|
1
|
Klionsky DJ: Autophagy revisited: A
conversation with Christian de Duve. Autophagy. 4:740–743.
2008.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Nakatogawa H, Suzuki K, Kamada Y and
Ohsumi Y: Dynamics and diversity in autophagy mechanisms: Lessons
from yeast. Nat Rev Mol Cell Biol. 10:458–467. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
3
|
Yamamoto H, Fujioka Y, Suzuki SW, Noshiro
D, Suzuki H, Kondo-Kakuta C, Kimura Y, Hirano H, Ando T, Noda NN,
et al: The intrinsically disordered protein Atg13 mediates
supramolecular assembly of autophagy initiation complexes. Dev
Cell. 38:86–99. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Byun S, Lee E and Lee KW: Therapeutic
implications of autophagy inducers in immunological disorders,
infection, and cancer. Int J Mol Sci. 18:1959–1980. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ma X, Yin X, Liu H, Chen Q, Feng Y, Ma X
and Liu W: Antiproliferative activity of plumbagin
(5-hydroxy-2-methyl-1,4-naphthoquinone) in human gastric carcinoma
cells is facilitated via activation of autophagic pathway,
mitochondrial-mediated programmed cell death and inhibition of cell
migration and invasion. J BUON. 24:2000–2005. 2019.PubMed/NCBI
|
|
6
|
Khan M, Imam H and Siddiqui A: Subversion
of cellular autophagy during virus infection: Insights from
hepatitis B and hepatitis C viruses. Liver Res. 2:146–156.
2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Yan X, Zhou R and Ma Z: Autophagy-cell
survival and death. Adv Exp Med Biol. 1206:667–696. 2019.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Shen MX and Ding JB: Expression levels and
roles of EMC-6, Beclin1, and Rab5a in the cervical cancer. Eur Rev
Med Pharmacol Sci. 21:3038–3046. 2017.PubMed/NCBI
|
|
9
|
Yu S, Cheng C, Wang J, Wang J, Qu Z, Ren
H, Li Y, Ning Q, Chen M and Hu T: Loss of Beclin1 expression and
Nrf2 overexpression are associated with poor survival of patients
with non-small cell lung cancer. Anticancer Agents Med Chem.
18:1680–1687. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Wu S, Sun C, Tian D, Li Y, Gao X, He S and
Li T: Expression and clinical significances of Beclin1, LC3 and
mTOR in colorectal cancer. Int J Clin Exp Pathol. 8:3882–3891.
2015.PubMed/NCBI
|
|
11
|
Chen JH, Zhang P, Chen WD, Li DD, Wu XQ,
Deng R, Jiao L, Li X, Ji J, Feng GK, et al: ATM-mediated PTEN
phosphorylation promotes PTEN nuclear translocation and autophagy
in response to DNA-damaging agents in cancer cells. Autophagy.
11:239–252. 2015.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Wang Z, Wang N, Liu P and Xie X: AMPK and
Cancer. Exp Suppl. 107:203–226. 2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Shaw RJ, Bardeesy N, Manning BD, Lopez L,
Kosmatka M, DePinho RA and Cantley LC: The LKB1 tumor suppressor
negatively regulates mTOR signaling. Cancer Cell. 6:91–99.
2004.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Li H, Cao X, Chen X, Yi X, Xia J, Chen J
and Yang L: Bufadienolides induce apoptosis and autophagy by
inhibiting the AKT signaling pathway in melanoma A-375 cells. Mol
Med Rep. 20:2347–2354. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Zhang J, Zhao D, Xie Z and Qi Y:
Down-regulation of AKT combined with radiation-induced autophagy
and apoptosis roles in MCF-7 cells. Biomed Mater Eng. 26 (Suppl
1):S2259–S2265. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Jiao YN, Wu LN, Xue D, Liu XJ, Tian ZH,
Jiang ST, Han SY and Li PP: Marsdenia tenacissima extract
induces apoptosis and suppresses autophagy through ERK activation
in lung cancer cells. Cancer Cell Int. 18(149)2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhou J, Chong SY, Lim A, Singh BK, Sinha
RA, Salmon AB and Yen PM: Changes in macroautophagy,
chaperone-mediated autophagy, and mitochondrial metabolism in
murine skeletal and cardiac muscle during aging. Aging (Albany NY).
9:583–599. 2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Oczypok EA, Oury TD and Chu CT: It's a
cell-eat-cell world: Autophagy and phagocytosis. Am J Pathol.
182:612–622. 2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM,
Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR
signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003.
2009.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhan ZZ, Chen X and Zhang Y: Autophagy and
the relativity of its function. Di Er Jun Yi Da Xue Xue Bao.
37:1189–1194. 2016.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kim SH, Yu HS, Park S, Park HG, Ahn YM,
Kang UG and Kim YS: Electroconvulsive seizures induce autophagy by
activating the AMPK signaling pathway in the rat frontal cortex.
Int J Neuropsychopharmacol. 23:45–52. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chang H, Peng X, Yan X, Zhang J, Xu S,
Wang H, Wang Z, Ma X and Gao Y: Autophagy and Akt-mTOR signaling
display periodic oscillations during torpor-arousal cycles in
oxidative skeletal muscle of Daurian ground squirrels
(Spermophilus dauricus). J Comp Physiol B 15: 2019.
https://doi.org/10.1007/s00360-019-01245-5.
|
|
23
|
Kabeya Y, Mizushima N, Yamamoto A,
Oshitani-Okamoto S, Ohsumi Y and Yoshimori T: LC3, GABARAP and
GATE16 localize to autophagosomal membrane depending on form-II
formation. J Cell Sci. 117:2805–2812. 2004.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Wang Y, Li L, Hou C, Lai Y, Long J, Liu J,
Zhong Q and Diao J: SNARE-mediated membrane fusion in autophagy.
Semin Cell Dev Biol. 60:97–104. 2016.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Cheng X, Ma X, Zhu Q, Song D, Ding X, Li
L, Jiang X, Wang X, Tian R, Su H, et al: Pacer is a mediator of
mTORC1 and GSK3-TIP60 signaling in regulation of autophagosome
maturation and lipid metabolism. Mol Cell. 73:788–802.e7.
2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Eskelinen EL: Roles of LAMP-1 and LAMP-2
in lysosome biogenesis and autophagy. Mol Aspects Med. 27:495–502.
2006.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhang H: Targeting autophagy in lymphomas:
A double-edged sword? Int J Hematol. 107:502–512. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Nagar R: Autophagy: A brief overview in
perspective of dermatology. Indian J Dermatol Venereol Leprol.
83:290–297. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Rustin M: Postmodernism and antimodernism
in contemporary British architecture. Assemblage. 10:89–103.
1989.
|
|
30
|
Nakamura O, Hitora T, Yamagami Y, Mori M,
Nishimura H, Horie R, et al: The combination of rapamycin and MAPK
inhibitors enhances the growth inhibitory effect on Nara-H cells.
Int J Mol Med. 33:1491–1497. 2014.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Reddy D, Kumavath R, Tan TZ, Ampasala DR
and Kumar AP: Peruvoside targets apoptosis and autophagy through
MAPK Wnt/β-catenin and PI3K/AKT/mTOR signaling pathways in human
cancers. Life Sci. 241(117147)2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Bhaskar PT and Hay N: The two TORCs and
Akt. Dev Cell. 12:487–502. 2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Loewith R, Jacinto E, Wullschleger S,
Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P and Hall MN:
Two TOR complexes, only one of which is rapamycin sensitive, have
distinct roles in cell growth control. Mol Cell. 10:457–468.
2002.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Julien LA, Carriere A, Moreau J and Roux
PP: mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135
and regulates mTORC2 signaling. Mol Cell Biol. 30:908–921.
2010.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Wang Y and Zhang H: Regulation of
autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83.
2019.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Petherick KJ, Conway OJ, Mpamhanga C,
Osborne SA, Kamal A, Saxty B and Ganley IG: Pharmacological
inhibition of ULK1 kinase blocks mammalian target of rapamycin
(mTOR)-dependent autophagy. J Biol Chem. 290:11376–11383.
2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Joseph B, Kumar RV, Champaka G, Shenoy A,
Sabitha KS, Lokesh V, Ramesh C and Vijay CR: Biological tailoring
of adjuvant radiotherapy in head and neck and oral malignancies -
The potential role of p53 and eIF4E as predictive parameters.
Indian J Cancer. 56:330–334. 2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Huang CI, Wang CC, Tai TS, Hwang TZ, Yang
CC, Hsu CM and Su YC: eIF4E and 4EBP1 are prognostic markers of
head and neck squamous cell carcinoma recurrence after definitive
surgery and adjuvant radiotherapy. PLoS One.
14(e0225537)2019.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Alabdullah ML, Ahmad DA, Moseley P,
Madhusudan S, Chan S and Rakha E: The mTOR downstream regulator
(p-4EBP1) is a novel independent prognostic marker in ovarian
cancer. J Obstet Gynaecol. 39:522–528. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Gleason CE, Oses-Prieto JA, Li KH, Saha B,
Situ G, Burlingame AL and Pearce D: Phosphorylation at distinct
subcellular locations underlies specificity in mTORC2-mediated
activation of SGK1 and Akt. J Cell Sci. 132:1–16. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Liu Y, Ao X, Ding W, Ponnusamy M, Wu W,
Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in
carcinogenesis. Mol Cancer. 17:104–115. 2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ni HM, Du K, You M and Ding WX: Critical
role of FoxO3a in alcohol-induced autophagy and hepatotoxicity. Am
J Pathol. 183:1815–1825. 2013.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Carnero A and Paramio JM: The
PTEN/PI3K/AKT pathway in vivo, cancer mouse models. Front Oncol.
4(252)2014.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Carnero A, Blanco-Aparicio C, Renner O,
Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer,
therapeutic implications. Curr Cancer Drug Targets. 8:187–198.
2008.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Mangé A, Coyaud E, Desmetz C, Laurent E,
Béganton B, Coopman P, Raught B and Solassol J: FKBP4 connects
mTORC2 and PI3K to activate the PDK1/Akt-dependent cell
proliferation signaling in breast cancer. Theranostics.
9:7003–7015. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Wang P, Gao W, Wang Y and Wang J:
Acetylshikonin inhibits in vitro and in vivo tumorigenesis in
cisplatin-resistant oral cancer cells by inducing autophagy,
programmed cell death and targeting m-TOR/PI3K/Akt signalling
pathway. J BUON. 24:2062–2067. 2019.PubMed/NCBI
|
|
47
|
Huang S, Xie T and Liu W: Icariin inhibits
the growth of human cervical cancer cells by inducing apoptosis and
autophagy by targeting mTOR/PI3K/AKT signalling pathway. J BUON.
24:990–996. 2019.PubMed/NCBI
|
|
48
|
Agostini D, Natalucci V, Baldelli G, De
Santi M, Donati Zeppa S, Vallorani L, Annibalini G, Lucertini F,
Federici A, Izzo R, Stocchi V and Barbieri E: New insights into the
role of exercise in inhibiting mTOR signaling in triple-negative
breast cancer. Oxid Med Cell Longev. 2018(5896786)2018.PubMed/NCBI View Article : Google Scholar : https://doi.org/10.1155/2018/5896786.
|
|
49
|
Han Y, Shi D and Li J: Inhibition of
nasopharyngeal carcinoma by beta-lapachone occurs by targeting the
mammalian target of rapamycin (mTOR)/PI3K/AKT pathway, reactive
oxygen species (ROS) production, and autophagy induction. Med Sci
Monit. 25:8995–9002. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li
X, Sun R and Liu J: Dihydroartemisinin induces endothelial cell
autophagy through suppression of the Akt/mTOR pathway. J Cancer.
10:6057–6064. 2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Dong F, Han J, Jing G, Chen X, Yan S, Yue
L, Cao Z, Liu X, Ma G and Liu J: Dihydroartemisinin transiently
activates the JNK/SAPK signaling pathway in endothelial cells.
Oncol Lett. 12:4699–4704. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z,
Zhou M, Wang WB and Li XQ: LncRNA WTAPP1 promotes migration and
angiogenesis of endothelial progenitor cells via MMP1 through
microRNA 3120 and Akt/PI3K/autophagy pathways. Stem Cells.
36:1863–1874. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Liu R, Chen Z, Yi X, Huang F, Hu G, Liu D,
Li X, Zhou H and Liu Z: 9za plays cytotoxic and proapoptotic roles
and induces cytoprotective autophagy through the PDK1/Akt/mTOR axis
in non-small-cell lung cancer. J Cell Physiol. 234:20728–20741.
2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Dowling RJ, Topisirovic I, Fonseca BD and
Sonenberg N: Dissecting the role of mTOR: Lessons from mTOR
inhibitors. Biochim Biophys Acta. 1804:433–439. 2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Gera J and Lichtenstein A: The mammalian
target of rapamycin pathway as a therapeutic target in multiple
myeloma. Leuk Lymphoma. 52:1857–1866. 2011.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Engelman JA, Luo J and Cantley LC: The
evolution of phosphatidylinositol 3-kinases as regulators of growth
and metabolism. Nat Rev Genet. 7:606–619. 2006.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tan FH, Bai Y, Saintigny P and Darido C:
mTOR signalling in head and neck cancer: Heads Up. Cells.
8(333)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Bu Z and Ji J: Therapeutic implications of
mTOR inhibitors in the treatment of gastric cancer. Curr Cancer
Drug Targets. 13:121–125. 2013.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Alvarez RH, Bechara RI, Naughton MJ,
Adachi JA and Reuben JM: Emerging perspectives on mTOR
inhibitor-associated pneumonitis in breast cancer. Oncologist.
23:660–669. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Chang L, Graham PH, Ni J, Hao J, Bucci J,
Cozzi PJ and Li Y: Targeting PI3K/Akt/mTOR signaling pathway in the
treatment of prostate cancer radioresistance. Crit Rev Oncol
Hematol. 96:507–517. 2015.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Myers AP: New strategies in endometrial
cancer: Targeting the PI3K/mTOR pathway--the devil is in the
details. Clin Cancer Res. 19:5264–5274. 2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wu CE, Chen MH and Yeh CN: mTOR inhibitors
in advanced biliary tract cancers. Int J Mol Sci.
20(500)2019.PubMed/NCBI View Article : Google Scholar : https://doi.org/10.3390/ijms20030500.
|
|
63
|
Ching CB and Hansel DE: Expanding
therapeutic targets in bladder cancer: The PI3K/Akt/mTOR pathway.
Lab Invest. 90:1406–1414. 2010.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Rodrik-Outmezguine VS, Okaniwa M, Yao Z,
Novotny CJ, McWhirter C, Banaji A, Won H, Wong W, Berger M, de
Stanchina E, et al: Overcoming mTOR resistance mutations with a
new-generation mTOR inhibitor. Nature. 534:272–276. 2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Yu C, Sun P, Zhou Y, Shen B, Zhou M, Wu L
and Kong M: Inhibition of AKT enhances the anti-cancer effects of
Artemisinin in clear cell renal cell carcinoma. Biomed
Pharmacother. 118(109383)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Vinayak S and Carlson RW: mTOR inhibitors
in the treatment of breast cancer. Oncology (Williston Park).
27:38–44, 46, 48 passim. 2013.PubMed/NCBI
|
|
67
|
Martisova A, Sommerova L, Kuricova K,
Podhorec J, Vojtesek B, Kankova K and Hrstka R: AGR2 silencing
contributes to metformin-dependent sensitization of colorectal
cancer cells to chemotherapy. Oncol Lett. 18:4964–4973.
2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ciccarese F, Zulato E and Indraccolo S:
LKB1/AMPK pathway and drug response in cancer: A therapeutic
perspective. Oxid Med Cell Longev. 2019(8730816)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Richani D, Lavea CF, Kanakkaparambil R,
Riepsamen AH, Bertoldo MJ, Bustamante S and Gilchrist RB:
Participation of the adenosine salvage pathway and cyclic AMP
modulation in oocyte energy metabolism. Sci Rep. 9:18395–18406.
2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Lu C, Wang W, Jia Y, Liu X, Tong Z and Li
B: Inhibition of AMPK/autophagy potentiates parthenolide-induced
apoptosis in human breast cancer cells. J Cell Biochem.
115:1458–1466. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Chen W, Pan Y, Wang S, Liu Y, Chen G, Zhou
L, Zhang C, Ni W, Wang A, Lu Y, et al: Correction to:
cryptotanshinone activates AMPK-TSC2 axis leading to inhibition of
mTORC1 signaling in cancer cells. BMC Cancer. 19:257–269.
2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Andrade BM and de Carvalho DP:
Perspectives of the AMP-activated kinase (AMPK) signalling pathway
in thyroid cancer. Biosci Rep. 34(e00105)2014.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Li F, Yang C, Zhang HB, Ma J, Jia J, Tang
X, Zeng J, Chong T, Wang X, He D, et al: BET inhibitor JQ1
suppresses cell proliferation via inducing autophagy and activating
LKB1/AMPK in bladder cancer cells. Cancer Med. 8:4792–4805.
2019.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhao Z, Feng L, Wang J, Cheng D, Liu M,
Ling M, Xu W and Sun K: NPC-26 kills human colorectal cancer cells
via activating AMPK signaling. Oncotarget. 8:18312–18321.
2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Chen L, Liu M, Luan Y and Liu Y, Zhang Z,
Ma B, Liu X and Liu Y: BMP-6 protects retinal pigment epithelial
cells from oxidative stress-induced injury by inhibiting the MAPK
signaling pathways. Int J Mol Med. 42:1096–1105. 2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Ma Z, Wang C, Liu C, Yan DY, Tan X, Liu K,
Jing MJ, Deng Y, Liu W and Xu B: Manganese induces autophagy
dysregulation: The role of S-nitrosylation in regulating autophagy
related proteins in vivo and in vitro. Sci Total Environ.
698(134294)2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Pan MY, Shen YC, Lu CH, Yang SY, Ho TF,
Peng YT and Chang CC: Prodigiosin activates endoplasmic reticulum
stress cell death pathway in human breast carcinoma cell lines.
Toxicol Appl Pharmacol. 265:325–334. 2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Kim JS, Bae GE, Kim KH, Lee SI, Chung C,
Lee D, Lee TH, Kwon IS and Yeo MK: Prognostic significance of LC3B
and p62/SQSTM1 expression in gastric adenocarcinoma. Anticancer
Res. 39:6711–6722. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhang J, Yang S, Xu B, Wang T, Zheng Y,
Liu F, Ren F, Jiang J, Shi H, Zou B, et al: p62 functions as an
oncogene in colorectal cancer through inhibiting apoptosis and
promoting cell proliferation by interacting with the vitamin D
receptor. Cell Prolif. 52(e12585)2019.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tan P, Ye Y, He L, Xie J, Jing J, Ma G,
Pan H, Han L, Han W and Zhou Y: TRIM59 promotes breast cancer
motility by suppressing p62-selective autophagic degradation of
PDCD10. PLoS Biol. 16(e3000051)2018.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Schläfli AM, Adams O, Galván JA, Gugger M,
Savic S, Bubendorf L, Schmid RA, Becker KF, Tschan MP, Langer R, et
al: Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in
early-stage non-small cell lung cancer. Oncotarget. 7:39544–39555.
2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chen Y, Zhou X, Qiao J and Bao A:
Autophagy is a regulator of TRAIL-induced apoptosis in NSCLC A549
cells. J Cell Commun Signal. 11:219–226. 2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Wechman SL, Rao XM, Gomez-Gutierrez JG,
Zhou HS and McMasters KM: The role of JNK phosphorylation as a
molecular target to enhance adenovirus replication, oncolysis and
cancer therapeutic efficacy. Cancer Biol Ther. 19:1174–1184.
2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang Y, Xiong H, Liu D, Hill C, Ertay A,
Li J, Zou Y, Miller P, White E, Downward J, et al: Autophagy
inhibition specifically promotes epithelial-mesenchymal transition
and invasion in RAS-mutated cancer cells. Autophagy. 15:886–899.
2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Bryant KL, Stalnecker CA, Zeitouni D,
Klomp JE, Peng S, Tikunov AP, Gunda V, Pierobon M, Waters AM,
George SD, et al: Combination of ERK and autophagy inhibition as a
treatment approach for pancreatic cancer. Nat Med. 25:628–640.
2019.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Mou L, Liang B, Liu G, Jiang J, Liu J,
Zhou B, Huang J, Zang N, Liao Y, Ye L, et al: Berbamine exerts
anticancer effects on human colon cancer cells via induction of
autophagy and apoptosis, inhibition of cell migration and MEK/ERK
signalling pathway. J BUON. 24:1870–1875. 2019.PubMed/NCBI
|
|
87
|
Tian Y, Song W, Li D, Cai L and Zhao Y:
Resveratrol as a Natural regulator of autophagy for prevention and
treatment of cancer. OncoTargets Ther. 12:8601–8609.
2019.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Sánchez-Martín P, Saito T and Komatsu M:
p62/SQSTM1: ‘Jack of all trades’ in health and cancer. FEBS J.
286:8–23. 2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Li Y, Shi J, Qi S, Zhang J, Peng D, Chen
Z, Wang G, Wang Z and Wang L: IL-33 facilitates proliferation of
colorectal cancer dependent on COX2/PGE2. J Exp Clin Cancer Res.
37:196–227. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Panigrahi DP, Bhol CS, R N, Nagini S,
Patil S, Maiti TK and Bhutia SK: Abrus agglutinin inhibits oral
carcinogenesis through inactivation of NRF2 signaling pathway. Int
J Biol Macromol. 9:1–31. 2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W,
Elcock A and Zhu S: p38α mitogen-activated protein kinase is a
druggable target in pancreatic adenocarcinoma. Front Oncol.
9:1294–1314. 2019.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Patel PH, Pénalva C, Kardorff M, Roca M,
Pavlović B, Thiel A, Teleman AA and Edgar BA: Damage sensing by a
Nox-Ask1-MKK3-p38 signaling pathway mediates regeneration in the
adult Drosophila midgut. Nat Commun. 10:4365–4378. 2019.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Del Barco Barrantes I, Stephan-Otto
Attolini C, Slobodnyuk K, Igea A, Gregorio S, Gawrzak S, Gomis RR
and Nebreda AR: Regulation of mammary luminal cell fate and
tumorigenesis by p38α. Stem Cell Reports. 10:257–271.
2018.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Mo'men YS, Hussein RM and Kandeil MA: A
novel chemoprotective effect of tiopronin against
diethylnitrosamine-induced hepatocellular carcinoma in rats: Role
of ASK1/P38 MAPK-P53 signalling cascade. Clin Exp Pharmacol
Physiol. 47:322–332. 2020.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Aggarwal V, Tuli HS, Varol A, Thakral F,
Yerer MB, Sak K, Varol M, Jain A, Khan MA and Sethi G: Role of
reactive oxygen species in cancer progression: Molecular mechanisms
and recent advancements. Biomolecules. 9:735–750. 2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Boldbaatar J, Gunarta IK, Suzuki R,
Erdenebaatar P, Davaakhuu G, Hohjoh H and Yoshioka K: Protective
role of c-Jun NH2-terminal kinase-associated leucine
zipper protein (JLP) in curcumin-induced cancer cell death. Biochem
Biophys Res Commun. 29:1–31. 2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Shi Y, Liu Y, Zheng Y, Tang Y, Zhu G, Qiu
W, Huang L, Han S, Yin J, Peng B, et al: Autophagy triggered by
MAVS inhibits Coxsackievirus A16 replication. Acta Virol.
63:392–402. 2019.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Yuan YL, Jiang N, Li ZY, Song ZZ, Yang ZH,
Xue WH, Zhang XJ and Du Y: Polyphyllin VI induces apoptosis and
autophagy in human osteosarcoma cells by modulation of ROS/JNK
activation. Drug Des Devel Ther. 13:3091–3103. 2019.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Zhao M, Gu L, Li Y, Chen S, You J, Fan L,
Wang Y and Zhao L: Chitooligosaccharides display anti-tumor effects
against human cervical cancer cells via the apoptotic and
autophagic pathways. Carbohydr Polym. 224:115171–115184.
2019.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Cheng X, Tan S, Duan F, Yuan Q, Li Q and
Deng G: Icariin induces apoptosis by suppressing autophagy in
tamoxifen-resistant breast cancer cell line MCF-7/TAM. Breast
Cancer. 26:766–775. 2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Kim KY, Oh TW, Yang HJ, Kim YW, Ma JY and
Park KI: Ethanol extract of Chrysanthemum zawadskii Herbich
induces autophagy and apoptosis in mouse colon cancer cells through
the regulation of reactive oxygen species. BMC Complement Altern
Med. 19:274–283. 2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang F, Chen Y, Wang Y, Yin Y, Qu G, Song
M and Wang H: Ultra-long silver nanowires induced mitotic
abnormalities and cytokinetic failure in A549 cells.
Nanotoxicology. 13:543–557. 2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Chen G, Ding XF, Bouamar H, Pressley K and
Sun LZ: Everolimus induces G1 cell cycle arrest through
autophagy-mediated protein degradation of cyclin D1 in breast
cancer cells. Am J Physiol Cell Physiol. 317:C244–C252.
2019.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Booth L, Roberts JL, Avogadri-Connors F,
Cutler RE Jr, Lalani AS, Poklepovic A and Dent P: The irreversible
ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor
venetoclax to kill mammary cancer cells. Cancer Biol Ther.
19:239–247. 2018.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Zhou D, Dai L, Liu X, Que F, Xu Y, Luo X,
Zhu Y, Liu S, Li Y and Yu L: Bortezomib and obatoclax for dual
blockade of protein degradation pathways show synergistic
anti-tumor effect in human acute T lymphoblastic leukemia cells.
Nan Fang Yi Ke Da Xue Xue Bao. 39:401–408. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
106
|
Antonietti P, Gessler F, Düssmann H,
Reimertz C, Mittelbronn M, Prehn JH and Kögel D: AT-101
simultaneously triggers apoptosis and a cytoprotective type of
autophagy irrespective of expression levels and the subcellular
localization of Bcl-xL and Bcl-2 in MCF7 cells. Biochim Biophys
Acta. 1863:499–509. 2016.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Tong H, Li T, Qiu W and Zhu Z: Claudin-1
silencing increases sensitivity of liver cancer HepG2 cells to
5-fluorouracil by inhibiting autophagy. Oncol Lett. 18:5709–5716.
2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Lee J, Jung JH, Hwang J, Park JE, Kim JH,
Park WY, Suh JY and Kim SH: CNOT2 is critically involved in
atorvastatin induced apoptotic and autophagic cell death in
non-small cell lung cancers. Cancers (Basel). 11:1470–1484.
2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Lee JE, Yoon SS and Moon EY:
Curcumin-induced autophagy augments its antitumor effect against
A172 human glioblastoma cells. Biomol Ther (Seoul). 27:484–491.
2019.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Silva VAO, Rosa MN, Tansini A, Martinho O,
Tanuri A, Evangelista AF, Cruvinel Carloni A, Lima JP, Pianowski LF
and Reis RM: Semi-synthetic ingenol derivative from euphorbia
tirucalli inhibits protein kinase C isotypes and promotes
autophagy and S-phase arrest on glioma cell lines. Molecules.
24:4265–4282. 2019.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Robke L, Laraia L, Carnero Corrales MA,
Konstantinidis G, Muroi M, Richters A, Winzker M, Engbring T,
Tomassi S, Watanabe N, et al: Phenotypic identification of a novel
autophagy inhibitor chemotype targeting lipid kinase VPS34. Angew
Chem Int Ed Engl. 56:8153–8157. 2017.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Carew JS, Espitia CM, Zhao W, Han Y,
Visconte V, Phillips J and Nawrocki ST: Disruption of autophagic
degradation with ROC-325 antagonizes renal cell carcinoma
pathogenesis. Clin Cancer Res. 23:2869–2879. 2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Guntuku L, Gangasani JK, Thummuri D,
Borkar RM, Manavathi B, Ragampeta S, Vaidya JR, Sistla R and Vegi
NGM: IITZ-01, a novel potent lysosomotropic autophagy inhibitor,
has single-agent antitumor efficacy in triple-negative breast
cancer in vitro and in vivo. Oncogene. 38:581–595. 2018.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wu MY, Wang SF, Cai CZ, Tan JQ, Li M, Lu
JJ, Chen XP, Wang YT, Zheng W and Lu JH: Natural autophagy
blockers, dauricine (DAC) and daurisoline (DAS), sensitize cancer
cells to camptothecin-induced toxicity. Oncotarget. 8:77673–77684.
2017.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Zhao Y, Li K, Zhao B and Su L, Li K, Zhao
B and Su L: HSP90 inhibitor DPB induces autophagy and more
effectively apoptosis in A549 cells combined with autophagy
inhibitors. In Vitro Cell Dev Biol Anim. 55:349–354.
2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Han J, Lv W, Sheng H, Wang Y, Cao L, Huang
S, Zhu L and Hu J: Ecliptasaponin A induces apoptosis through the
activation of ASK1/JNK pathway and autophagy in human lung cancer
cells. Ann Transl Med. 7:539–560. 2019.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Polishchuk EV, Merolla A, Lichtmannegger
J, Romano A, Indrieri A, Ilyechova EY, Concilli M, De Cegli R,
Crispino R, Mariniello M, et al: Activation of autophagy, observed
in liver tissues from patients with Wilson disease and from
ATP7B-deficient animals, protects hepatocytes from copper-induced
apoptosis. Gastroenterology. 156:1173–1189.e5. 2019.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Klionsky DJ, Abdelmohsen K, Abe A, Abedin
MJ, Abeliovich H, Acevedo Arozena A, Adachi H, Adams CM, Adams PD,
Adeli K, et al: Guidelines for the use and interpretation of assays
for monitoring autophagy (3rd edition). Autophagy. 12:1–222.
2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Xuan F, Huang M, Liu W, Ding H, Yang L and
Cui H: Homeobox C9 suppresses Beclin1-mediated autophagy in
glioblastoma by directly inhibiting the transcription of
death-associated protein kinase 1. Neuro-oncol. 18:819–829.
2016.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Du H, Che J, Shi M, Zhu L, Hang JB, Chen Z
and Li H: Beclin 1 expression is associated with the occurrence and
development of esophageal squamous cell carcinoma. Oncol Lett.
14:6823–6828. 2017.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Chu C, Niu X, Ou X and Hu C: LAPTM4B
knockdown increases the radiosensitivity of EGFR-overexpressing
radioresistant nasopharyngeal cancer cells by inhibiting autophagy.
OncoTargets Ther. 12:5661–5677. 2019.PubMed/NCBI View Article : Google Scholar
|