Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 22 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)

  • Authors:
    • Xia Wu
    • Leitao Huang
    • Jichun Liu
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 678
    |
    Published online on: April 25, 2021
       https://doi.org/10.3892/etm.2021.10110
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor‑erythroid‑2‑related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch‑like ECH‑associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress‑associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Schrier RW, Abdallah JG, Weinberger HH and Abraham WT: Therapy of heart failure. Kidney Int. 57:1418–1425. 2000.PubMed/NCBI View Article : Google Scholar

2 

Rafeian-Kopaei M, Setorki M, Doudi M, Baradaran A and Nasri H: Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med. 5:927–946. 2014.PubMed/NCBI

3 

Majerczyk M, Choręza P, Mizia-Stec K, Bożentowicz-Wikarek M, Brzozowska A, Arabzada H, Owczarek AJ, Szybalska A, Grodzicki T, Więcek A, et al: Plasma level of retinol-binding protein 4, N-terminal proBNP and renal function in older patients hospitalized for heart failure. Cardiorenal Med. 8:237–248. 2018.PubMed/NCBI View Article : Google Scholar

4 

McGillicuddy FC, Moll HP, Farouk S, Damrauer SM, Ferran C and Reilly MP: Translational studies of A20 in atherosclerosis and cardiovascular disease. Adv Exp Med Biol. 809:83–101. 2014.PubMed/NCBI View Article : Google Scholar

5 

Lindblom R, Ververis K, Tortorella SM and Karagiannis TC: The early life origin theory in the development of cardiovascular disease and type 2 diabetes. Mol Biol Rep. 42:791–797. 2015.PubMed/NCBI View Article : Google Scholar

6 

Eltzschig HK and Eckle T: Ischemia and reperfusion-from mechanism to translation. Nat Med. 17:1391–1401. 2011.PubMed/NCBI View Article : Google Scholar

7 

Scolletta S and Biagioli BE: Nergetic myocardial metabolism and oxidative stress: Let's make them our friends in the fight against heart failure. Biomed Pharmacother. 64:203–207. 2010.PubMed/NCBI View Article : Google Scholar

8 

Reczek CR and Chandel NS: ROS-dependent signal transduction. Curr Opin Cell Biol. 33C:8–13. 2014.PubMed/NCBI View Article : Google Scholar

9 

Ichihara S: The pathological roles of environmental and redox stresses in cardiovascular diseases. Environ Health Prev Med. 18:177–184. 2013.PubMed/NCBI View Article : Google Scholar

10 

Brahmanaidu P, Sathibabu U and Ganapathy S: Diabetic cardiomyopathy: Molecular mechanisms, detrimental effects of conventional treatment, and beneficial effects of natural therapy. Heart Fail Rev. 24:279–299. 2019.PubMed/NCBI View Article : Google Scholar

11 

Chakraborty S and Ain R: Nitric-oxide synthase trafficking inducer is a pleiotropic regulator of endothelial cell function and signaling. J Biol Chem. 292:6600–6620. 2017.PubMed/NCBI View Article : Google Scholar

12 

Balakumar P, Singh AP and Singh M: Rodent models of heart failure. J Pharmacol Toxicol Methods. 56:1–10. 2007.PubMed/NCBI View Article : Google Scholar

13 

Furfaro AL, Traverso N, Domenicotti C, Piras S, Moretta L, Marinari UM, Pronzato MA and Nitti M: The NRF2/HO-1 axis in cancer cell growth andchemoresistance. Oxid Med Cell Longev. 2016(1958174)2016.PubMed/NCBI View Article : Google Scholar

14 

Suzuki T and Yamamoto M: Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 88:93–100. 2015.PubMed/NCBI View Article : Google Scholar

15 

Jay PY, Berul CI, Tanaka M, Ishii M, Kurachi Y and Izumo S: Cardiac conduction and arrhythmia: Insights from Nkx2.5 mutations in mouse and humans. Novartis Found Symp. 250:227–238. 2003.PubMed/NCBI

16 

Namani A, Li Y, Wang XJ and Tang X: Modulation of Nrf2 signaling pathway by nuclear receptors: Implications for cancer. Biochim Biophys Acta. 1843:1875–1885. 2014.PubMed/NCBI View Article : Google Scholar

17 

Yamamoto M, Kensler TW and Motohashi H: The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev. 98:1169–1203. 2018.PubMed/NCBI View Article : Google Scholar

18 

Li W and Kong AN: Molecular mechanisms of Nrf2-mediated antioxidant response. Mol Carcinog. 48:91–104. 2009.PubMed/NCBI View Article : Google Scholar

19 

Nguyen T, Nioi P and Pickett CB: The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 284:13291–13295. 2009.PubMed/NCBI View Article : Google Scholar

20 

Corradi D, Callegari S, Maestri R, Benussi S and Alfieri O: Structural remodeling in atrial fibrillation. Nat Clin Pract Cardiovasc Med. 5:782–796. 2008.PubMed/NCBI View Article : Google Scholar

21 

Saracino MR and Lampe JW: Phytochemical regulation of UDP-glucuronosyltransferases: Implications for cancer prevention. Nutr Cancer. 59:121–141. 2007.PubMed/NCBI View Article : Google Scholar

22 

Niture SK, Kaspar JW and Shen J: Nrf2 signaling and cell survival. Toxicol Appl Pharmacol. 244:37–42. 2010.PubMed/NCBI View Article : Google Scholar

23 

Dhamodharan U, Ponjayanthi B, Sireesh D, Bhakkiyalakshmi E and Ramkumar KM: Association of single-nucleotide polymorphisms of the KEAP1 gene with the risk of various human diseases and its functional impact using in silico analysis. Pharmacol Res. 137:205–218. 2018.PubMed/NCBI View Article : Google Scholar

24 

Tian W, Rojo de la Vega M, Schmidlin CJ, Ooi A and Zhang DD: Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). J Biol Chem. 293:2029–2040. 2018.PubMed/NCBI View Article : Google Scholar

25 

Mohan S and Gupta D: Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomed Pharmacother. 108:1866–1878. 2018.PubMed/NCBI View Article : Google Scholar

26 

Niture SK, Khatri R and Jaiswal AK: Regulation of NRF2-an update. Free Radic Biol Med. 66:36–44. 2014.PubMed/NCBI View Article : Google Scholar

27 

Katoh Y, Iida K, Kang MI, Kobayashi A, Mizukami M, Tong KI, McMahon M, Hayes JD, Itoh K and Yamamoto M: Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Arch Biochem Biophys. 433:342–350. 2005.PubMed/NCBI View Article : Google Scholar

28 

Baird L, Llères D, Swift S and Dinkova-Kostova AT: Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proc Natl Acad Sci USA. 110:15259–15264. 2013.PubMed/NCBI View Article : Google Scholar

29 

Hegedűs K, Nagy P, Gáspári Z and Juhász G: The putative HORMA domain protein Atg101 dimerizes and is required for starvation-induced and selective autophagy in Drosophila. Biomed Res Int. 2014(470482)2014.PubMed/NCBI View Article : Google Scholar

30 

Baird L and Dinkova-Kostova AT: The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 85:241–272. 2011.PubMed/NCBI View Article : Google Scholar

31 

Zhao Q, Liu Z and Huang B: PEDF improves cardiac function in rats subjected to myocardial ischemia/reperfusion injury by inhibiting ROS generation via PEDF-R. Int J Mol Med. 41:3243–3252. 2018.PubMed/NCBI View Article : Google Scholar

32 

Sporn MB and Liby KT: NRF2 and cancer: The good, the bad and the importance of context. Nat Rev Cancer. 12:564–571. 2012.PubMed/NCBI View Article : Google Scholar

33 

Cameron BD, Sekhar KR, Ofori M and Freeman ML: The role of Nrf2 in the response to normal tissue radiation injury. Radiat Res. 190:99–106. 2018.PubMed/NCBI View Article : Google Scholar

34 

Xiang MJ, Namani A, Wu SJ and Wang XL: Nrf2: Bane or blessing in cancer? J Cancer Res Clin Oncol. 140:1251–1259. 2014.PubMed/NCBI View Article : Google Scholar

35 

Lau YS, Ling WC, Murugan D and Mustafa MR: Boldine ameliorates vascular oxidative stress and endothelial dysfunction: Therapeutic implication for hypertension and diabetes. J Cardiovasc Pharmacol. 65:522–531. 2015.PubMed/NCBI View Article : Google Scholar

36 

Gillet FX, Bournaud C, Antonino de Souza Júnior JD and Grossi-de-Sa MF: Plant-parasitic nematodes: Towards understanding molecular players in stress responses. Ann Bot. 119:775–789. 2017.PubMed/NCBI View Article : Google Scholar

37 

Lu MC, Ji JA, Jiang ZY and You QD: The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An update. Med Res Rev. 36:924–963. 2016.PubMed/NCBI View Article : Google Scholar

38 

Cheng D, Wu R, Guo Y and Kong AN: Regulation of Keap1-Nrf2 signaling: The role of epigenetics. Curr Opin Toxicol. 1:134–138. 2016.PubMed/NCBI View Article : Google Scholar

39 

Chiou YS, Huang Q, Ho CT, Wang YJ and Pan MH: Directly interact with Keap1 and LPS is involved in the anti-inflammatory mechanisms of (-)-epicatechin-3-gallate in LPS-induced macrophages and endotoxemia. Free Radic Biol Med. 94:1–16. 2016.PubMed/NCBI View Article : Google Scholar

40 

Itoh K, Ye P, Matsumiya T, Tanji K and Ozaki T: Emerging functional cross-talk between the Keap1-Nrf2 system and mitochondria. J Clin Biochem Nutr. 56:91–97. 2015.PubMed/NCBI View Article : Google Scholar

41 

Zenkov NK, Menshchikova EB and Tkachev VO: Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry (Mosc). 78:19–36. 2013.PubMed/NCBI View Article : Google Scholar

42 

Tu J, Zhang X, Zhu Y, Dai Y, Li N, Yang F, Zhang Q, Brann DW and Wang R: Cell-permeable peptide targeting the Nrf2-Keap1 interaction: A potential novel therapy for global cerebral ischemia. Neurosci. 35:14727–14739. 2015.PubMed/NCBI View Article : Google Scholar

43 

Wakabayashi N, Slocum SL, Skoko JJ, Shin S and Kensler TW: When NRF2 talks, who's listening? Antioxid Redox Signal. 13:1649–1663. 2010.PubMed/NCBI View Article : Google Scholar

44 

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR and White HD: Task Force for the Universal Definition of Myocardial Infarction. Third universal definition of myocardial infarction. Nat Rev Cardiol. 9:620–633. 2012.PubMed/NCBI View Article : Google Scholar

45 

Ostadal B, Drahota Z, Houstek J, Milerova M, Ostadalova I, Hlavackova M and Kolar F: Developmental and sex difference in cardiac tolerance to ischemia/reperfusion injury: The role of mitochondria1. Can J Physiol Pharmacol. 97:808–814. 2019.PubMed/NCBI View Article : Google Scholar

46 

Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, Rand DA and Thornalley PJ: Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxid Redox Signal. 23:613–629. 2015.PubMed/NCBI View Article : Google Scholar

47 

Chai D, Zhang L, Xi S, Cheng Y, Jiang H and Hu R: Nrf2 activation induced by Sirt1 ameliorates acute lung injury after intestinal ischemia/reperfusion through NOX4-mediated gene regulation. Cell Physiol Biochem. 46:781–792. 2018.PubMed/NCBI View Article : Google Scholar

48 

Schwarz M, Lossow K, Kopp JF, Schwerdtle T and Kipp AP: Crosstalk of Nrf2 with the trace elements selenium, iron, zinc, and copper. Nutrients. 11(2112)2019.PubMed/NCBI View Article : Google Scholar

49 

Mazzei L, Docherty NG and Manucha W: Mediators and mechanisms of heat shock protein 70 based cytoprotection in obstructive nephropathy. Cell Stress Chaperones. 20:893–906. 2015.PubMed/NCBI View Article : Google Scholar

50 

Mann GE, Bonacasa B, Ishii T and Siow RC: Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones. Curr Opin Pharmacol. 9:139–145. 2009.PubMed/NCBI View Article : Google Scholar

51 

Xu B, Zhang J, Strom J, Lee S and Chen QM: Myocardial ischemic reperfusion induces de novo NRF2 protein translation. Biochim Biophys Acta. 1842:1638–1647. 2014.PubMed/NCBI View Article : Google Scholar

52 

Ashrafian H, Czibik G, Bellahcene M, Aksentijević D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byme JJ, Ludwiq C, et al: Fumarate is cardioprotective via activation of the NRF2 antioxidant pathway. Cell Metab. 15:361–371. 2012.PubMed/NCBI View Article : Google Scholar

53 

Farías JG, Carrasco-Pozo C, Carrasco Loza R, Sepúlveda N, Álvarez P, Quezada M, Quiñones J, Molina V and Castillo RL: Polyunsaturated fatty acid induces cardioprotection against ischemia- reperfusion through the inhibition of NF-kappaB and induction of NRF2. Exp Biol Med. 242:1104–1114. 2017.PubMed/NCBI View Article : Google Scholar

54 

Bhogal RH, Weston CJ, Velduis S, G D Leuvenink H, Reynolds GM, Davies S, Nyguet-Thin L, Alfaifi M, Shepard EL, Boteon Y, et al: The reactive oxygen species-mitophagy signaling pathway regulates liver endothelial cell survival during ischemia/reperfusion injury. Liver Transpl. 24:1437–1452. 2018.PubMed/NCBI View Article : Google Scholar

55 

Scherz-Shouval R and Elazar Z: ROS, mitochondria and the regulation of autophagy. Trends Cell Biol. 17:422–427. 2007.PubMed/NCBI View Article : Google Scholar

56 

Dinkova-Kostova AT and Abramov AY: The emerging role of NRF2 in mitochondrial function. Free Radic Biol Med. 88:179–188. 2015.PubMed/NCBI View Article : Google Scholar

57 

Ludtmann MH, Angelova PR, Zhang Y, Abramov AY and Dinkova-Kostova AT: NRF2 affects the efficiency of mitochondrial fatty acid oxidation. Biochem J. 457:415–424. 2014.PubMed/NCBI View Article : Google Scholar

58 

Glinka YY and Youdim MB: Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. Eur J Pharmacol. 292:329–332. 1995.PubMed/NCBI View Article : Google Scholar

59 

Baechler BL, Bloemberg D and Quadrilatero J: Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation. Autophagy. 15:1606–1619. 2019.PubMed/NCBI View Article : Google Scholar

60 

Qiu M, Zhang S, Ke L, Tang H, Zeng X and Liu J: JS-K enhances chemosensitivity of prostate cancer cells to Taxol via reactive oxygen species activation. Oncol Lett. 17:757–764. 2019.PubMed/NCBI View Article : Google Scholar

61 

Zhang Y, Sano M, Shinmura K, Tamaki K, Katsumata Y, Matsuhashi T, Morizane S, Ito H, Hishiki T, Endo J, et al: 4-hydroxy-2-nonenal protects against cardiac ischemiareperfusion injury via the NRF2-dependent pathway. J Mol Cell Cardiol. 49:576–586. 2010.PubMed/NCBI View Article : Google Scholar

62 

Anedda A, López-Bernardo E, Acosta-Iborra B, Saadeh Suleiman M, Landázuri MO and Cadenas S: The transcription factor NRF2 promotes survival by enhancing the expression of uncoupling protein 3 under conditions of oxidative stress. Free Radic Biol Med. 61C:395–407. 2013.PubMed/NCBI View Article : Google Scholar

63 

Curfman G: Stem cell therapy for heart failure: An unfulfilled promise? JAMA. 321:1186–1187. 2019.PubMed/NCBI View Article : Google Scholar

64 

Chen YL, Fan J, Cao L, Han TL, Zeng M, Xu Y, Ling Z and Yin Y: Unique mechanistic insights into the beneficial effects of angiotensin-(1-7) on the prevention of cardiac fibrosis: A metabolomic analysis of primary cardiac fibroblasts. Exp Cell Res. 378:158–170. 2019.PubMed/NCBI View Article : Google Scholar

65 

Ambrosi N, Guerrieri D, Caro F, Sanchez F, Haeublein G, Casadei D, Incardona C and Chuluyan E: Alpha lipoic acid: A therapeutic strategy that tend to limit the action of free radicals in transplantation. Int J Mol Sci. 19(102)2018.PubMed/NCBI View Article : Google Scholar

66 

Kageyama S, Saito T, Obata M, Koide RH, Ichimura Y and Komatsu M: Negative regulation of the Keap1-Nrf2 pathway by a p62/Sqstm1 splicing variant. Mol Cell Biol. 38:e00642–17. 2018.PubMed/NCBI View Article : Google Scholar

67 

Erpicum P, Rowart P, Defraigne JO, Krzesinski JM and Jouret F: What we need to know about lipid-associated injury in case of renal ischemia-reperfusion. Am J Physiol Renal Physiol. 315:F1714–F1719. 2018.PubMed/NCBI View Article : Google Scholar

68 

Lee LY, Harberg C, Matkowskyj KA, Cook S, Roenneburg D, Werner S, Johnson J and Foley DP: Overactivation of the nuclear factor (erythroid-derived 2)-like 2-antioxidant response element pathway in hepatocytes decreases hepatic ischemia/reperfusion injury in mice. Liver Transpl. 22:91–102. 2015.PubMed/NCBI View Article : Google Scholar

69 

Kaplinsky E: DAPA-HF trial: Dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure. Drugs Context. 9(2019-11-3)2020.PubMed/NCBI View Article : Google Scholar

70 

Virani SA, Sharma V, McCann M, Koehler J, Tsang B and Zieroth S: Prospective evaluation of integrated device diagnostics for heart failure management: Results of the TRIAGE-HF study. ESC Heart Fail. 5:809–817. 2018.PubMed/NCBI View Article : Google Scholar

71 

McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, et al: ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 33:1787–1847. 2012.PubMed/NCBI View Article : Google Scholar

72 

Zhu X, Oseghale AR, Nicole LH, Li B and Pace BS: Mechanisms of NRF2 activation to mediate fetal hemoglobin induction and protection against oxidative stress in sickle cell disease. Exp Biol Med (Maywood). 244:171–182. 2019.PubMed/NCBI View Article : Google Scholar

73 

Rajasekaran NS, Varadharaj S, Khanderao GD, Davidson CJ, Kannan S, Firpo MA, Zweier JL and Benjamin IJ: Sustained activation of nuclear erythroid 2-related factor 2/antioxidant response element signaling promotes reductive stress in the human mutant protein aggregation cardiomyopathy in mice. Antioxid Redox Signal. 14:957–971. 2011.PubMed/NCBI View Article : Google Scholar

74 

Ichikawa T, Li J, Meyer CJ, Janicki JS, Hannink M and Cui T: Dihydro-CDDO-trifluoroethyl amide (dh404), a novel Nrf2 activator, suppresses oxidative stress in cardiomyocytes. PLoS One. 4(e8391)2009.PubMed/NCBI View Article : Google Scholar

75 

Li J, Zhang C, Xing Y, Janicki JS, Yamamoto M, Wang XL, Tang DQ and Cui T: Up-regulation of p27(kip1) contributes to Nrf2-mediated protection against angiotensin II-induced cardiac hypertrophy. Cardiovasc Res. 90:315–324. 2011.PubMed/NCBI View Article : Google Scholar

76 

Burchfield JS, Xie M and Hill JA: Pathological ventricular remodeling: Mechanisms: Part 1 of 2. Circulation. 128:388–400. 2013.PubMed/NCBI View Article : Google Scholar

77 

Takimoto E and Kass DA: Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension. 49:241–248. 2007.PubMed/NCBI View Article : Google Scholar

78 

Guan Y, Zhou L, Zhang Y, Tian H, Li A and Han X: Effects of PP2A/Nrf2 on experimental diabetes mellitus-related cardiomyopathy by regulation of autophagy and apoptosis through ROS dependent pathway. Cell Signal. 62(109339)2019.PubMed/NCBI View Article : Google Scholar

79 

Murdoch CE, Zhang M, Cave AC and Shah AM: NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res. 71:208–215. 2006.PubMed/NCBI View Article : Google Scholar

80 

Shuai W, Kong B, Fu H, Shen C, Jiang X and Huang H: MD1 Deficiency promotes inflammatory atrial remodelling induced by high-fat diets. Can J Cardiol. 35:208–216. 2019.PubMed/NCBI View Article : Google Scholar

81 

Yu C, Lin H, Yang H, Kong SL, Zhang Q and Lee SW: Progression of systolic abnormalities in patients with ‘isolated’ diastolic heart failure and diastolic dysfunction. Circulation. 105:1195–1201. 2002.PubMed/NCBI View Article : Google Scholar

82 

Cai L, Li W, Wang G, Guo L, Jiang Y and Kang YJ: Hyperglycemia-induced apoptosis in mouse myocardium: Mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes. 51:1938–1948. 2002.PubMed/NCBI View Article : Google Scholar

83 

Fassett J, Xu X, Kwak D, Zhu G, Fassett EK, Zhang P, Wang H, Maver B, Bache RJ and Chen Y: Adenosine kinase attenuates cardiomyocyte microtubule stabilization and protects against pressure overload-induced hypertrophy and LV dysfunction. J Mol Cell Cardiol. 130:49–58. 2019.PubMed/NCBI View Article : Google Scholar

84 

Hafstad AD, Nabeebaccus AA and Shah AM: Novel aspects of ROS signalling in heart failure. Basic Res Cardiol. 108(359)2013.PubMed/NCBI View Article : Google Scholar

85 

Gupta S, Das B and Sen S: Cardiac hypertrophy: Mechanisms and therapeutic opportunities. Antioxid Redox Signal. 9:623–652. 2007.PubMed/NCBI View Article : Google Scholar

86 

Sabri A, Hughie HH and Lucchesi PA: Regulation of hypertrophic and apoptotic signaling pathways by reactive oxygen species in cardiac myocytes. Antioxid Redox Signal. 5:731–740. 2003.PubMed/NCBI View Article : Google Scholar

87 

Zhang X, Xiao Z, Yao J, Zhao G, Fa X and Niu J: Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Mol Cell Biochem. 372:169–179. 2013.PubMed/NCBI View Article : Google Scholar

88 

Zhao WY, Zhao TQ, Chen YJ, Ahokas RA and Sun Y: Oxidative stress mediates cardiac fbrosis by enhancing transforming growth factor-beta1 in hypertensive rats. Mol Cell Biochem. 317:43–50. 2008.PubMed/NCBI View Article : Google Scholar

89 

Yang T, Sun Y, Mao L, Zhang M, Li Q, Zhang L, Shi Y, Leak RK, Chen J and Zhang F: Brain ischemic preconditioning protects against ischemic injury and preserves the blood-brain barrier via oxidative signaling and Nrf2 activation. Redox Biol. 17:323–337. 2018.PubMed/NCBI View Article : Google Scholar

90 

James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, Lackland DT, LeFevre ML, MacKenzie TD, Oqedeqbe O, et al: Evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee. JAMA. 311:507–520. 2014.PubMed/NCBI View Article : Google Scholar

91 

Hu CM, Chen YH, Chiang MT and Chau LY: Heme oxygenase-1 inhibits angiotensin II-induced cardiac hypertrophy in vitro and in vivo. Circulation. 110:309–316. 2004.PubMed/NCBI View Article : Google Scholar

92 

Mancusi C, Canciello G, Izzo R, Damiano S, Grimaldi MG, Luca N, Simone G, Trimarco B and Losi MA: Left atrial dilatation: A target organ damage in young to middle-age hypertensive patients. The Campania Salute Network. Int J Cardiol. 265:229–233. 2018.PubMed/NCBI View Article : Google Scholar

93 

Wang ZH, Liu JL, Wu L, Yu Z and Yang HT: Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death Dis. 5(e1297)2014.PubMed/NCBI View Article : Google Scholar

94 

Yao SY, Liu J, Li Y, Wang M, Wang C and Xue H: Association between plasma microRNA-29a and left ventricular hypertrophy in patients with hypertension. Zhonghua Xin Xue Guan Bing Za Zhi. 47:215–220. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).

95 

Mitra A, Basak T, Datta K, Naskar S, Sengupta S and Sarkar S: Role of a-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction. Cell Death Dis. 4(e582)2013.PubMed/NCBI View Article : Google Scholar

96 

Delmar M and Makita N: Cardiac connexins, mutations and arrhythmias. Curr Opin Cardiol. 27:236–241. 2012.PubMed/NCBI View Article : Google Scholar

97 

Stout JM, Gousset MU, Drummond HA, Gray W III, Pruett BE and Stec DE: Sex-specific effects of heme oxygenase-2 deficiency on renovascular hypertension. J Am Soc Hypertens. 7:328–335. 2013.PubMed/NCBI View Article : Google Scholar

98 

Tian C, Gao L, Zimmerman MC and Zucker IH: Myocardial infarction-induced microRNA-enriched exosomes contribute to cardiac Nrf2 dysregulation in chronic heart failure. Am J Physiol Heart Circ Physiol. 314:H928–H939. 2018.PubMed/NCBI View Article : Google Scholar

99 

Tham YK, Bernardo BC, Ooi JY, Weeks KL and McMullen JR: Pathophysiology of cardiac hypertrophy and heart failure: Signaling pathways and novel therapeutic targets. Arch Toxicol. 89:1401–1438. 2015.PubMed/NCBI View Article : Google Scholar

100 

Yang KC and Dudley JSC: Oxidative stress and atrial fibrillation: Finding a missing piece to the puzzle. Circulation. 128:1724–1726. 2013.PubMed/NCBI View Article : Google Scholar

101 

Barry SP, Davidson SM and Townsend PA: Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol. 40:2023–2039. 2008.PubMed/NCBI View Article : Google Scholar

102 

Maulik SK and Kumar S: Oxidative stress and cardiac hypertrophy: A review. Toxicol Mech Methods. 22:359–366. 2012.PubMed/NCBI View Article : Google Scholar

103 

Baruteau AE, Probst V and Abriel H: Inherited progressive cardiac conduction disorders. Curr Opin Cardiol. 30:33–39. 2015.PubMed/NCBI View Article : Google Scholar

104 

Chang YJ, Hsiao HJ, Hsia SH, Lin JJ, Hwang MS, Chung HT, Chen CL, Huang YC and Tsai MH: Analysis of clinical parameters and echocardiography as predictors of fatal pediatric myocarditis. PLoS One. 14(e0214087)2019.PubMed/NCBI View Article : Google Scholar

105 

Zhao YS, An JR, Yang S, Guan P, Yu FY, Li W, Li JR, Guo Y, Sun ZM and Ji ES: Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats. Oxid Med Cell Longev. 2019(7415212)2019.PubMed/NCBI View Article : Google Scholar

106 

Nakamura M and Sadoshima J: Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 15:387–407. 2018.PubMed/NCBI View Article : Google Scholar

107 

Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M and Cui T: Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol. 29:1843–1850. 2009.PubMed/NCBI View Article : Google Scholar

108 

Nakamura M and Sadoshima J: Cardiomyopathy in obesity, insulin resistance or diabetes. J Physiol. 598:2977–2993. 2020.PubMed/NCBI View Article : Google Scholar

109 

Felker GM, Thompson RE, Hare JM, Hruban RH, Clemetson DE, Howard DL, Baughman K and Kasper EK: Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med. 342:1077–1184. 2000.PubMed/NCBI View Article : Google Scholar

110 

Quinaglia T, Oliveira DC, Matos-Souza JR and Sposito AC: Diabetic cardiomyopathy: Factual or factoid? Rev Assoc Med Bras (1992). 65:61–69. 2019.PubMed/NCBI View Article : Google Scholar

111 

Cooper LT Jr: Myocarditis. N Engl J Med. 360:1526–1538. 2009.PubMed/NCBI View Article : Google Scholar

112 

Althunibat OY, Al Hroob AM, Abukhalil MH, Germoush MO, Bin-Jumah M and Mahmoud AM: Fisetin ameliorates oxidative stress, inflammation and apoptosis in diabetic cardiomyopathy. Life Sci. 221:83–92. 2019.PubMed/NCBI View Article : Google Scholar

113 

Zhao X, Cai A, Peng Z, Liang W, Xi H, Li P, Chen G, Yu J and Chen L: JS-K induces reactive oxygen species-dependent anti-cancer effects by targeting mitochondria respiratory chain complexes in gastric cancer. J Cell Mol Med. 23:2489–2504. 2019.PubMed/NCBI View Article : Google Scholar

114 

Ansley DM and Wang B: Oxidative stress and myocardial injury in the diabetic heart. J Pathol. 229:232–241. 2013.PubMed/NCBI View Article : Google Scholar

115 

Hernández M, Wicz S and Corral RS: Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E2 pathway induced during Trypanosoma cruzi infection. Phytomedicine. 23:1392–1400. 2016.PubMed/NCBI View Article : Google Scholar

116 

Ndisang JF, Lane N, Syed N and Jadhav A: Up-regulating the heme oxygenase system with hemin improves insulin sensitivity and glucose metabolism in adult spontaneously hypertensive rats. Endocrinology. 151:549–560. 2010.PubMed/NCBI View Article : Google Scholar

117 

Jiménez-Osorio AS, García-Niño WR, González-Reyes S, Álvarez-Mejía AE, Guerra-León S, Salazar-Segovia J, Falcón I, Montes de Oca-Solano H, Madero M and Pedraza-Chaverri J: The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J Ren Nutr. 26:237–244. 2016.PubMed/NCBI View Article : Google Scholar

118 

Soundararajan P and Kim JS: Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules. 23(2983)2018.PubMed/NCBI View Article : Google Scholar

119 

Wang J, Wang S, Wang W, Chen J, Zhang Z, Zheng Q, Liu Q and Cai L: Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med. 23:6319–6330. 2019.PubMed/NCBI View Article : Google Scholar

120 

Zhang Z, Wang S, Zhou S, Yan X, Wang Y, Chen J, Mellen N, Kong M, Gu J, Tan Y, et al: Sulforaphane prevents the development of cardiomyopathy in type 2 diabetic mice probably by reversing oxidative stress-induced inhibition of LKB1/AMPK pathway. J Mol Cell Cardiol. 77:42–52. 2014.PubMed/NCBI View Article : Google Scholar

121 

Bai Y, Wang X, Zhao S, Ma C, Cui J and Zheng Y: Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015(407580)2015.PubMed/NCBI View Article : Google Scholar

122 

Delucchi F, Berni R, Frati C, Cavalli S, Graiani G, Sala R, Chaponnier C, Gabbiani G, Calani L, Rio DD, et al: Resveratrol treatment reduces cardiac progenitor cell dysfunction and prevents morpho-functional ventricular remodeling in type-1 diabetic rats. PLoS One. 7(e39836)2012.PubMed/NCBI View Article : Google Scholar

123 

Sun X, Shan A, Wei Z and Xu B: Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. Biochem Biophys Res Commun. 503:2611–2618. 2018.PubMed/NCBI View Article : Google Scholar

124 

Ge ZD, Lian Q, Mao X and Xia Z: Current status and challenges of NRF2 as a potential therapeutic target for diabetic cardiomyopathy. Int Heart J. 60:512–520. 2019.PubMed/NCBI View Article : Google Scholar

125 

El-Agamy DS, El-Harbi KM, Khoshhal S, Ahmed N, Elkablawy MA, Shaaban AA and Abo-Haded HM: Pristimerin protects against doxorubicin-induced cardiotoxicity and fibrosis through modulation of Nrf2 and MAPK/NF-κB signaling pathways. Cancer Manag Res. 11:47–61. 2018.PubMed/NCBI View Article : Google Scholar

126 

Zhou S, Jin J, Bai T, Sachleben LR Jr, Cai L and Zheng Y: Potential drugs which activate nuclear factor E2-related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci. 134:56–62. 2015.PubMed/NCBI View Article : Google Scholar

127 

Saidu NE, Noé G, Cerles O, Cabel L, Kavian-Tessler N, Chouzenoux S, Bahuaud M, Chéreau C, Nicco C, Leroy K, et al: Dimethyl fumarate controls the NRF2/DJ-1 axis in cancer cells: Therapeutic applications. Mol Cancer Ther. 16:529–539. 2017.PubMed/NCBI View Article : Google Scholar

128 

Brennan MS, Patel H, Allaire N, Thai A, Cullen P, Rvan S, Lukashev M, Bista P, Huang R, Rhodes KJ and Scannevin RH: Pharmacodynamics of dimethyl fumarate are tissue specific and involve Nrf2-dependent and -independent mechanisms. Antioxid Redox Signal. 24:1058–1071. 2016.PubMed/NCBI View Article : Google Scholar

129 

Bomprezzi R: Dimethyl fumarate in the treatment of relapsing-remitting multiple sclerosis: An overview. Ther Adv Neurol Disord. 8:20–30. 2015.PubMed/NCBI View Article : Google Scholar

130 

Ganeshpurkar A and Saluja AK: The pharmacological potential of rutin. Saudi Pharm J. 25:149–164. 2017.PubMed/NCBI View Article : Google Scholar

131 

Moore PK, Griffiths RJ and Lofts FJ: The effect of some flavone drugs on the conversion of prostacyclin to 6-oxoprostaglandin E1. Biochem Pharmacol. 32:2813–2817. 1983.PubMed/NCBI View Article : Google Scholar

132 

Gao HC, Zhu K, Gao HM, Miao CS, Zhang LN, Liu W and Xin H: Role of tissue transglutaminase in the pathogenesis of diabetic cardiomyopathy and the intervention effect of rutin. Exp Ther Med. 9:1103–1108. 2015.PubMed/NCBI View Article : Google Scholar

133 

Sayed AS, Xia K, Salma U, Yang T and Peng J: Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ. 23:503–510. 2014.PubMed/NCBI View Article : Google Scholar

134 

Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW II and Chakrabarti S: Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med. 18:415–421. 2014.PubMed/NCBI View Article : Google Scholar

135 

Chen K, Ma Y, Wu S, Zhuang Y, Liu X, Lv L and Zhang G: Construction and analysis of a lncRNA-miRNA-mRNA network based on competitive endogenous RNA reveals functional lncRNAs in diabetic cardiomyopathy. Mol Med Rep. 20:1393–1403. 2019.PubMed/NCBI View Article : Google Scholar

136 

Lin M and Mao ZJ: lncRNA-mRNA competing endogenous RNA network in IR-hepG2 cells ameliorated by APBBR decreasing ROS levels: A systematic analysis. PeerJ. 8(e8604)2020.PubMed/NCBI View Article : Google Scholar

137 

Dludla PV, Nkambule BB, Dias SC and Johnson R: Cardioprotective potential of N-acetyl cysteine against hyperglycaemia-induced oxidative damage: A protocol for a systematic review. Syst Rev. 6(96)2017.PubMed/NCBI View Article : Google Scholar

138 

Mansueto G, Benincasa G, Della Mura N, Nicoletti GF and Napoli C: Epigenetic-sensitive liquid biomarkers and personalised therapy in advanced heart failure: A focus on cell-free DNA and microRNAs. J Clin Pathol. 73:535–543. 2020.PubMed/NCBI View Article : Google Scholar

139 

Zhang X, Dong S, Jia Q, Zhang A, Li Y, Zhu Y, Lv S and Zhang J: The microRNA in ventricular remodeling: The miR-30 family. Biosci Rep. 39(BSR20190788)2019.PubMed/NCBI View Article : Google Scholar

140 

Raut SK, Singh GB, Rastogi B, Saikia UN, Mittal A, Dogra N, Singh S, Prasad R and Khullar M: miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy. Mol Cell Biochem. 417:191–203. 2016.PubMed/NCBI View Article : Google Scholar

141 

Li M, Chen X, Chen L, Chen K, Zhou J and Song J: MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM. J Transl Med. 16(161)2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu X, Huang L and Liu J: Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 22: 678, 2021.
APA
Wu, X., Huang, L., & Liu, J. (2021). Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review). Experimental and Therapeutic Medicine, 22, 678. https://doi.org/10.3892/etm.2021.10110
MLA
Wu, X., Huang, L., Liu, J."Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 678.
Chicago
Wu, X., Huang, L., Liu, J."Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 678. https://doi.org/10.3892/etm.2021.10110
Copy and paste a formatted citation
x
Spandidos Publications style
Wu X, Huang L and Liu J: Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 22: 678, 2021.
APA
Wu, X., Huang, L., & Liu, J. (2021). Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review). Experimental and Therapeutic Medicine, 22, 678. https://doi.org/10.3892/etm.2021.10110
MLA
Wu, X., Huang, L., Liu, J."Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)". Experimental and Therapeutic Medicine 22.1 (2021): 678.
Chicago
Wu, X., Huang, L., Liu, J."Relationship between oxidative stress and nuclear factor‑erythroid‑2‑related factor 2 signaling in diabetic cardiomyopathy (Review)". Experimental and Therapeutic Medicine 22, no. 1 (2021): 678. https://doi.org/10.3892/etm.2021.10110
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team