Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2021 Volume 22 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)

  • Authors:
    • Qian Xie
    • Rong Ma
    • Hongyan Li
    • Jian Wang
    • Xiaoqing Guo
    • Hai Chen
  • View Affiliations / Copyright

    Affiliations: School of Pharmacy and State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
    Copyright: © Xie et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 881
    |
    Published online on: June 15, 2021
       https://doi.org/10.3892/etm.2021.10313
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Stroke is a common critical disease occurring in middle‑aged and elderly individuals, and is characterized by high morbidity, lethality and mortality. As such, it is of great concern to medical professionals. The aim of the present review was to investigate the effects of transient receptor potential vanilloid (TRPV) subtypes during cerebral ischemia in ischemia‑reperfusion animal models, oxygen glucose deprivation and in other administration cell models in vitro to explore new avenues for stroke research and clinical treatments. TRPV1, TRPV2 and TRPV4 employ different methodologies by which they confer protection against cerebral ischemic injury. TRPV1 and TRPV4 are likely related to the inhibition of inflammatory reactions, neurotoxicity and cell apoptosis, thus promoting nerve growth and regulation of intracellular calcium ions (Ca2+). The mechanisms of neuroprotection of TRPV1 are the JNK pathway, N‑methyl‑D‑aspartate (NMDA) receptor and therapeutic hypothermia. The mechanisms of neuroprotection of TRPV4 are the PI3K/Akt pathways, NMDA receptor and p38 MAPK pathway, amongst others. The mechanisms by which TRPV2 confers its protective effects are predominantly connected with the regulation of nerve growth factor, MAPK and JNK pathways, as well as JNK‑dependent pathways. Thus, TRPVs have the potential for improving outcomes associated with cerebral ischemic or reperfusion injuries. The protection conferred by TRPV1 and TRPV4 is closely related to cellular Ca2+ influx, while TRPV2 has a different target and mode of action, possibly due to its expression sites. However, in light of certain contradictory research conclusions, further experimentation is required to clarify the mechanisms and specific pathways by which TRPVs act to alleviate nerve injuries.
View Figures

Figure 1

View References

1 

Vos T, Allen C, Arora M, Barber RM, Bhutta Z, Brown A, Carter AR, Charlson FJ, Chen A, Coggeshall M, et al: Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: A systematic analysis for the global burden of disease study 2015. Lancet. 388:1545–1602. 2016.PubMed/NCBI View Article : Google Scholar

2 

Zhou M, Wang H, Zhu J, Chen W, Wang L, Liu S, Li Y, Wang L, Liu Y, Yin P, et al: Cause-specific mortality for 240 causes in China during 1990-2013: A systematic subnational analysis for the global burden of disease study 2013. Lancet. 387:251–272, 10015. 2016.PubMed/NCBI View Article : Google Scholar

3 

Huang ZY, Zhang XX, Sun WL, Chen C, Li DF, Fang J, Fu MH, Liu QS, Yan TH and Li SJ: Research progress of inflammation reaction related to endoplasmic reticulum stress in ischemic endoplasmic reticulum stress. Chin Pharmacol Bull. 31:23–26. 2015.(In Chinese).

4 

Dirnagl U, Iadecola C and Moskowitz MA: Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 22:391–397. 1999.PubMed/NCBI View Article : Google Scholar

5 

Kovac S, Kostova Dinkova AT, Herrmann AM, Melzer N, Meuth SG and Gorji A: Metabolic and homeostatic changes in seizures and acquired epilepsy-mitochondria, calcium dynamics and reactive oxygen species. Int J Mol Sci. 18(1935)2017.PubMed/NCBI View Article : Google Scholar

6 

Fahrner JA, Liu R, Perry MS, Klein J and Chan DC: A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A. 170:2002–2011. 2016.PubMed/NCBI View Article : Google Scholar

7 

Chan PH: Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 21:2–14. 2001.PubMed/NCBI View Article : Google Scholar

8 

Chan PH: Role of oxidants in ischemic brain damage. Stroke. 27:1124–1129. 1996.PubMed/NCBI View Article : Google Scholar

9 

Venkatachalam K and Montell C: TRP channels. Annu Rev Biochem. 76:387–417. 2007.PubMed/NCBI View Article : Google Scholar

10 

Rakers C, Schmid M and Petzold GC: TRPV4 channels contribute to calcium transients in astrocytes and neurons during peri-infarct depolarizations in a stroke model. Glia. 65:1550–1561. 2017.PubMed/NCBI View Article : Google Scholar

11 

Han J, Xu HH, Chen XL, Hu HR, Hu KM, Chen ZW and He GW: Total flavone of rhododendron improves cerebral ischemia injury by activating vascular TRPV4 to induce endothelium-derived hyperpolarizing factor-mediated responses. Evid Based Complement Alternat Med. 2018(8919867)2018.PubMed/NCBI View Article : Google Scholar

12 

Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K and Kitazono T: Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca2+-activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension. Hypertension. 69:143–153. 2017.PubMed/NCBI View Article : Google Scholar

13 

Li L, Qu W, Zhou L, Lu Z, Jie P and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 increases NMDA-activated current in hippocampal pyramidal neurons. Front Cell Neurosci. 7(17)2013.PubMed/NCBI View Article : Google Scholar

14 

Lau A and Tymianski M: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch. 460:525–542. 2010.PubMed/NCBI View Article : Google Scholar

15 

Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z, Yoon WH, Sullivan JM, Broadhead GT, Sumner CJ, et al: A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron. 84:764–777. 2014.PubMed/NCBI View Article : Google Scholar

16 

Satheesh NJ, Uehara Y, Fedotova J, Pohanka M, Büsselberg D and Kruzliak P: TRPV currents and their role in the nociception and neuroplasticity. Neuropeptides. 57:1–8. 2016.PubMed/NCBI View Article : Google Scholar

17 

Hoenderop JG, Nilius B and Bindels RJ: Molecular mechanism of active Ca2+ reabsorption in the distal nephron. Annu Rev Physiol. 64:529–549. 2002.PubMed/NCBI View Article : Google Scholar

18 

Barley NF, Howard A, Callaghan DO, Legon S and Walters JRF: Epithelial calcium transporter expression in human duodenum. Am J Physiol Gastrointest Liver Physiol. 2:G285–G290. 2001.PubMed/NCBI View Article : Google Scholar

19 

Everaerts W, Gees M, Alpizar YA, Farre R, Leten C, Apetrei A, Dewachter I, van Leuven F, Vennekens R, De Ridder D, et al: The capsaicin receptor TRPV1 is a crucial mediator of the noxious effects of mustard oil. Curr Biol. 21:316–321. 2011.PubMed/NCBI View Article : Google Scholar

20 

Khairatkar-Joshi N and Szallasi A: TRPV1 antagonists: The challenges for therapeutic targeting. Trends Mol Med. 15:14–22. 2009.PubMed/NCBI View Article : Google Scholar

21 

Cui M, Honore P, Zhong C, Gauvin D, Mikusa J, Hernandez G, Chandran P, Gomtsyan A, Brown B, Bayburt EK, et al: TRPV1 receptors in the CNS play a key role in broad-spectrum analgesia of TRPV1 antagonists. J Neurosci. 26:9385–9393. 2006.PubMed/NCBI View Article : Google Scholar

22 

Ward NJ, Ho KW, Lambert WS, Weitlauf C and Calkins DJ: Absence of transient receptor potential vanilloid-1 accelerates stress-induced axonopathy in the optic projection. J Neurosci. 34:3161–3170. 2014.PubMed/NCBI View Article : Google Scholar

23 

Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K and Qin ZH: Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy. 4:762–769. 2008.PubMed/NCBI View Article : Google Scholar

24 

Khan MM, Ishrat T, Ahmad A, Hoda MN, Khan MB, Khuwaja G, Srivastava P, Raza SS, Islam F and Ahmad S: Sesamin attenuates behavioral, biochemical and histological alterations induced by reversible middle cerebral artery occlusion in the rats. Chem Biol Interact. 183:255–263. 2010.PubMed/NCBI View Article : Google Scholar

25 

Li L, Tan J, Miao Y, Lei P and Zhang Q: ROS and autophagy: Interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 35:615–621. 2015.PubMed/NCBI View Article : Google Scholar : Yang Y, Gao K, Hu Z, Li W, Davies H, Ling S, Rudd JA and Fang M: Autophagy upregulation and apoptosis downregulation in DAHP and triptolide treated cerebral ischemia. Mediators Inflamm 2015: 120198, 2015.

26 

Charriaut-Marlangue C: Apoptosis: A target for neuroprotection. Therapie. 59:185–190. 2004.PubMed/NCBI View Article : Google Scholar

27 

Dai Z, Xiao J, Liu S, Cui L, Hu G and Jiang D: Rutaecarpine inhibits hypoxia/reoxygenation-induced apoptosis in rat hippocampal neurons. Neuropharmacology. 55:1307–1312. 2008.PubMed/NCBI View Article : Google Scholar

28 

Golech SA, McCarron RM, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E and Spatz M: Human brain endothelium: Coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res. 132:87–92. 2004.PubMed/NCBI View Article : Google Scholar

29 

Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y and Zhang Y: Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol. 295:66–76. 2017.PubMed/NCBI View Article : Google Scholar

30 

Liu A, Wang SH, Hou SY, Lin CJ, Chiu WT, Hsiao SH, Chen TH and Shih CM: Evodiamine induces transient receptor potential vanilloid-1-mediated protective autophagy in U87-MG astrocytes. Evid Based Complement Alternat Med. 2013(354840)2013.PubMed/NCBI View Article : Google Scholar

31 

Wang Z, Sun L, Yu H, Zhang Y, Gong W, Jin H, Zhang L and Liang H: Binding mode pediction of evodiamine within vanilloid receptor TRPV1. Int J Mol Sci. 13:8958–8969. 2012.PubMed/NCBI View Article : Google Scholar

32 

Hale AN, Ledbetter DJ, Gawriluk TR and Rucker EB III: Autophagy: Regulation and role in development. Autophagy. 7:951–972. 2013.PubMed/NCBI View Article : Google Scholar

33 

Miyanohara J, Shirakawa H, Sanpei K, Nakagawa T and Kaneko S: A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice. Biochem Biophys Res Commun. 467:478–483. 2015.PubMed/NCBI View Article : Google Scholar

34 

Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, et al: Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension. Cell Metab. 12:130–141. 2010.PubMed/NCBI View Article : Google Scholar

35 

Breyne J and Vanheel B: Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol. 47:303–309. 2006.PubMed/NCBI View Article : Google Scholar

36 

Xu X, Wang P, Zhao Z, Cao T, He H, Luo Z, Zhong J, Gao F, Zhu Z, Li L, et al: Activation of transient receptor potential vanilloid 1 by dietary capsaicin delays the onset of stroke in stroke-prone spontaneously hypertensive rats. Stroke. 42:3245–3251. 2011.PubMed/NCBI View Article : Google Scholar

37 

Ching LC, Chen CY, Su KH, Hou HH, Shyue SK, Kou YR and Lee TS: Implication of AMP-activated protein kinase in transient receptor potential vanilloid type 1-mediated activation of endothelial nitric oxide synthase. Mol Med. 18:805–815. 2012.PubMed/NCBI View Article : Google Scholar

38 

Hurtado-Zavala JI, Ramachandran B, Ahmed S, Halder R, Bolleyer C, Awasthi A, Stahlberg MA, Wagener RJ, Anderson K, Drenan RM, et al: TRPV1 regulates excitatory innervation of OLM neurons in the hippocampus. Nat Commun. 8(15878)2017.PubMed/NCBI View Article : Google Scholar

39 

Zhang MJ, Yin YW, Li BH, Liu Y, Liao SQ, Gao CY, Li JC and Zhang LL: The role of TRPV1 in improving VSMC function and attenuating hypertension. Prog Biophys Mol Biol. 117:212–216. 2015.PubMed/NCBI View Article : Google Scholar

40 

Szydlowska K and Tymianski M: Calcium, ischemia and excitotoxicity. Cell Calcium. 47:122–129. 2010.PubMed/NCBI View Article : Google Scholar

41 

Chen L, Liu C, Liu L and Cao X: Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neurosci Res. 64:199–207. 2009.PubMed/NCBI View Article : Google Scholar

42 

Hakimizadeh E, Shamsizadeh A, Roohbakhsh A, Arababadi MK, Hajizadeh MR, Shariati M, Rahmani MR and Allahtavakoli M: Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model. Fund Clin Pharmacol. 31:420–428. 2017.PubMed/NCBI View Article : Google Scholar

43 

Long M, Wang Z, Zheng D, Chen J, Tao W, Wang L, Yin N and Chen Z: Electroacupuncture pretreatment elicits neuroprotection against cerebral ischemia-reperfusion injury in rats associated with transient receptor potential vanilloid 1-mediated anti-oxidant stress and anti-inflammation. Inflammation. 42:1777–1787. 2019.PubMed/NCBI View Article : Google Scholar

44 

Yang XL, Wang X, Shao L, Jiang GT, Min JW, Mei XY, He XH, Liu WH, Huang WX and Peng BW: TRPV1 mediates astrocyte activation and interleukin-1β release induced by hypoxic ischemia (HI). J Neuroinflammation. 16(114)2019.PubMed/NCBI View Article : Google Scholar

45 

Gavva NR, Bannon AW, Surapaneni S, Hovland DN Jr, Lehto SG, Gore A, Juan T, Deng H, Han B, Klionsky L, et al: The vanilloid receptor TRPV1 is tonically activated in vivo and involved in body temperature regulation. J Neurosci. 27:3366–3374. 2007.PubMed/NCBI View Article : Google Scholar

46 

Steiner AA, Turek VF, Almeida MC, Burmeister JJ, Oliveira DL, Roberts JL, Bannon AW, Norman MH, Louis JC, Treanor JJ, et al: Nonthermal activation of transient receptor potential vanilloid-1 channels in abdominal viscera tonically inhibits autonomic cold-defense effectors. J Neurosci. 27:7459–7468. 2007.PubMed/NCBI View Article : Google Scholar

47 

Gavva NR: Body-temperature maintenance as the predominant function of the vanilloid receptor TRPV1. Trends Pharmacol Sci. 29:550–557. 2008.PubMed/NCBI View Article : Google Scholar

48 

Li J and Zhang S: The effect of mild hypothermia on mice cerebral ischemia-reperfusion nerve cell apoptosis. Chin J Neurosurg. 26:904–907. 2010.(In Chinese).

49 

Ye X, Yu S, Li C and Guo L: Neuroprotective role of mild hypothermia on cerebral ischemia-reperfusion injury in rats. Clin Med China. 22:124–126. 2006.(In Chinese).

50 

Xue BS, Feng PH, Wei ND, Li ZF, Li YY, Lv XL and Hou WJ: The effect and mechanism of hypothermia on repair of cerebral ischemia-reperfusion injury rats. Prog Anat Sci. 22:654–657. 2016.(In Chinese).

51 

Cao Z, Balasubramanian A, Pedersen SE, Romero J, Pautler RG and Marrelli SP: TRPV1-mediated pharmacological hypothermia promotes improved functional recovery following ischemic stroke. Sci Rep. 7(17685)2017.PubMed/NCBI View Article : Google Scholar

52 

Lay C and Badjatia N: Therapeutic hypothermia after cardiac arrest. Curr Atheroscler Rep. 12:336–342. 2010.PubMed/NCBI View Article : Google Scholar

53 

Ai L, Qiao Q, Chen N, Yang T, Tang X and Yue J: Neuroprotective effect of therapeutic hypothermia induced by dihydrocapsaicin on cerebral ischemia reperfusion injury in mice. J Xinxiang Med Univ. 34:1058–1062. 2017.PubMed/NCBI View Article : Google Scholar : (In Chinese).

54 

Muzzi M, Felici R, Cavone L, Gerace E, Minassi A, Appendino G, Moroni F and Chiarugi A: Ischemic neuroprotection by TRPV1 receptor-induced hypothermia. J Cereb Blood Flow Metab. 32:978–982. 2012.PubMed/NCBI View Article : Google Scholar

55 

Cao Z, Balasubramanian A and Marrelli SP: Pharmacologically induced hypothermia via TRPV1 channel agonism provides neuroprotection following ischemic stroke when initiated 90 min after reperfusion. Am J Physiol Regul Integr Comp Physiol. 306:R149–R156. 2014.PubMed/NCBI View Article : Google Scholar

56 

Shibasaki K: Physiological significance of TRPV2 as a mechanosensor, thermosensor and lipid sensor. J Physiol Sci. 66:359–365. 2016.PubMed/NCBI View Article : Google Scholar

57 

Shibasaki K, Ishizaki Y and Mandadi S: Astrocytes express functional TRPV2 ion channels. Biochem Biophys Res Commun. 441:327–332. 2013.PubMed/NCBI View Article : Google Scholar

58 

Deng Q: Efficacy evaluation of Erigeron breviscapus on neurological function recovery after minimally invasive procedures for removal of intracranial hematoma. Chin J Pract Nerv Dis. 12:82–84. 2009.

59 

Kojima I and Nagasawa M: TRPV2. Handb Exp Pharmacol. 222:247–272. 2014.PubMed/NCBI View Article : Google Scholar

60 

Park HJ, Kwon H, Lee S, Jung JW, Ryu JH, Jang DS, Lee YC and Kim DH: Echinocystic acid facilitates neurite outgrowth in neuroblastoma Neuro2a cells and enhances spatial memory in aged mice. Biol Pharm Bull. 40:1724–1729. 2017.PubMed/NCBI View Article : Google Scholar

61 

Cohen MR, Johnson WM, Pilat JM, Kiselar J, DeFrancesco-Lisowitz A, Zigmond RE and Moiseenkova-Bell VY: Nerve growth factor regulates transient receptor potential vanilloid 2 via extracellular signal-regulated kinase signaling to enhance neurite outgrowth in developing neurons. Mol Cell Biol. 35:4238–4252. 2015.PubMed/NCBI View Article : Google Scholar

62 

Zhang H, Xiao J, Hu Z, Xie M, Wang W and He D: Blocking transient receptor potential vanilloid 2 channel in astrocytes enhances astrocyte-mediated neuroprotection after oxygen-glucose deprivation and reoxygenation. Eur J Neurosci. 44:2493–2503. 2016.PubMed/NCBI View Article : Google Scholar

63 

Xiao J, Yang F, Zhang H, Wang W and He D: TRPV2 activation enhances the expression of nerve growth factor in primary cultured astrocytes under oxygen-glucose deprivation/reoxygenation. Chin J Cell Biol. 36:773–779. 2014.

64 

Luo H, Rossi E, Saubamea B, Chasseigneaux S, Cochois V, Choublier N, Smirnova M, Glacial F, Perrière N, Bourdoulous S, et al: Cannabidiol increases proliferation, migration, tubulogenesis, and integrity of human brain endothelial cells through TRPV2 activation. Mol Pharm. 16:1312–1326. 2019.PubMed/NCBI View Article : Google Scholar

65 

Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R and Valverde MA: The TRPV4 channel. Handb Exp Pharmacol. 222:293–319. 2014.PubMed/NCBI View Article : Google Scholar

66 

Nilius B and Voets T: The puzzle of TRPV4 channelopathies. EMBO Rep. 14:152–163. 2013.PubMed/NCBI View Article : Google Scholar

67 

Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM and Heller S: Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 103:525–535. 2000.PubMed/NCBI View Article : Google Scholar

68 

Li L, Liu C and Chen L and Chen L: Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain. 7(27)2011.PubMed/NCBI View Article : Google Scholar

69 

Chen NN, Wang JP, Jiang C, Liu C, Li X, Zhao Y and Hao Y: Research about the influence of progesterone on expression of COX-2 and the water content of injured brain in cerebral ischemia in rats. J Apoplexy Nerv Dis. 6:671–673. 2009.

70 

Lu WC, Ma YJ, Xie H, Dig XH, Su QX, Xing HH, Meng YH, Fan J and Tian JH: Effect of TRPV4 channel on focal cerebral ischemic reperfusion injury in rats. Prog Anat Sci. 23:353–355. 2017.(In Chinese).

71 

Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS and Bai JZ: Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res. 1077:187–199. 2006.PubMed/NCBI View Article : Google Scholar

72 

Zacharia BE, Hickman ZL, Grobelny BT, DeRosa PA, Ducruet AF and Connolly ES: Complement inhibition as a proposed neuroprotective strategy following cardiac arrest. Mediators Inflamm. 2009(124384)2009.PubMed/NCBI View Article : Google Scholar

73 

Bernard SA, Gray TW, Buist MD, Jones BM, Silvester W, Gutteridge G and Smith K: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med. 346:557–563. 2002.PubMed/NCBI View Article : Google Scholar

74 

Wu Q, Qian C, Zhao N, Dong Q, Li J, Wang BB, Chen L, Yu L, Han B, Du YM and Liao YH: Activation of transient receptor potential vanilloid 4 involves in hypoxia/reoxygenation injury in cardiomyocytes. Cell Death Dis. 8(e2828)2017.PubMed/NCBI View Article : Google Scholar

75 

Jie P, Hong Z, Tian Y, Li Y, Lin L, Zhou L, Du Y and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 induces apoptosis in hippocampus through downregulating PI3K/Akt and upregulating p38 MAPK signaling pathways. Cell Death Dis. 6(e1775)2015.PubMed/NCBI View Article : Google Scholar

76 

Jie P, Lu Z, Hong Z, Li L, Zhou L, Li Y, Zhou R, Zhou Y, Du Y and Chen L and Chen L: Activation of transient receptor potential vanilloid 4 is involved in neuronal injury in middle cerebral artery occlusion in mice. Mol Neurobiol. 53:8–17. 2016.PubMed/NCBI View Article : Google Scholar

77 

Butenko O, Dzamba D, Benesova J, Honsa P, Benfenati V, Rusnakova V, Ferroni S and Anderova M: The increased activity of TRPV4 channel in the astrocytes of the adult rat hippocampus after cerebral hypoxia/ischemia. PLoS One. 7(e39959)2012.PubMed/NCBI View Article : Google Scholar

78 

Dunn KM, Hill-Eubanks DC, Liedtke WB and Nelson MT: TRPV4 channels stimulate Ca2+-induced Ca2+ release in astrocytic endfeet and amplify neurovascular coupling responses. Proc Natl Acad Sci USA. 110:6157–6162. 2013.PubMed/NCBI View Article : Google Scholar

79 

Zhang YF, Fan XJ, Li X, Peng LL, Wang GH, Ke KF and Jiang ZL: Ginsenoside Rg1 protects neurons from hypoxic-ischemic injury possibly by inhibiting Ca2+ influx through NMDA receptors and L-type voltage-dependent Ca2+ channels. Eur J Pharmacol. 586:90–99. 2008.PubMed/NCBI View Article : Google Scholar

80 

Tanaka K, Matsumoto S, Yamada T, Yamasaki R, Suzuki M, Kido MA and Kira JI: Reduced post-ischemic brain injury in transient receptor potential vanilloid 4 knockout mice. Front Neurosci. 14(453)2020.PubMed/NCBI View Article : Google Scholar

81 

Diaz-Otero JM, Yen TC, Ahmad A, Laimon-Thomson E, Abolibdeh B, Kelly K, Lewis MT, Wiseman RW, Jackson WF and Dorrance AM: Transient receptor potential vanilloid 4 channels are important regulators of parenchymal arteriole dilation and cognitive function. Microcirculation. 26(e12535)2019.PubMed/NCBI View Article : Google Scholar

82 

Simpson S, Preston D, Schwerk C, Schroten H and Blazer-Yost B: Cytokine and inflammatory mediator effects on TRPV4 function in choroid plexus epithelial cells. Am J Physiol Cell Physiol. 317:C881–C893. 2019.PubMed/NCBI View Article : Google Scholar

83 

Emsley HC and Tyrrell PJ: Inflammation and infection in clinical stroke. J Cereb Blood Flow Metab. 22:1399–1419. 2002.PubMed/NCBI View Article : Google Scholar

84 

Zhu D, Yin L and Liu Q: The role of TRPV4 in OGD damage of cultured in vitro astrocytes. Chin J Clin Res. 26:885–888. 2013.

85 

Hong Z, Tian Y, Qi M, Li Y, Du Y and Chen L, Liu W and Chen L: Transient receptor potential vanilloid 4 inhibits γ-aminobutyric acid-activated current in hippocampal pyramidal neurons. Front Mol Neurosci. 9(77)2016.PubMed/NCBI View Article : Google Scholar

86 

Ashraf MI, Ebner M, Wallner C, Haller M, Khalid S, Schwelberger H, Koziel K, Enthammer M, Hermann M, Sickinger S, et al: A p38MAPK/MK2 signaling pathway leading to redox stress, cell death and ischemia/reperfusion injury. Cell Commun Signal. 12(6)2014.PubMed/NCBI View Article : Google Scholar

87 

Morente V, Pérez-Sen R, Ortega F, Huerta-Cepas J, Delicado EG and Miras-Portugal MT: Neuroprotection elicited by P2Y13 receptors against genotoxic stress by inducing DUSP2 expression and MAPK signaling recovery. Biochim Biophys Acta. 1843:1886–1898. 2014.PubMed/NCBI View Article : Google Scholar

88 

Maddahi A, Chen Q and Edvinsson L: Enhanced cerebrovascular expression of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 via the MEK/ERK pathway during cerebral ischemia in the rat. Bmc Neurosci. 10(56)2009.PubMed/NCBI View Article : Google Scholar

89 

Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z and Lehotsky J: Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res. 37:1568–1577. 2012.PubMed/NCBI View Article : Google Scholar

90 

Rumbaut RE, McKay MK and Huxley VH: Capillary hydraulic conductivity is decreased by nitric oxide synthase inhibition. Am J Physiol. 268:H1856–H1861. 1995.PubMed/NCBI View Article : Google Scholar

91 

Piao CS, Kim JB, Han PL and Lee JK: Administration of the p38 MAPK inhibitor SB203580 affords brain protection with a wide therapeutic window against focal ischemic insult. J Neurosci Res. 73:537–544. 2003.PubMed/NCBI View Article : Google Scholar

92 

Kang J, Zhang Y, Cao X, Fan J, Li G, Wang Q, Diao Y, Zhao Z, Luo L and Yin Z: Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW264.7 cells through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Immunopharmacol. 12:249–256. 2012.PubMed/NCBI View Article : Google Scholar

93 

Ridnour LA, Windhausen AN, Isenberg JS, Yeung N, Thomas DD, Vitek MP, Roberts DD and Wink DA: Nitric oxide regulates matrix metalloproteinase-9 activity by guanylyl-cyclase-dependent and -independent pathways. Proc Natl Acad Sci USA. 104:16898–16903. 2007.PubMed/NCBI View Article : Google Scholar

94 

Okuno S, Saito A, Hayashi T and Chan PH: The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebral ischemia. J Neurosci. 24:7879–7887. 2004.PubMed/NCBI View Article : Google Scholar

95 

Gao X, Zhang H, Takahashi T, Hsieh J, Liao J, Steinberg GK and Zhao H: The Akt signaling pathway contributes to postconditioning's protection against stroke; the protection is associated with the MAPK and PKC pathways. J Neurochem. 105:943–955. 2008.PubMed/NCBI View Article : Google Scholar

96 

Sun T, Li YJ, Tian QQ, Wu Q, Feng D, Xue Z, Guo YY, Yang L, Zhang K, Zhao MG and Wu YM: Activation of liver X receptor β-enhancing neurogenesis ameliorates cognitive impairment induced by chronic cerebral hypoperfusion. Exp Neurol. 304:21–29. 2018.PubMed/NCBI View Article : Google Scholar

97 

Weiss HR, Chi OZ, Kiss GK, Liu X, Damito S and Jacinto E: Akt activation improves microregional oxygen supply/consumption balance after cerebral ischemia-reperfusion. Brain Res. 1683:48–54. 2018.PubMed/NCBI View Article : Google Scholar

98 

Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA and Ma XL: Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation. 105:1497–1502. 2002.PubMed/NCBI View Article : Google Scholar

99 

Rocha-Ferreira E, Rudge B, Hughes MP, Rahim AA, Hristova M and Robertson NJ: Immediate remote ischemic postconditioning reduces brain nitrotyrosine formation in a piglet asphyxia model. Oxid Med Cell Longev. 2016(5763743)2016.PubMed/NCBI View Article : Google Scholar

100 

Kamada H, Nito C, Endo H and Chan PH: Bad as a converging signaling molecule between survival PI3-K/Akt and death JNK in neurons after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 27:521–533. 2007.PubMed/NCBI View Article : Google Scholar

101 

Li F, Omori N, Jin G, Wang SJ, Sato K, Nagano I, Shoji M and Abe K: Cooperative expression of survival p-ERK and p-Akt signals in rat brain neurons after transient MCAO. Brain Res. 962:21–26. 2003.PubMed/NCBI View Article : Google Scholar

102 

Berliocchi L, Bano D and Nicotera P: Ca2+ signals and death programmes in neurons. Philos Trans R Soc Lond B Biol Sci. 360:2255–2258. 2005.PubMed/NCBI View Article : Google Scholar

103 

Zhang E and Liao P: Brain transient receptor potential channels and stroke. J Neurosci Res. 93:1165–1183. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xie Q, Ma R, Li H, Wang J, Guo X and Chen H: Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review). Exp Ther Med 22: 881, 2021.
APA
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., & Chen, H. (2021). Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review). Experimental and Therapeutic Medicine, 22, 881. https://doi.org/10.3892/etm.2021.10313
MLA
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., Chen, H."Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)". Experimental and Therapeutic Medicine 22.2 (2021): 881.
Chicago
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., Chen, H."Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)". Experimental and Therapeutic Medicine 22, no. 2 (2021): 881. https://doi.org/10.3892/etm.2021.10313
Copy and paste a formatted citation
x
Spandidos Publications style
Xie Q, Ma R, Li H, Wang J, Guo X and Chen H: Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review). Exp Ther Med 22: 881, 2021.
APA
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., & Chen, H. (2021). Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review). Experimental and Therapeutic Medicine, 22, 881. https://doi.org/10.3892/etm.2021.10313
MLA
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., Chen, H."Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)". Experimental and Therapeutic Medicine 22.2 (2021): 881.
Chicago
Xie, Q., Ma, R., Li, H., Wang, J., Guo, X., Chen, H."Advancement in research on the role of the transient receptor potential vanilloid channel in cerebral ischemic injury (Review)". Experimental and Therapeutic Medicine 22, no. 2 (2021): 881. https://doi.org/10.3892/etm.2021.10313
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team