|
1
|
Vos T, Allen C, Arora M, Barber RM, Bhutta
Z, Brown A, Carter AR, Charlson FJ, Chen A, Coggeshall M, et al:
Global, regional, and national incidence, prevalence, and years
lived with disability for 310 diseases and injuries, 1990-2015: A
systematic analysis for the global burden of disease study 2015.
Lancet. 388:1545–1602. 2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu
S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for
240 causes in China during 1990-2013: A systematic subnational
analysis for the global burden of disease study 2013. Lancet.
387:251–272, 10015. 2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Huang ZY, Zhang XX, Sun WL, Chen C, Li DF,
Fang J, Fu MH, Liu QS, Yan TH and Li SJ: Research progress of
inflammation reaction related to endoplasmic reticulum stress in
ischemic endoplasmic reticulum stress. Chin Pharmacol Bull.
31:23–26. 2015.(In Chinese).
|
|
4
|
Dirnagl U, Iadecola C and Moskowitz MA:
Pathobiology of ischaemic stroke: An integrated view. Trends
Neurosci. 22:391–397. 1999.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Kovac S, Kostova Dinkova AT, Herrmann AM,
Melzer N, Meuth SG and Gorji A: Metabolic and homeostatic changes
in seizures and acquired epilepsy-mitochondria, calcium dynamics
and reactive oxygen species. Int J Mol Sci. 18(1935)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Fahrner JA, Liu R, Perry MS, Klein J and
Chan DC: A novel de novo dominant negative mutation in DNM1L
impairs mitochondrial fission and presents as childhood epileptic
encephalopathy. Am J Med Genet A. 170:2002–2011. 2016.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Chan PH: Reactive oxygen radicals in
signaling and damage in the ischemic brain. J Cereb Blood Flow
Metab. 21:2–14. 2001.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Chan PH: Role of oxidants in ischemic
brain damage. Stroke. 27:1124–1129. 1996.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Venkatachalam K and Montell C: TRP
channels. Annu Rev Biochem. 76:387–417. 2007.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Rakers C, Schmid M and Petzold GC: TRPV4
channels contribute to calcium transients in astrocytes and neurons
during peri-infarct depolarizations in a stroke model. Glia.
65:1550–1561. 2017.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Han J, Xu HH, Chen XL, Hu HR, Hu KM, Chen
ZW and He GW: Total flavone of rhododendron improves cerebral
ischemia injury by activating vascular TRPV4 to induce
endothelium-derived hyperpolarizing factor-mediated responses. Evid
Based Complement Alternat Med. 2018(8919867)2018.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Seki T, Goto K, Kiyohara K, Kansui Y,
Murakami N, Haga Y, Ohtsubo T, Matsumura K and Kitazono T:
Downregulation of endothelial transient receptor potential
vanilloid type 4 channel and small-conductance of Ca2+-activated K+
channels underpins impaired endothelium-dependent hyperpolarization
in hypertension. Hypertension. 69:143–153. 2017.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Li L, Qu W, Zhou L, Lu Z, Jie P and Chen L
and Chen L: Activation of transient receptor potential vanilloid 4
increases NMDA-activated current in hippocampal pyramidal neurons.
Front Cell Neurosci. 7(17)2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Lau A and Tymianski M: Glutamate
receptors, neurotoxicity and neurodegeneration. Pflugers Arch.
460:525–542. 2010.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wong CO, Chen K, Lin YQ, Chao Y, Duraine
L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, et al: A
TRPV channel in Drosophila motor neurons regulates presynaptic
resting Ca2+ levels, synapse growth, and synaptic transmission.
Neuron. 84:764–777. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Satheesh NJ, Uehara Y, Fedotova J, Pohanka
M, Büsselberg D and Kruzliak P: TRPV currents and their role in the
nociception and neuroplasticity. Neuropeptides. 57:1–8.
2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Hoenderop JG, Nilius B and Bindels RJ:
Molecular mechanism of active Ca2+ reabsorption in the distal
nephron. Annu Rev Physiol. 64:529–549. 2002.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Barley NF, Howard A, Callaghan DO, Legon S
and Walters JRF: Epithelial calcium transporter expression in human
duodenum. Am J Physiol Gastrointest Liver Physiol. 2:G285–G290.
2001.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Everaerts W, Gees M, Alpizar YA, Farre R,
Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De
Ridder D, et al: The capsaicin receptor TRPV1 is a crucial mediator
of the noxious effects of mustard oil. Curr Biol. 21:316–321.
2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Khairatkar-Joshi N and Szallasi A: TRPV1
antagonists: The challenges for therapeutic targeting. Trends Mol
Med. 15:14–22. 2009.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Cui M, Honore P, Zhong C, Gauvin D, Mikusa
J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, et al:
TRPV1 receptors in the CNS play a key role in broad-spectrum
analgesia of TRPV1 antagonists. J Neurosci. 26:9385–9393.
2006.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ward NJ, Ho KW, Lambert WS, Weitlauf C and
Calkins DJ: Absence of transient receptor potential vanilloid-1
accelerates stress-induced axonopathy in the optic projection. J
Neurosci. 34:3161–3170. 2014.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Wen YD, Sheng R, Zhang LS, Han R, Zhang X,
Zhang XD, Han F, Fukunaga K and Qin ZH: Neuronal injury in rat
model of permanent focal cerebral ischemia is associated with
activation of autophagic and lysosomal pathways. Autophagy.
4:762–769. 2008.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Khan MM, Ishrat T, Ahmad A, Hoda MN, Khan
MB, Khuwaja G, Srivastava P, Raza SS, Islam F and Ahmad S: Sesamin
attenuates behavioral, biochemical and histological alterations
induced by reversible middle cerebral artery occlusion in the rats.
Chem Biol Interact. 183:255–263. 2010.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Li L, Tan J, Miao Y, Lei P and Zhang Q:
ROS and autophagy: Interactions and molecular regulatory
mechanisms. Cell Mol Neurobiol. 35:615–621. 2015.PubMed/NCBI View Article : Google Scholar : Yang Y, Gao K, Hu
Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy
upregulation and apoptosis downregulation in DAHP and triptolide
treated cerebral ischemia. Mediators Inflamm 2015: 120198,
2015.
|
|
26
|
Charriaut-Marlangue C: Apoptosis: A target
for neuroprotection. Therapie. 59:185–190. 2004.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Dai Z, Xiao J, Liu S, Cui L, Hu G and
Jiang D: Rutaecarpine inhibits hypoxia/reoxygenation-induced
apoptosis in rat hippocampal neurons. Neuropharmacology.
55:1307–1312. 2008.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Golech SA, McCarron RM, Chen Y, Bembry J,
Lenz F, Mechoulam R, Shohami E and Spatz M: Human brain
endothelium: Coexpression and function of vanilloid and
endocannabinoid receptors. Brain Res Mol Brain Res. 132:87–92.
2004.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Huang M, Cheng G, Tan H, Qin R, Zou Y,
Wang Y and Zhang Y: Capsaicin protects cortical neurons against
ischemia/reperfusion injury via down-regulating NMDA receptors. Exp
Neurol. 295:66–76. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Liu A, Wang SH, Hou SY, Lin CJ, Chiu WT,
Hsiao SH, Chen TH and Shih CM: Evodiamine induces transient
receptor potential vanilloid-1-mediated protective autophagy in
U87-MG astrocytes. Evid Based Complement Alternat Med.
2013(354840)2013.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Wang Z, Sun L, Yu H, Zhang Y, Gong W, Jin
H, Zhang L and Liang H: Binding mode pediction of evodiamine within
vanilloid receptor TRPV1. Int J Mol Sci. 13:8958–8969.
2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Hale AN, Ledbetter DJ, Gawriluk TR and
Rucker EB III: Autophagy: Regulation and role in development.
Autophagy. 7:951–972. 2013.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Miyanohara J, Shirakawa H, Sanpei K,
Nakagawa T and Kaneko S: A pathophysiological role of TRPV1 in
ischemic injury after transient focal cerebral ischemia in mice.
Biochem Biophys Res Commun. 467:478–483. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong
J, He H, Zhao Z, Cao T, Yan Z, et al: Activation of TRPV1 by
dietary capsaicin improves endothelium-dependent vasorelaxation and
prevents hypertension. Cell Metab. 12:130–141. 2010.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Breyne J and Vanheel B: Methanandamide
hyperpolarizes gastric arteries by stimulation of TRPV1 receptors
on perivascular CGRP containing nerves. J Cardiovasc Pharmacol.
47:303–309. 2006.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z,
Zhong J, Gao F, Zhu Z, Li L, et al: Activation of transient
receptor potential vanilloid 1 by dietary capsaicin delays the
onset of stroke in stroke-prone spontaneously hypertensive rats.
Stroke. 42:3245–3251. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ching LC, Chen CY, Su KH, Hou HH, Shyue
SK, Kou YR and Lee TS: Implication of AMP-activated protein kinase
in transient receptor potential vanilloid type 1-mediated
activation of endothelial nitric oxide synthase. Mol Med.
18:805–815. 2012.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Hurtado-Zavala JI, Ramachandran B, Ahmed
S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ,
Anderson K, Drenan RM, et al: TRPV1 regulates excitatory
innervation of OLM neurons in the hippocampus. Nat Commun.
8(15878)2017.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zhang MJ, Yin YW, Li BH, Liu Y, Liao SQ,
Gao CY, Li JC and Zhang LL: The role of TRPV1 in improving VSMC
function and attenuating hypertension. Prog Biophys Mol Biol.
117:212–216. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Szydlowska K and Tymianski M: Calcium,
ischemia and excitotoxicity. Cell Calcium. 47:122–129.
2010.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Chen L, Liu C, Liu L and Cao X: Changes in
osmolality modulate voltage-gated sodium channels in trigeminal
ganglion neurons. Neurosci Res. 64:199–207. 2009.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Hakimizadeh E, Shamsizadeh A, Roohbakhsh
A, Arababadi MK, Hajizadeh MR, Shariati M, Rahmani MR and
Allahtavakoli M: Inhibition of transient receptor potential
vanilloid-1 confers neuroprotection, reduces tumor necrosis
factor-alpha, and increases IL-10 in a rat stroke model. Fund Clin
Pharmacol. 31:420–428. 2017.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Long M, Wang Z, Zheng D, Chen J, Tao W,
Wang L, Yin N and Chen Z: Electroacupuncture pretreatment elicits
neuroprotection against cerebral ischemia-reperfusion injury in
rats associated with transient receptor potential vanilloid
1-mediated anti-oxidant stress and anti-inflammation. Inflammation.
42:1777–1787. 2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yang XL, Wang X, Shao L, Jiang GT, Min JW,
Mei XY, He XH, Liu WH, Huang WX and Peng BW: TRPV1 mediates
astrocyte activation and interleukin-1β release induced by hypoxic
ischemia (HI). J Neuroinflammation. 16(114)2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Gavva NR, Bannon AW, Surapaneni S, Hovland
DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, et al:
The vanilloid receptor TRPV1 is tonically activated in vivo and
involved in body temperature regulation. J Neurosci. 27:3366–3374.
2007.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Steiner AA, Turek VF, Almeida MC,
Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis
JC, Treanor JJ, et al: Nonthermal activation of transient receptor
potential vanilloid-1 channels in abdominal viscera tonically
inhibits autonomic cold-defense effectors. J Neurosci.
27:7459–7468. 2007.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Gavva NR: Body-temperature maintenance as
the predominant function of the vanilloid receptor TRPV1. Trends
Pharmacol Sci. 29:550–557. 2008.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Li J and Zhang S: The effect of mild
hypothermia on mice cerebral ischemia-reperfusion nerve cell
apoptosis. Chin J Neurosurg. 26:904–907. 2010.(In Chinese).
|
|
49
|
Ye X, Yu S, Li C and Guo L:
Neuroprotective role of mild hypothermia on cerebral
ischemia-reperfusion injury in rats. Clin Med China. 22:124–126.
2006.(In Chinese).
|
|
50
|
Xue BS, Feng PH, Wei ND, Li ZF, Li YY, Lv
XL and Hou WJ: The effect and mechanism of hypothermia on repair of
cerebral ischemia-reperfusion injury rats. Prog Anat Sci.
22:654–657. 2016.(In Chinese).
|
|
51
|
Cao Z, Balasubramanian A, Pedersen SE,
Romero J, Pautler RG and Marrelli SP: TRPV1-mediated
pharmacological hypothermia promotes improved functional recovery
following ischemic stroke. Sci Rep. 7(17685)2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Lay C and Badjatia N: Therapeutic
hypothermia after cardiac arrest. Curr Atheroscler Rep. 12:336–342.
2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ai L, Qiao Q, Chen N, Yang T, Tang X and
Yue J: Neuroprotective effect of therapeutic hypothermia induced by
dihydrocapsaicin on cerebral ischemia reperfusion injury in mice. J
Xinxiang Med Univ. 34:1058–1062. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
54
|
Muzzi M, Felici R, Cavone L, Gerace E,
Minassi A, Appendino G, Moroni F and Chiarugi A: Ischemic
neuroprotection by TRPV1 receptor-induced hypothermia. J Cereb
Blood Flow Metab. 32:978–982. 2012.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Cao Z, Balasubramanian A and Marrelli SP:
Pharmacologically induced hypothermia via TRPV1 channel agonism
provides neuroprotection following ischemic stroke when initiated
90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol.
306:R149–R156. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Shibasaki K: Physiological significance of
TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol
Sci. 66:359–365. 2016.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Shibasaki K, Ishizaki Y and Mandadi S:
Astrocytes express functional TRPV2 ion channels. Biochem Biophys
Res Commun. 441:327–332. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Deng Q: Efficacy evaluation of Erigeron
breviscapus on neurological function recovery after minimally
invasive procedures for removal of intracranial hematoma. Chin J
Pract Nerv Dis. 12:82–84. 2009.
|
|
59
|
Kojima I and Nagasawa M: TRPV2. Handb Exp
Pharmacol. 222:247–272. 2014.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Park HJ, Kwon H, Lee S, Jung JW, Ryu JH,
Jang DS, Lee YC and Kim DH: Echinocystic acid facilitates neurite
outgrowth in neuroblastoma Neuro2a cells and enhances spatial
memory in aged mice. Biol Pharm Bull. 40:1724–1729. 2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Cohen MR, Johnson WM, Pilat JM, Kiselar J,
DeFrancesco-Lisowitz A, Zigmond RE and Moiseenkova-Bell VY: Nerve
growth factor regulates transient receptor potential vanilloid 2
via extracellular signal-regulated kinase signaling to enhance
neurite outgrowth in developing neurons. Mol Cell Biol.
35:4238–4252. 2015.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhang H, Xiao J, Hu Z, Xie M, Wang W and
He D: Blocking transient receptor potential vanilloid 2 channel in
astrocytes enhances astrocyte-mediated neuroprotection after
oxygen-glucose deprivation and reoxygenation. Eur J Neurosci.
44:2493–2503. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Xiao J, Yang F, Zhang H, Wang W and He D:
TRPV2 activation enhances the expression of nerve growth factor in
primary cultured astrocytes under oxygen-glucose
deprivation/reoxygenation. Chin J Cell Biol. 36:773–779. 2014.
|
|
64
|
Luo H, Rossi E, Saubamea B, Chasseigneaux
S, Cochois V, Choublier N, Smirnova M, Glacial F, Perrière N,
Bourdoulous S, et al: Cannabidiol increases proliferation,
migration, tubulogenesis, and integrity of human brain endothelial
cells through TRPV2 activation. Mol Pharm. 16:1312–1326.
2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Garcia-Elias A, Mrkonjic S, Jung C,
Pardo-Pastor C, Vicente R and Valverde MA: The TRPV4 channel. Handb
Exp Pharmacol. 222:293–319. 2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Nilius B and Voets T: The puzzle of TRPV4
channelopathies. EMBO Rep. 14:152–163. 2013.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Liedtke W, Choe Y, Martí-Renom MA, Bell
AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM and Heller S:
Vanilloid receptor-related osmotically activated channel (VR-OAC),
a candidate vertebrate osmoreceptor. Cell. 103:525–535.
2000.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Li L, Liu C and Chen L and Chen L:
Hypotonicity modulates tetrodotoxin-sensitive sodium current in
trigeminal ganglion neurons. Mol Pain. 7(27)2011.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chen NN, Wang JP, Jiang C, Liu C, Li X,
Zhao Y and Hao Y: Research about the influence of progesterone on
expression of COX-2 and the water content of injured brain in
cerebral ischemia in rats. J Apoplexy Nerv Dis. 6:671–673.
2009.
|
|
70
|
Lu WC, Ma YJ, Xie H, Dig XH, Su QX, Xing
HH, Meng YH, Fan J and Tian JH: Effect of TRPV4 channel on focal
cerebral ischemic reperfusion injury in rats. Prog Anat Sci.
23:353–355. 2017.(In Chinese).
|
|
71
|
Lipski J, Park TI, Li D, Lee SC, Trevarton
AJ, Chung KK, Freestone PS and Bai JZ: Involvement of TRP-like
channels in the acute ischemic response of hippocampal CA1 neurons
in brain slices. Brain Res. 1077:187–199. 2006.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zacharia BE, Hickman ZL, Grobelny BT,
DeRosa PA, Ducruet AF and Connolly ES: Complement inhibition as a
proposed neuroprotective strategy following cardiac arrest.
Mediators Inflamm. 2009(124384)2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Bernard SA, Gray TW, Buist MD, Jones BM,
Silvester W, Gutteridge G and Smith K: Treatment of comatose
survivors of out-of-hospital cardiac arrest with induced
hypothermia. N Engl J Med. 346:557–563. 2002.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Wu Q, Qian C, Zhao N, Dong Q, Li J, Wang
BB, Chen L, Yu L, Han B, Du YM and Liao YH: Activation of transient
receptor potential vanilloid 4 involves in hypoxia/reoxygenation
injury in cardiomyocytes. Cell Death Dis. 8(e2828)2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou
L, Du Y and Chen L and Chen L: Activation of transient receptor
potential vanilloid 4 induces apoptosis in hippocampus through
downregulating PI3K/Akt and upregulating p38 MAPK signaling
pathways. Cell Death Dis. 6(e1775)2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y,
Zhou R, Zhou Y, Du Y and Chen L and Chen L: Activation of transient
receptor potential vanilloid 4 is involved in neuronal injury in
middle cerebral artery occlusion in mice. Mol Neurobiol. 53:8–17.
2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Butenko O, Dzamba D, Benesova J, Honsa P,
Benfenati V, Rusnakova V, Ferroni S and Anderova M: The increased
activity of TRPV4 channel in the astrocytes of the adult rat
hippocampus after cerebral hypoxia/ischemia. PLoS One.
7(e39959)2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Dunn KM, Hill-Eubanks DC, Liedtke WB and
Nelson MT: TRPV4 channels stimulate Ca2+-induced Ca2+ release in
astrocytic endfeet and amplify neurovascular coupling responses.
Proc Natl Acad Sci USA. 110:6157–6162. 2013.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhang YF, Fan XJ, Li X, Peng LL, Wang GH,
Ke KF and Jiang ZL: Ginsenoside Rg1 protects neurons from
hypoxic-ischemic injury possibly by inhibiting Ca2+ influx through
NMDA receptors and L-type voltage-dependent Ca2+ channels. Eur J
Pharmacol. 586:90–99. 2008.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Tanaka K, Matsumoto S, Yamada T, Yamasaki
R, Suzuki M, Kido MA and Kira JI: Reduced post-ischemic brain
injury in transient receptor potential vanilloid 4 knockout mice.
Front Neurosci. 14(453)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Diaz-Otero JM, Yen TC, Ahmad A,
Laimon-Thomson E, Abolibdeh B, Kelly K, Lewis MT, Wiseman RW,
Jackson WF and Dorrance AM: Transient receptor potential vanilloid
4 channels are important regulators of parenchymal arteriole
dilation and cognitive function. Microcirculation.
26(e12535)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Simpson S, Preston D, Schwerk C, Schroten
H and Blazer-Yost B: Cytokine and inflammatory mediator effects on
TRPV4 function in choroid plexus epithelial cells. Am J Physiol
Cell Physiol. 317:C881–C893. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Emsley HC and Tyrrell PJ: Inflammation and
infection in clinical stroke. J Cereb Blood Flow Metab.
22:1399–1419. 2002.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhu D, Yin L and Liu Q: The role of TRPV4
in OGD damage of cultured in vitro astrocytes. Chin J Clin Res.
26:885–888. 2013.
|
|
85
|
Hong Z, Tian Y, Qi M, Li Y, Du Y and Chen
L, Liu W and Chen L: Transient receptor potential vanilloid 4
inhibits γ-aminobutyric acid-activated current in hippocampal
pyramidal neurons. Front Mol Neurosci. 9(77)2016.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ashraf MI, Ebner M, Wallner C, Haller M,
Khalid S, Schwelberger H, Koziel K, Enthammer M, Hermann M,
Sickinger S, et al: A p38MAPK/MK2 signaling pathway leading to
redox stress, cell death and ischemia/reperfusion injury. Cell
Commun Signal. 12(6)2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Morente V, Pérez-Sen R, Ortega F,
Huerta-Cepas J, Delicado EG and Miras-Portugal MT: Neuroprotection
elicited by P2Y13 receptors against genotoxic stress by inducing
DUSP2 expression and MAPK signaling recovery. Biochim Biophys Acta.
1843:1886–1898. 2014.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Maddahi A, Chen Q and Edvinsson L:
Enhanced cerebrovascular expression of matrix metalloproteinase-9
and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway
during cerebral ischemia in the rat. Bmc Neurosci.
10(56)2009.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kovalska M, Kovalska L, Pavlikova M,
Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z and
Lehotsky J: Intracellular signaling MAPK pathway after cerebral
ischemia-reperfusion injury. Neurochem Res. 37:1568–1577.
2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Rumbaut RE, McKay MK and Huxley VH:
Capillary hydraulic conductivity is decreased by nitric oxide
synthase inhibition. Am J Physiol. 268:H1856–H1861. 1995.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Piao CS, Kim JB, Han PL and Lee JK:
Administration of the p38 MAPK inhibitor SB203580 affords brain
protection with a wide therapeutic window against focal ischemic
insult. J Neurosci Res. 73:537–544. 2003.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Kang J, Zhang Y, Cao X, Fan J, Li G, Wang
Q, Diao Y, Zhao Z, Luo L and Yin Z: Lycorine inhibits
lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7
cells through suppressing P38 and STATs activation and increases
the survival rate of mice after LPS challenge. Int Immunopharmacol.
12:249–256. 2012.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Ridnour LA, Windhausen AN, Isenberg JS,
Yeung N, Thomas DD, Vitek MP, Roberts DD and Wink DA: Nitric oxide
regulates matrix metalloproteinase-9 activity by
guanylyl-cyclase-dependent and -independent pathways. Proc Natl
Acad Sci USA. 104:16898–16903. 2007.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Okuno S, Saito A, Hayashi T and Chan PH:
The c-Jun N-terminal protein kinase signaling pathway mediates Bax
activation and subsequent neuronal apoptosis through interaction
with Bim after transient focal cerebral ischemia. J Neurosci.
24:7879–7887. 2004.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Gao X, Zhang H, Takahashi T, Hsieh J, Liao
J, Steinberg GK and Zhao H: The Akt signaling pathway contributes
to postconditioning's protection against stroke; the protection is
associated with the MAPK and PKC pathways. J Neurochem.
105:943–955. 2008.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Sun T, Li YJ, Tian QQ, Wu Q, Feng D, Xue
Z, Guo YY, Yang L, Zhang K, Zhao MG and Wu YM: Activation of liver
X receptor β-enhancing neurogenesis ameliorates cognitive
impairment induced by chronic cerebral hypoperfusion. Exp Neurol.
304:21–29. 2018.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S
and Jacinto E: Akt activation improves microregional oxygen
supply/consumption balance after cerebral ischemia-reperfusion.
Brain Res. 1683:48–54. 2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Gao F, Gao E, Yue TL, Ohlstein EH, Lopez
BL, Christopher TA and Ma XL: Nitric oxide mediates the
antiapoptotic effect of insulin in myocardial ischemia-reperfusion:
The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase
phosphorylation. Circulation. 105:1497–1502. 2002.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Rocha-Ferreira E, Rudge B, Hughes MP,
Rahim AA, Hristova M and Robertson NJ: Immediate remote ischemic
postconditioning reduces brain nitrotyrosine formation in a piglet
asphyxia model. Oxid Med Cell Longev. 2016(5763743)2016.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Kamada H, Nito C, Endo H and Chan PH: Bad
as a converging signaling molecule between survival PI3-K/Akt and
death JNK in neurons after transient focal cerebral ischemia in
rats. J Cereb Blood Flow Metab. 27:521–533. 2007.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Li F, Omori N, Jin G, Wang SJ, Sato K,
Nagano I, Shoji M and Abe K: Cooperative expression of survival
p-ERK and p-Akt signals in rat brain neurons after transient MCAO.
Brain Res. 962:21–26. 2003.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Berliocchi L, Bano D and Nicotera P: Ca2+
signals and death programmes in neurons. Philos Trans R Soc Lond B
Biol Sci. 360:2255–2258. 2005.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Zhang E and Liao P: Brain transient
receptor potential channels and stroke. J Neurosci Res.
93:1165–1183. 2015.PubMed/NCBI View Article : Google Scholar
|