|
1
|
Clement J, Wong M, Poljak A, Sachdev P and
Braidy N: The plasma NAD+ metabolome is dysregulated in
‘normal’ aging. Rejuvenation Res. 22:121–130. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Surjana D, Halliday GM and Damian DL: Role
of nicotinamide in DNA damage, mutagenesis, and DNA repair. J
Nucleic Acids. 2010(157591)2010.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Braidy N, Beg J, Clement J, Khorshidi F,
Poljak A, Jayasena T, Grant R and Sachdev P: Role of nicotinamide
adenine dinucleotide and related precursors as therapeutic targets
for age-related degenerative diseases: Rationale, biochemistry,
pharmacokinetics, and outcomes. Antioxid Redox Signal. 30:251–294.
2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Horenstein AL, Sizzano F, Lusso R, Besso
FG, Ferrero E, Deaglio S, Corno F and Malavasi F: CD38 and CD157
ectoenzymes mark cell subsets in the human corneal limbus. Mol Med.
15:76–84. 2009.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Croft T, Venkatakrishnan P and Lin SJ:
NAD+ metabolism and regulation: Lessons from yeast.
Biomolecules. 10(330)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wherry EJ and Kurachi M: Molecular and
cellular insights into T cell exhaustion. Nat Rev Immunol.
15:486–499. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
7
|
Bieganowski P and Brenner C: Discoveries
of nicotinamide riboside as a nutrient and conserved NRK genes
establish a Preiss-Handler independent route to NAD+ in
fungi and humans. Cell. 117:495–502. 2004.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Canto C, Menzies KJ and Auwerx J:
NAD+ metabolism and the control of energy homeostasis: A
balancing act between mitochondria and the nucleus. Cell Metab.
22:31–53. 2015.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Verdin E: NAD+ in aging,
metabolism, and neurodegeneration. Science. 350:1208–1213.
2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Finley LW and Haigis MC: The coordination
of nuclear and mitochondrial communication during aging and calorie
restriction. Age Res Rev. 8:173–188. 2009.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Chini CC, Tarrago MG and Chini EN: NAD and
the aging process: Role in life, death and everything in between.
Mol Cell Endocrinol. 455:62–74. 2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Fang EF, Lautrup S, Hou Y, Demarest TG,
Croteau DL, Mattson MP and Bohr VA: NAD+ in aging:
Molecular mechanisms and translational implications. Trends Mol
Med. 23:899–916. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Xu P and Sauve A: Vitamin B3, the
nicotinamide adenine dinucleotides and aging. Mech Ageing Dev.
131:287–298. 2010.PubMed/NCBI View Article : Google Scholar
|
|
14
|
van de Ven RA, Santos D and Haigis MC:
Mitochondrial sirtuins and molecular mechanisms of aging. Trends
Mol Med. 23:320–331. 2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Lin SJ and Guarente L: Nicotinamide
adenine dinucleotide, a metabolic regulator of transcription,
longevity and disease. Curr Opin Cell Biol. 15:241–246.
2003.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Belenky P, Bogan KL and Brenner C: NAD+
metabolism in health and disease. Trends Biochem Sci. 32:12–19.
2007.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Mericskay M: Nicotinamide adenine
dinucleotide homeostasis and signalling in heart disease:
Pathophysiological implications and therapeutic potential. Arch
Cardiovasc Dis. 109:207–215. 2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Okabe K, Yaki K, Tobe K and Nakagawa T:
Implications of altered NAD metabolism in metabolic disorders. J
Biomed Sci. 26(34)2019.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Trammell SA, Yu L, Redpath P, Migaud ME
and Brenner C: Nicotinamide riboside is a major NAD+ precursor
vitamin in cow milk. J Nutr. 146:957–963. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Tang K, Sham H, Hui E and Kirkland JB:
Niacin deficiency causes oxidative stress in rat bone marrow cells
but not through decreased NADPH or glutathione status. J Nutr
Biochem. 19:746–753. 2008.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Yoshino J, Mills KF, Yoon MJ and Imai SI:
Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the
pathophysiology of diet- and age-induced diabetes in mice. Cell
Metab. 14:528–536. 2011.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhang H, Ryu D, Wu Y, Gariani K, Wang X,
Luan P, D'Amico D, Ropelle ER, Lutolf MP, Aebersold R, et al:
NAD+ repletion improves mitochondrial and stem cell
function and enhances life span in mice. Science. 352:1436–1443.
2016.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Mills KF, Yoshida S, Stein LR, Grozio A,
Kubota S, Sasaki Y, Redpath P, Migaud ME, Apte RS, Uchida K, et al:
Long-term administration of nicotinamide mononucleotide mitigates
age-associated physiological decline in mice. Cell Metab.
24:795–806. 2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Trammell SAJ, Schmidt MS, Weidemann BJ,
Redpath P, Jaksch F, Dellinger RW, Li Z, Dale Abel E, Migaud ME and
Brenner C: Nicotinamide riboside is uniquely and orally
bioavailable in mice and humans. Nat Commun.
7(12948)2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Martens CR, Denman BA, Mazzo MR, Armstrong
ML, Reisdorph N, McQueen MB, Chonchol M and Seals DR: Chronic
nicotinamide riboside supplementation is well-tolerated and
elevates NAD+ in healthy middle-aged and older adults.
Nat Commun. 9(1286)2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Elhassan YS, Kluckova K, Fletcher RS,
Schmidt MS, Garten A, Doig CL, Cartwright DM, Oakey L, Burley CV,
Jenkinson N, et al: Nicotinamide riboside augments the aged human
skeletal muscle NAD+ metabolome and induces
transcriptomic and anti-inflammatory signatures. Cell Rep.
28:1717–1728.e6. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Irie J, Inagaki E, Fujita M, Nakaya H,
Mitsuishi M, Yamaguchi S, Yamashita K, Shigaki S, Ono T, Yukioka H,
et al: Effect of oral administration of nicotinamide mononucleotide
on clinical parameters and nicotinamide metabolite levels in
healthy Japanese men. Endocr J. 67:153–160. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ralto KM, Rhee EP and Parikh SM:
NAD+ homeostasis in renal health and disease. Nat Rev
Nephrol. 16:99–111. 2020.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Katsyuba E, Romani M, Hofer D and Auwerx
J: NAD+ homeostasis in health and disease. Nat Metab.
2:9–31. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Johnson S and Imai S: NAD+
biosynthesis, aging, and disease. F1000Res. 7(132)2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Yamamoto T, Byun J, Zhai P, Ikeda Y, Oka S
and Sadoshima J: Nicotinamide mononucleotide, an intermediate of
NAD+ synthesis, protects the heart from ischemia and
reperfusion. PLoS One. 9(e98972)2014.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Martin AS, Abraham DM, Hershberger KA,
Bhatt DP, Mao L, Cui H, Liu J, Liu X, Muehlbauer MJ, Grimsrud PA,
et al: Nicotinamide mononucleotide requires SIRT3 to improve
cardiac function and bioenergetics in a Friedreich's ataxia
cardiomyopathy model. JCI Insight. 2(e93885)2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Ryu D, Zhang H, Ropelle ER, Sorrentino V,
Mázala DAG, Mouchiroud L, Marshall PL, Campbell MD, Ali AS, Knowels
GM, et al: NAD+ repletion improves muscle function in muscular
dystrophy and counters global PARylation. Sci Transl Med.
8(361ra139)2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Guan Y, Wang SR, Huang XZ, Xie QH, Xu YY,
Shang D and Hao CM: Nicotinamide mononucleotide, an NAD+
precursor, rescues age-associated susceptibility to AKI in a
sirtuin 1-dependent manner. J Am Soc Nephrol. 28:2337–2352.
2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Yoshino J, Baur JA and Imai SI:
NAD+ intermediates: The biology and therapeutic
potential of NMN and NR. Cell Metab. 27:513–528. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Lin JB, Kubota S, Ban N, Yoshida M,
Santeford A, Sene A, Nakamura R, Zapata N, Kubota M, Tsubota K, et
al: NAMPT-mediated NAD(+) biosynthesis is essential for vision in
mice. Cell Rep. 17:69–85. 2016.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zhao C, Li W, Duan H, Li Z, Jia Y, Zhang
S, Wang X, Zhou Q and Shi W: NAD+ precursors protect
corneal endothelial cells from UVB-induced apoptosis. Cell Physiol.
318:C796–C805. 2020.PubMed/NCBI View Article : Google Scholar
|
|
38
|
de Picciotto NE, Gano LB, Johnson LC,
Martens CR, Sindler AL, Mills KF, Imai S and Seals DR: Nicotinamide
mononucleotide supplementation reverses vascular dysfunction and
oxidative stress with aging in mice. Aging Cell. 15:522–530.
2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Wang X, Hu X, Yang Y, Takata T and Sakurai
T: Nicotinamide mononucleotide protects against β-amyloid
oligomer-induced cognitive impairment and neuronal death. Brain
Res. 1643:1–9. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Tarantini S, Valcarcel-Ares MA, Toth P,
Yabluchanskiy A, Tucsek Z, Kiss T, Hertelendy P, Kinter M, Ballabh
P, Süle Z, et al: Nicotinamide mononucleotide (NMN) supplementation
rescues cerebromicrovascular endothelial function and neurovascular
coupling responses and improves cognitive function in aged mice.
Redox Biol. 24(101192)2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Wang X, Hu X, Zhang L, Xu X and Sakurai T:
Nicotinamide mononucleotide administration after sever hypoglycemia
improves neuronal survival and cognitive function in rats. Brain
Res Bull. 160:98–106. 2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Aman Y, Qiu Y, Tao J and Fang EF:
Therapeutic potential of boosting NAD+ in aging and
age-related diseases. Transl Med Aging. 2018:30–37. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Saklayen MG: The global epidemic of the
metabolic syndrome. Curr Hypertens Rep. 20(12)2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
O'Neill S and O'Driscoll L: Metabolic
syndrome: A closer look at the growing epidemic and its associated
pathologies. Obes Rev. 16:1–12. 2015.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Canto C, Houtkooper RH, Pirinen E, Youn
DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux
PA, Cettour-Rose P, et al: The NAD(+) precursor nicotinamide
riboside enhances oxidative metabolism and protects against
high-fat diet-induced obesity. Cell Metab. 15:838–847.
2012.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Shima K, Zhu M and Kuwajima M: A role of
nicotinamide-induced increase in pancreatic beta-cell mass on blood
glucose control after discontinuation of the treatment in partially
pancreatectomized OLETF rats. Diabetes Res Clin Pract. 41:1–8.
1998.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Park SY, Lee KB, Lee MJ, Bae SC and Jang
JJ: Nicotinamide inhibits the early stage of carcinogen-induced
hepatocarcinogenesis in mice and suppresses human hepatocellular
carcinoma cell growth. J Cell Physiol. 227:899–908. 2012.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hong SM, Hwang SW, Wang T, Park CW, Ryu
YM, Jung JH, Shin JH, Kim SY, Lee JL, Kim CW, et al: Increased
nicotinamide adenine dinucleotide pool promotes colon cancer
progression by suppressing reactive oxygen species level. Cancer
Sci. 110:629–638. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Galbraith AR, Seabloom DE, Wuertz BR,
Antonides JD, Steele VE, Wattenberg LW and Ondrey FG:
Chemoprevention of lung carcinogenesis by dietary nicotinamide and
inhaled budesonide. Cancer Prev Res. 12:69–78. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Audrito V, Managò A, Gaudino F, Sorci L,
Messana VG, Raffaelli N and Deaglio S: NAD-biosynthetic and
consuming enzymes as central players of metabolic regulation of
innate and adaptive immune responses in cancer. Front Immunol.
10(1720)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Yamamoto M, Inohara H and Nakagawa T:
Targeting metabolic pathways for head and neck cancers
therapeutics. Cancer Metastasis Rev. 36:503–514. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Yaku K, Okabe K, Hikosaka K and Nakagawa
T: NAD metabolism in cancer therapeutics. Front Oncol.
8(622)2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Li X, Lei J, Mao L, Wang Q, Xu F, Ran T,
Zhou Z and He S: NAMPT and NAPRT, key enzymes in NAD salvage
synthesis pathway, are of negative prognostic value in colorectal
cancer. Front Oncol. 9(736)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lin JB and Apte RS: NAD+ and
sirtuins in retinal degenerative diseases: A look at future
therapies. Prog Retin Eye Res. 67:118–129. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Jurja S, Hincu M, Dobrescu MA, Golu AE,
Balasoiu AT and Coman M: Ocular cells and light: Harmony or
conflict? Rom J Morphol Embryol. 55:257–261. 2014.PubMed/NCBI
|
|
56
|
Jurja S, Coman M and Hincu M: The
ultraviolet influence upon soft eye tissues. Rom J Morphol Embryol.
58:45–52. 2017.PubMed/NCBI
|
|
57
|
Koenekoop RK, Wang H, Majewski J, Wang X,
Lopez I, Ren H, Chen Y, Li Y, Fishman GA, Genead M, et al:
Mutations in NMNAT1 cause Leber congenital amaurosis and identify a
new disease pathway for retinal degeneration. Nat Genet.
44:1035–1039. 2012.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Greenwald SH, Charette JR, Staniszewska M,
Shi LY, Brown SD, Stone L, Liu Q, Hicks WL, Collin GB, Bowl MR, et
al: Mouse models of NMNAT1-Leber congenital Amaurosis (LCA9)
recapitulate key features of the human disease. Am J Pathol.
186:1925–1938. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kaja S, Shah A, Haji S, Patel KB, Naumchuk
Y, Zabaneh A, Gerdes BC, Kunjukunju N, Sabates NR, Cassell MA, et
al: Nampt/PBEF/visfatin serum levels: A new biomarker for retinal
blood vessel occlusions. Clin Ophthalmol. 9:611–618.
2015.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Zabka TS, Singh J, Dhawan P, Liederer BM,
Oeh J, Kauss MA, Xiao Y, Zak M, Lin T, McCray B, et al: Retinal
toxicity, in vivo and in vitro, associated with inhibition of
nicotinamide phosphoribosyltransferase. Toxicol Sci. 144:163–172.
2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Jadeja RN, Powell FL and Jones MA: Loss of
NAMPT in aging retinal pigment epithelium reduces NAD+
availability and promotes cellular senescence. Aging. 10:1306–1323.
2018.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Jadeja RN, Thounaojam MC, Bartoli M and
Martin PM: Implications of NAD+ metabolism in the aging
retina and retinal degeneration. Oxid Med Cell Longev.
2020(2692794)2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Balaiya S, Abu-Amero KK, Kondkar AA and
Chalam KV: Sirtuins expression and their role in retinal diseases.
Oxid Med Cell Longev. 2017(3187594)2017.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Ban N, Ozawa Y, Inaba T, Miyake S,
Watanabe M, Shinmura K and Tsubota K: Light-dark condition
regulates sirtuin mRNA levels in the retina. Experimental Gerontol.
48:1212–1217. 2013.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zhang X, Henneman NF, Girardot PE, Sellers
JT, Chrenek MA, Li Y, Wang J, Brenner C, Nickerson JM and Boatright
JH: Systemic treatment with nicotinamide riboside is protective in
a mouse model of light-induced retinal degeneration. Invest
Ophthalmol Vis Sci. 61(47)2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Lin JB, Kubota S, Mostoslavsky R and Apte
RS: Role of sirtuins in retinal function under basal conditions.
Adv Exp Med Biol. 1074:561–567. 2018.PubMed/NCBI View Article : Google Scholar
|