemura M
and Nakata A: Nucleotide sequence of the iap gene, responsible for
alkaline phosphatase isozyme conversion in Escherichia coli,
and identification of the gene product. J Bacteriol. 169:5429–5433.
1987.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Wright A, Nuñez JK and Doudna JA: Biology
and Applications of CRISPR Systems: Harnessing Nature's Toolbox for
Genome Engineering. Cell. 164:29–44. 2016.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Duchêne BL, Cherif K, Iyombe-Engembe JP,
Guyon A, Rousseau A, Ouellet DL, Barbeau X, Lague P and Tremblay
JP: CRISPR-induced deletion with SaCas9 restores dystrophin
expression in dystrophic models in vitro and in vivo. Mol Ther.
26:2604–2616. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Bengtsson NE, Hall JK, Odom GL, Phelps MP,
Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR and Chamberlain
JS: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates
pathophysiology in a mouse model for Duchenne muscular dystrophy.
Nat Commun. 8(14454)2017.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Gilbert R, Nalbantoglu J, Petrof BJ,
Ebihara S, Guibinga GH, Tinsley JM, Kamen A, Massie B, Davies KE
and Karpati G: Adenovirus-mediated utrophin gene transfer mitigates
the dystrophic phenotype of mdx mouse muscles. Hum Gene Ther.
10:1299–1310. 1999.PubMed/NCBI View Article : Google Scholar
|
|
93
|
McPherron AC, Lawler AM and Lee SJ:
Regulation of skeletal muscle mass in mice by a new TGF-beta
superfamily member. Nature. 387:83–90. 1997.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Acharyya S, Villalta SA, Bakkar N,
Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S,
Sahenk Z, et al: Interplay of IKK/NF-kappaB signaling in
macrophages and myofibers promotes muscle degeneration in Duchenne
muscular dystrophy. J Clin Invest. 117:889–901. 2007.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Larsen FJ, Schiffer TA, Borniquel S,
Sahlin K, Ekblom B, Lundberg JO and Weitzberg E: Dietary inorganic
nitrate improves mitochondrial efficiency in humans. Cell Metab.
13:149–159. 2011.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Barton ER, Morris L, Kawana M, Bish LT and
Toursel T: Systemic administration of L-arginine benefits mdx
skeletal muscle function. Muscle Nerve. 32:751–760. 2005.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Tinsley JM, Potter AC, Phelps SR, Fisher
R, Trickett JI and Davies KE: Amelioration of the dystrophic
phenotype of mdx mice using a truncated utrophin transgene. Nature.
384:349–353. 1996.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Khurana TS, Hoffman EP and Kunkel LM:
Identification of a chromosome 6-encoded dystrophin-related
protein. J Biol Chem. 265:16717–16720. 1990.PubMed/NCBI
|
|
99
|
Voisin V and la Porte S: Therapeutic
strategies for Duchenne and Becker dystrophies. Int Rev Cytol.
240:1–30. 2004.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Deconinck N, Tinsley J, De Backer F,
Fisher R, Kahn D, Phelps S, Davies K and Gillis JM: Expression of
truncated utrophin leads to major functional improvements in
dystrophin-deficient muscles of mice. Nat Med. 3:1216–1221.
1997.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Deconinck AE, Rafael JA, Skinner JA, Brown
SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM and
Davies KE: Utrophin-dystrophin-deficient mice as a model for
Duchenne muscular dystrophy. Cell. 90:717–727. 1997.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Grady RM, Teng H, Nichol MC, Cunningham
JC, Wilkinson RS and Sanes JR: Skeletal and cardiac myopathies in
mice lacking utrophin and dystrophin: A model for Duchenne muscular
dystrophy. Cell. 90:729–738. 1997.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Fisher R, Tinsley JM, Phelps SR, Squire
SE, Townsend ER, Martin JE and Davies KE: Non-toxic ubiquitous
over-expression of utrophin in the mdx mouse. Neuromuscul Disord.
11:713–721. 2001.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Walton JN and Nattrass FJ: On the
classification, natural history and treatment of the myopathies.
Brain. 77:169–231. 1954.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Preisler N, Lukacs Z, Vinge L, Madsen KL,
Husu E, Hansen RS, Duno M, Andersen H, Laub M and Vissing J:
Late-onset Pompe disease is prevalent in unclassified limb-girdle
muscular dystrophies. Mol Genet Metab. 110:287–289. 2013.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Bushby KM: Diagnostic criteria for the
limb-girdle muscular dystrophies: Report of the ENMC Consortium on
Limb-Girdle Dystrophies. Neuromuscul Disord. 5:71–74.
1995.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Norwood FL, Harling C, Chinnery PF, Eagle
M, Bushby K and Straub V: Prevalence of genetic muscle disease in
Northern England: In-depth analysis of a muscle clinic population.
Brain. 132:3175–3186. 2009.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Richard I, Roudaut C, Marchand S,
Baghdiguian S, Herasse M, Stockholm D, Ono Y, Suel L, Bourg N,
Sorimachi H, et al: Loss of Calpain 3 Proteolytic activity leads to
muscular dystrophy and to apoptosis-associated IkappaBalpha/nuclear
Factor kappa Pathway Perturbation in Mice. J Cell Biol.
151:1583–1590. 2000.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Bartoli M, Roudaut C, Martin S,
Fougerousse F, Suel L, Poupiot J, Gicquel E, Noulet F, Danos O and
Richard I: Safety and efficacy of AAV-mediated Calpain 3 gene
transfer in a mouse model of limb-girdle muscular dystrophy type
2A. Mol Ther. 13:250–259. 2006.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Ng R, Banks GB, Hall JK, Muir LA, Ramos
JN, Wicki J, Odom GL, Konieczny P, Seto J, Chamberlain JR and
Chamberlain JS: Animal models of muscular dystrophy. Prog Mol Biol
Transl Sci. 105:83–111. 2012.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Kramerova I, Kudryashova E, Tidball JG and
Spencer MJ: Null mutation of calpain 3 (p94) in mice causes
abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet.
13:1373–88. 2004.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Lostal W, Roudaut C, Faivre M, Charton K,
Suel L, Bourg N, Best H, Smith JE, Gohlke J, Corre G, et al: Titin
splicing regulates cardiotoxicity associated with calpain 3 gene
therapy for limb-girdle muscular dystrophy type 2A. Sci Transl Med.
11(eaat6072)2019.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Blain AM and Straub VW:
δ-Sarcoglycan-deficient muscular dystrophy: From discovery to
therapeutic approaches. Skelet Muscle. 1(13)2011.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Demonbreun A, Wyatt E, Fallon K,
Oosterbaan C, Page P, Hadhazy M, Quattrocelli M, Barefield D and
McNally E: A gene-edited mouse model of limb-girdle muscular
dystrophy 2C for testing exon skipping. Dis Models Mech.
13(dmm040832)2019.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Aartsma-Rus A and van Putten M: The use of
genetically humanized animal models for personalized medicine
approaches. Dis Model Mech. 13(dmm041673)2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Sevastre B, Blidaru A, Sárpataki O, Marcus
I and Coman C: Retrospective assessment of animals experimentation
projects in Romania-a critical analysis of non-technical summaries.
Bull UASVM Vet Med. 75:190–194. 2018.
|
|
117
|
Collins CA and Morgan JE: Duchenne's
muscular dystrophy: Animal models used to investigate pathogenesis
and develop therapeutic strategies. Int J Exp Pathol. 84:165–172.
2003.PubMed/NCBI View Article : Google Scholar
|