Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 22 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of microRNA‑129 in cancer and non‑cancerous diseases (Review)

  • Authors:
    • Bingpeng Deng
    • Xuan Tang
    • Yong Wang
  • View Affiliations / Copyright

    Affiliations: Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
    Copyright: © Deng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 918
    |
    Published online on: June 30, 2021
       https://doi.org/10.3892/etm.2021.10350
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non‑oncological diseases. These small non‑coding RNAs can block translation, resulting in a low expression level of target genes. miR‑129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR‑129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non‑cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR‑129 in different diseases. The present review includes an updated summary of the mechanisms of the miR‑129 family in oncological and non‑oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR‑129 in non‑cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
View Figures

Figure 1

Figure 2

View References

1 

Zhang HD, Jiang LH, Sun DW, Li J and Ji ZL: The role of miR-130a in cancer. Breast Cancer. 24:521–527. 2017.PubMed/NCBI View Article : Google Scholar

2 

Gao Y, Feng B, Han S, Lu L, Chen Y, Chu X, Wang R and Chen L: MicroRNA-129 in human cancers: From tumorigenesis to clinical treatment. Cell Physiol Biochem. 39:2186–2202. 2016.PubMed/NCBI View Article : Google Scholar

3 

Cai X, Hagedorn CH and Cullen BR: Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10:1957–1966. 2004.PubMed/NCBI View Article : Google Scholar

4 

Jiang Z, Zhang Y, Chen X, Wu P and Chen D: Inactivation of the Wnt/β-catenin signaling pathway underlies inhibitory role of microRNA-129-5p in epithelial-mesenchymal transition and angiogenesis of prostate cancer by targeting ZIC2. Cancer Cell Int. 19(271)2019.PubMed/NCBI View Article : Google Scholar

5 

Wang X, Peng L, Gong X, Zhang X and Sun R: LncRNA HIF1A-AS2 promotes osteosarcoma progression by acting as a sponge of miR-129-5p. Aging (Albany NY). 11:11803–11813. 2019.PubMed/NCBI View Article : Google Scholar

6 

Obsil T: 14-3-3 proteins-a family of universal scaffolds and regulators. Semin Cell Dev Biol. 22:661–662. 2011.PubMed/NCBI View Article : Google Scholar

7 

Meng R, Fang J, Yu Y, Hou LK, Chi JR, Chen AX, Zhao Y and Cao XC: miR-129-5p suppresses breast cancer proliferation by targeting CBX4. Neoplasma. 65:572–578. 2018.PubMed/NCBI View Article : Google Scholar

8 

Yu D, Han GH, Zhao X, Liu X, Xue K, Wang D and Xu CB: MicroRNA-129-5p suppresses nasopharyngeal carcinoma lymphangiogenesis and lymph node metastasis by targeting ZIC2. Cell Oncol (Dordr). 43:249–261. 2020.PubMed/NCBI View Article : Google Scholar

9 

Wang J, Ye C, Liu J and Hu Y: UCA1 confers paclitaxel resistance to ovarian cancer through miR-129/ABCB1 axis. Biochem Biophys Res Commun. 501:1034–1040. 2018.PubMed/NCBI View Article : Google Scholar

10 

Wu Q, Meng WY, Jie Y and Zhao H: LncRNA MALAT1 induces colon cancer development by regulating miR-129-5p/HMGB1 axis. J Cell Physiol. 233:6750–6757. 2018.PubMed/NCBI View Article : Google Scholar

11 

Xiao N, Zhang J, Chen C, Wan Y, Wang N and Yang J: miR-129-5p improves cardiac function in rats with chronic heart failure through targeting HMGB1. Mamm Genome. 30:276–288. 2019.PubMed/NCBI View Article : Google Scholar

12 

Hübner A, Jaeschke A and Davis RJ: Oncogene addiction: Role of signal attenuation. Dev Cell. 11:752–754. 2006.PubMed/NCBI View Article : Google Scholar

13 

Yang W and Sun P: Downregulation of microRNA-129-5p increases the risk of intervertebral disc degeneration by promoting the apoptosis of nucleus pulposus cells via targeting BMP2. J Cell Biochem. 120:19684–19690. 2019.PubMed/NCBI View Article : Google Scholar

14 

Patrick E, Rajagopal S, Wong HA, McCabe C, Xu J, Tang A, Imboywa SH, Schneider JA, Pochet N, Krichevsky AM, et al: Dissecting the role of non-coding RNAs in the accumulation of amyloid and tau neuropathologies in Alzheimer's disease. Mol Neurodegener. 12(51)2017.PubMed/NCBI View Article : Google Scholar

15 

Pahlavani M, Wijayatunga NN, Kalupahana NS, Ramalingam L, Gunaratne PH, Coarfa C, Rajapakshe K, Kottapalli P and Moustaid-Moussa N: Transcriptomic and microRNA analyses of gene networks regulated by eicosapentaenoic acid in brown adipose tissue of diet-induced obese mice. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:1523–1531. 2018.PubMed/NCBI View Article : Google Scholar

16 

Demirsoy IH, Ertural DY, Balci Ş, Çınkır Ü, Sezer K, Tamer L and Aras N: Profiles of circulating MiRNAs following metformin treatment in patients with type 2 diabetes. J Med Biochem. 37:499–506. 2018.PubMed/NCBI View Article : Google Scholar

17 

Arend RC, Londoño-Joshi AI, Straughn JM Jr and Buchsbaum DJ: The Wnt/β-catenin pathway in ovarian cancer: A review. Gynecol Oncol. 131:772–779. 2013.PubMed/NCBI View Article : Google Scholar

18 

Murillo-Garzón V and Kypta R: WNT signalling in prostate cancer. Nature reviews. Urology. 14:683–696. 2017.PubMed/NCBI View Article : Google Scholar

19 

Tang PM, Zhou S, Meng XM, Wang QM, Li CJ, Lian GY, Huang XR, Tang YJ, Guan XY, Yan BP, et al: Smad3 promotes cancer progression by inhibiting E4BP4-mediated NK cell development. Nat Commun. 8(14677)2017.PubMed/NCBI View Article : Google Scholar

20 

Gao G, Xiu D, Yang B, Sun D, Wei X, Ding Y, Ma Y and Wang Z: miR-129-5p inhibits prostate cancer proliferation via targeting ETV1. OncoTargets and Ther. 12:3531–3544. 2019.PubMed/NCBI View Article : Google Scholar

21 

Jia Y, Gao Y and Dou J: Effects of miR-129-3p on biological functions of prostate cancer cells through targeted regulation of Smad3. Oncol Lett. 19:1195–1202. 2020.PubMed/NCBI View Article : Google Scholar

22 

Hu Z, Guo J, Zhao M, Jiang T and Yang X: Predictive values of miR-129 and miR-139 for efficacy on patients with prostate cancer after chemotherapy and prognostic correlation. Oncol Lett. 18:6187–6195. 2019.PubMed/NCBI View Article : Google Scholar

23 

Zhang RM, Tang T, Yu HM and Yao XD: LncRNA DLX6-AS1/miR-129-5p/DLK1 axis aggravates stemness of osteosarcoma through Wnt signaling. Biochem Biophys Res Commun. 507:260–266. 2018.PubMed/NCBI View Article : Google Scholar

24 

Chen X, Liu M, Meng F, Sun B, Jin X and Jia C: The long noncoding RNA HIF1A-AS2 facilitates cisplatin resistance in bladder cancer. J Cell Biochem. 120:243–252. 2019.PubMed/NCBI View Article : Google Scholar

25 

Lin J, Shi Z, Yu Z and He Z: LncRNA HIF1A-AS2 positively affects the progression and EMT formation of colorectal cancer through regulating miR-129-5p and DNMT3A. Biomed Pharmacother. 98:433–439. 2018.PubMed/NCBI View Article : Google Scholar

26 

Lin H, Zhao Z, Hao Y and He J and He J: Long noncoding RNA HIF1A-AS2 facilitates cell survival and migration by sponging miR-33b-5p to modulate SIRT6 expression in osteosarcoma. Biochem Cell Biol. 98:284–292. 2020.PubMed/NCBI View Article : Google Scholar

27 

Hou PS, Chuang CY, Kao CF, Chou SJ, Stone L, Ho HN, Chien CL and Kuo HC: LHX2 regulates the neural differentiation of human embryonic stem cells via transcriptional modulation of PAX6 and CER1. Nucleic Acids Res. 41:7753–7770. 2013.PubMed/NCBI View Article : Google Scholar

28 

Tomann P, Paus R, Millar SE, Scheidereit C and Schmidt-Ullrich R: Lhx2 is a direct NF-κB target gene that promotes primary hair follicle placode down-growth. Development. 143:1512–1522. 2016.PubMed/NCBI View Article : Google Scholar

29 

Liang TS, Zheng YJ, Wang J, Zhao JY, Yang DK and Liu ZS: MicroRNA-506 inhibits tumor growth and metastasis in nasopharyngeal carcinoma through the inactivation of the Wnt/β-catenin signaling pathway by down-regulating LHX2. J Exp Clin Cancer Res. 38(97)2019.PubMed/NCBI View Article : Google Scholar

30 

Kuzmanov A, Hopfer U, Marti P, Meyer-Schaller N, Yilmaz M and Christofori G: LIM-homeobox gene 2 promotes tumor growth and metastasis by inducing autocrine and paracrine PDGF-B signaling. Mol Oncol. 8:401–416. 2014.PubMed/NCBI View Article : Google Scholar

31 

Zhou F, Gou S, Xiong J, Wu H, Wang C and Liu T: Oncogenicity of LHX2 in pancreatic ductal adenocarcinoma. Mol Biol Rep. 41:8163–8167. 2014.PubMed/NCBI View Article : Google Scholar

32 

Song H, Liu J, Wu X, Zhou Y, Chen X, Chen J, Deng K, Mao C, Huang S and Liu Z: LHX2 promotes malignancy and inhibits autophagy via mTOR in osteosarcoma and is negatively regulated by miR-129-5p. Aging (Albany NY). 11:9794–9810. 2019.PubMed/NCBI View Article : Google Scholar

33 

Li G, Xie J and Wang J: Tumor suppressor function of miR-129-5p in lung cancer. Oncol Lett. 17:5777–5783. 2019.PubMed/NCBI View Article : Google Scholar

34 

Jeong BH, Jin HT, Choi EK, Carp RI and Kim YS: Lack of association between 14-3-3 beta gene (YWHAB) polymorphisms and sporadic Creutzfeldt-Jakob disease (CJD). Mol Biol Rep. 39:10647–10653. 2012.PubMed/NCBI View Article : Google Scholar

35 

Xu C, Du Z, Ren S, Liang X and Li H: MiR-129-5p sensitization of lung cancer cells to etoposide-induced apoptosis by reducing YWHAB. J Cancer. 11:858–866. 2020.PubMed/NCBI View Article : Google Scholar

36 

Jacob S, Nayak S, Fernandes G, Barai RS, Menon S, Chaudhari UK, Kholkute SD and Sachdeva G: Androgen receptor as a regulator of ZEB2 expression and its implications in epithelial-to-mesenchymal transition in prostate cancer. Endocr Relat Cancer. 21:473–486. 2014.PubMed/NCBI View Article : Google Scholar

37 

Li X, Li C, Bi H, Bai S, Zhao L, Zhang J and Qi C: Targeting ZEB2 By microRNA-129 in non-small cell lung cancer suppresses cell proliferation, invasion and migration via regulating Wnt/beta-catenin signaling pathway and epithelial-mesenchymal transition. Onco Targets Ther. 12:9165–9175. 2019.PubMed/NCBI View Article : Google Scholar

38 

Wang X, Li L, Wu Y, Zhang R, Zhang M, Liao D, Wang G, Qin G, Xu RH and Kang T: CBX4 suppresses metastasis via recruitment of HDAC3 to the Runx2 promoter in colorectal carcinoma. Cancer Res. 76:7277–7289. 2016.PubMed/NCBI View Article : Google Scholar

39 

Chaudhary LN, Wilkinson KH and Kong A: Triple-negative breast cancer: Who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am. 27:141–153. 2018.PubMed/NCBI View Article : Google Scholar

40 

Zuo Y, Li Y, Zhou Z, Ma M and Fu K: Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed Pharmacother. 95:922–928. 2017.PubMed/NCBI View Article : Google Scholar

41 

Del Mastro L and De Laurentiis M: Clinical applications of trastuzumab in the management of HER-2-positive breast cancer. Recenti Prog Med. 110:594–603. 2019.PubMed/NCBI View Article : Google Scholar : (In Italian).

42 

Lu X, Ma J, Chu J, Shao Q, Zhang Y, Lu G, Li J, Huang X, Li W, Li Y, et al: MiR-129-5p sensitizes the response of Her-2 positive breast cancer to trastuzumab by reducing Rps6. Cell Physiol Biochem. 44:2346–2356. 2017.PubMed/NCBI View Article : Google Scholar

43 

Godbole M, Chandrani P, Gardi N, Dhamne H, Patel K, Yadav N, Gupta S, Badwe R and Dutt A: miR-129-2 mediates down-regulation of progesterone receptor in response to progesterone in breast cancer cells. Cancer Biol Ther. 18:801–805. 2017.PubMed/NCBI View Article : Google Scholar

44 

Xue J, Zhu X, Huang P, He Y, Xiao Y, Liu R and Zhao M: Expression of miR-129-5p and miR-433 in the serum of breast cancer patients and their relationship with clinicopathological features. Oncol Lett. 20:2771–2778. 2020.PubMed/NCBI View Article : Google Scholar

45 

Zeng H, Wang L, Wang J, Chen T, Li H, Zhang K, Chen J, Zhen S, Tuluhong D, Li J and Wang S: microRNA-129-5p suppresses Adriamycin resistance in breast cancer by targeting SOX2. Arch Biochem Biophys. 651:52–60. 2018.PubMed/NCBI View Article : Google Scholar

46 

Yi W, Wang J, Yao Z, Kong Q, Zhang N, Mo W, Xu L and Li X: The expression status of ZIC2 as a prognostic marker for nasopharyngeal carcinoma. Int J Clin Exp Pathol. 11:4446–4460. 2018.PubMed/NCBI

47 

Matheson CJ, Backos DS and Reigan P: Targeting WEE1 kinase in cancer. Trends Pharmacol Sci. 37:872–881. 2016.PubMed/NCBI View Article : Google Scholar

48 

Zhang H, Lu J, Jiang C and Lu W: miR-129-1-3p reverses cisplatin resistance of HNE1/CDDP human nasopharyngeal carcinoma cells by targeting inhibition of WEE1 kinase. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:1014–1019. 2019.PubMed/NCBI(In Chinese).

49 

Gu LP, Jin S, Xu RC, Zhang J, Geng YC, Shao XY and Qin LB: Long non-coding RNA PCAT-1 promotes tumor progression by inhibiting miR-129-5p in human ovarian cancer. Arch Med Sci. 15:513–521. 2019.PubMed/NCBI View Article : Google Scholar

50 

Liu F, Zhao H, Gong L, Yao L, Li Y and Zhang W: MicroRNA-129-3p functions as a tumor suppressor in serous ovarian cancer by targeting BZW1. Int J Clin Exp Pathol. 11:5901–5908. 2018.PubMed/NCBI

51 

Zhang H and Lu W: LncRNA SNHG12 regulates gastric cancer progression by acting as a molecular sponge of miR-320. Mol Med Rep. 17:2743–2749. 2018.PubMed/NCBI View Article : Google Scholar

52 

Wang JZ, Xu CL, Wu H and Shen SJ: LncRNA SNHG12 promotes cell growth and inhibits cell apoptosis in colorectal cancer cells. Braz J Med Biol Res. 50(e6079)2017.PubMed/NCBI View Article : Google Scholar

53 

Sun D and Fan XH: LncRNA SNHG12 accelerates the progression of ovarian cancer via absorbing miRNA-129 to upregulate SOX4. Eur Rev Med Pharmacol Sci. 23:2345–2352. 2019.PubMed/NCBI View Article : Google Scholar

54 

Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC, Laxman B, Asangani IA, Grasso CS, Kominsky HD, et al: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol. 29:742–749. 2011.PubMed/NCBI View Article : Google Scholar

55 

Bi M, Yu H, Huang B and Tang C: Long non-coding RNA PCAT-1 over-expression promotes proliferation and metastasis in gastric cancer cells through regulating CDKN1A. Gene. 626:337–343. 2017.PubMed/NCBI View Article : Google Scholar

56 

Wen J, Xu J, Sun Q, Xing C and Yin W: Upregulation of long non coding RNA PCAT-1 contributes to cell proliferation, migration and apoptosis in hepatocellular carcinoma. Mol Med Rep. 13:4481–4486. 2016.PubMed/NCBI View Article : Google Scholar

57 

Qiao L, Liu X, Tang Y, Zhao Z, Zhang J and Feng Y: Down regulation of the long non-coding RNA PCAT-1 induced growth arrest and apoptosis of colorectal cancer cells. Life Sci. 188:37–44. 2017.PubMed/NCBI View Article : Google Scholar

58 

Wang H, Guan Z, He K, Qian J, Cao J and Teng L: LncRNA UCA1 in anti-cancer drug resistance. Oncotarget. 8:64638–64650. 2017.PubMed/NCBI View Article : Google Scholar

59 

Tan G, Cao X, Dai Q, Zhang B, Huang J, Xiong S, Zhang Yy, Chen W, Yang J and Li H: A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget. 6:8676–8686. 2015.PubMed/NCBI View Article : Google Scholar

60 

Pronina IV, Loginov VI, Burdennyy AM, Fridman MV, Kazubskaya TP, Dmitriev AA and Braga EA: Expression and DNA methylation alterations of seven cancer-associated 3p genes and their predicted regulator miRNAs (miR-129-2, miR-9-1) in breast and ovarian cancers. Gene. 576:483–491. 2016.PubMed/NCBI View Article : Google Scholar

61 

Kang R, Xie Y, Zhang Q, Hou W, Jiang Q, Zhu S, Liu J, Zeng D, Wang H, Bartlett DL, et al: Intracellular HMGB1 as a novel tumor suppressor of pancreatic cancer. Cell Res. 27:916–932. 2017.PubMed/NCBI View Article : Google Scholar

62 

Amornsupak K, Jamjuntra P, Warnnissorn M, O-Charoenrat P, Sa-Nguanraksa D, Thuwajit P, Eccles SA and Thuwajit C: High ASMA+ fibroblasts and low cytoplasmic HMGB1+ breast cancer cells predict poor prognosis. Clin Breast Cancer. 17:441–452.e2. 2017.PubMed/NCBI View Article : Google Scholar

63 

Chou YE, Yang PJ, Lin CY, Chen YY, Chiang WL, Lin PX, Huang ZY, Huang M, Ho YC and Yang SF: The impact of HMGB1 polymorphisms on prostate cancer progression and clinicopathological characteristics. Int J Environ Res Public Health. 17(7247)2020.PubMed/NCBI View Article : Google Scholar

64 

Fu R, Yang P, Sajid A and Li Z: Avenanthramide A induces cellular senescence via miR-129-3p/Pirh2/p53 signaling pathway to suppress colon cancer growth. J Agric Food Chem. 67:4808–4816. 2019.PubMed/NCBI View Article : Google Scholar

65 

Wu N, Fesler A, Liu H and Ju J: Development of novel miR-129 mimics with enhanced efficacy to eliminate chemoresistant colon cancer stem cells. Oncotarget. 9:8887–8897. 2017.PubMed/NCBI View Article : Google Scholar

66 

Kang M, Li Y, Liu W, Wang R, Tang A, Hao H, Liu Z and Ou H: miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells through downregulation of SOX4 expression. Int J Mol Med. 32:51–58. 2013.PubMed/NCBI View Article : Google Scholar

67 

Li Z, Lu J, Zeng G, Pang J, Zheng X, Feng J and Zhang J: MiR-129-5p inhibits liver cancer growth by targeting calcium calmodulin-dependent protein kinase IV (CAMK4). Cell Death Dis. 10(789)2019.PubMed/NCBI View Article : Google Scholar

68 

Lu JL, Zhao L, Han SC, Bi JL, Liu HX, Yue C and Lin L: MiR-129 is involved in the occurrence of uterine fibroid through inhibiting TET1. Eur Rev Med Pharmacol Sci. 22:4419–4426. 2018.PubMed/NCBI View Article : Google Scholar

69 

Wang YF, Yang HY, Shi XQ and Wang Y: Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther. 19:1162–1173. 2018.PubMed/NCBI View Article : Google Scholar

70 

Lv X, Zhou W, Sun J, Lin R, Ding L, Xu M, Xu Y, Zhao Z, Chen Y, Bi Y, et al: Visceral adiposity is significantly associated with type 2 diabetes in middle-aged and elderly Chinese women: A cross-sectional study. J Diabetes. 9:920–928. 2017.PubMed/NCBI View Article : Google Scholar

71 

Hruby A and Hu FB: The epidemiology of obesity: A big picture. Pharmacoeconomics. 33:673–689. 2015.PubMed/NCBI View Article : Google Scholar

72 

Yu YH: Making sense of metabolic obesity and hedonic obesity. J Diabetes. 9:656–666. 2017.PubMed/NCBI View Article : Google Scholar

73 

Ahmed M, Nguyen HQ, Hwang JS, Zada S, Lai TH, Kang SS and Kim DR: Systematic characterization of autophagy-related genes during the adipocyte differentiation using public-access data. Oncotarget. 9:15526–15541. 2018.PubMed/NCBI View Article : Google Scholar

74 

Zhang HY, Wang YH, Wang Y, Qu YN, Huang XH, Yang HX, Zhao CM, He Y, Li SW, Zhou J, et al: miR-129-5p regulates the immunomodulatory functions of adipose-derived stem cells via targeting Stat1 signaling. Stem Cells Int. 2019(2631024)2019.PubMed/NCBI View Article : Google Scholar

75 

He C and Klionsky DJ: Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet. 43:67–93. 2009.PubMed/NCBI View Article : Google Scholar

76 

Suryawan A and Hu CY: Effect of serum on differentiation of porcine adipose stromal-vascular cells in primary culture. Comp Biochem Physiol Comp Physiol. 105:485–492. 1993.PubMed/NCBI View Article : Google Scholar

77 

Harding TM, Hefner-Gravink A, Thumm M and Klionsky DJ: Genetic and phenotypic overlap between autophagy and the cytoplasm to vacuole protein targeting pathway. J Biol Chem. 271:17621–17624. 1996.PubMed/NCBI View Article : Google Scholar

78 

Ahmed M, Hwang JS, Lai TH, Zada S, Nguyen HQ, Pham TM, Yun M and Kim DR: Co-expression network analysis of AMPK and autophagy gene products during adipocyte differentiation. Int J Mol Sci. 19(1808)2018.PubMed/NCBI View Article : Google Scholar

79 

Fu X, Jin L, Han L, Yuan Y, Mu Q, Wang H, Yang J, Ning G, Zhou D and Zhang Z: miR-129-5p inhibits adipogenesis through autophagy and may be a potential biomarker for obesity. Int J Endocrinol. 2019(5069578)2019.PubMed/NCBI View Article : Google Scholar

80 

Bielawiec P, Harasim-Symbor E and Chabowski A: Phytocannabinoids: Useful drugs for the treatment of obesity? Special focus on cannabidiol. Front Endocrinol (Lausanne). 11(114)2020.PubMed/NCBI View Article : Google Scholar

81 

Gracia A, Miranda J, Fernández-Quintela A, Eseberri I, Garcia-Lacarte M, Milagro FI, Martínez JA, Aguirre L and Portillo MP: Involvement of miR-539-5p in the inhibition of de novo lipogenesis induced by resveratrol in white adipose tissue. Food Funct. 7:1680–1688. 2016.PubMed/NCBI View Article : Google Scholar

82 

Dinatolo E, Sciatti E, Anker MS, Lombardi C, Dasseni N and Metra M: Updates in heart failure: What last year brought to us. ESC Heart Fail. 5:989–1007. 2018.PubMed/NCBI View Article : Google Scholar

83 

Murphy SP, Kakkar R, McCarthy CP and Januzzi JL Jr: Inflammation in heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 75:1324–1340. 2020.PubMed/NCBI View Article : Google Scholar

84 

Martinotti S, Patrone M and Ranzato E: Emerging roles for HMGB1 protein in immunity, inflammation, and cancer. Immunotargets Ther. 4:101–109. 2015.PubMed/NCBI View Article : Google Scholar

85 

Volz HC, Laohachewin D, Schellberg D, Wienbrandt AR, Nelles M, Zugck C, Kaya Z, Katus HA and Andrassy M: HMGB1 is an independent predictor of death and heart transplantation in heart failure. Clin Res Cardiol. 101:427–435. 2012.PubMed/NCBI View Article : Google Scholar

86 

Gorgulho CM, Romagnoli GG, Bharthi R and Lotze MT: Johnny on the Spot-chronic inflammation is driven by HMGB1. Front Immunol. 10(1561)2019.PubMed/NCBI View Article : Google Scholar

87 

Piorecka K, Smith D, Kurjata J, Stanczyk M and Stanczyk WA: Synthetic routes to nanoconjugates of anthracyclines. Bioorg Chem. 96(103617)2020.PubMed/NCBI View Article : Google Scholar

88 

Anakwue R: Cytotoxic-induced heart failure among breast cancer patients in Nigeria: A call to prevent today's cancer patients from being tomorrow's cardiac patients. Ann Afr Med. 19:1–7. 2020.PubMed/NCBI View Article : Google Scholar

89 

Bansal N, Adams MJ, Ganatra S, Colan SD, Aggarwal S, Steiner R, Amdani S, Lipshultz ER and Lipshultz SE: Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors. Cardiooncology. 5(18)2019.PubMed/NCBI View Article : Google Scholar

90 

Cai F, Luis MAF, Lin X, Wang M, Cai L, Cen C and Biskup E: Anthracycline-induced cardiotoxicity in the chemotherapy treatment of breast cancer: Preventive strategies and treatment. Mol Clin Oncol. 11:15–23. 2019.PubMed/NCBI View Article : Google Scholar

91 

Lim CC, Zuppinger C, Guo X, Kuster GM, Helmes M, Eppenberger HM, Suter TM, Liao R and Sawyer DB: Anthracyclines induce calpain-dependent titin proteolysis and necrosis in cardiomyocytes. J Biol Chem. 279:8290–8299. 2004.PubMed/NCBI View Article : Google Scholar

92 

Li Q, Qin M, Tan Q, Li T, Gu Z, Huang P and Ren L: MicroRNA-129-1-3p protects cardiomyocytes from pirarubicin-induced apoptosis by down-regulating the GRIN2D-mediated Ca2+ signalling pathway. J Cell Mol Med. 24:2260–2271. 2020.PubMed/NCBI View Article : Google Scholar

93 

Javadov S, Hunter JC, Barreto-Torres G and Parodi-Rullan R: Targeting the mitochondrial permeability transition: Cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem. 27:179–190. 2011.PubMed/NCBI View Article : Google Scholar

94 

Hajdú T, Juhász T, Szűcs-Somogyi C, Rácz K and Zákány R: NR1 and NR3B Composed intranuclear N-methyl-d-aspartate receptor complexes in human melanoma cells. Int J Mol Sci. 19(1929)2018.PubMed/NCBI View Article : Google Scholar

95 

Liu XR, Rempel DL and Gross ML: Composite conformational changes of signaling proteins upon ligand binding revealed by a single approach: Calcium-calmodulin study. Anal Chem. 91:12560–12567. 2019.PubMed/NCBI View Article : Google Scholar

96 

Hwang HS, Baldo MP, Rodriguez JP, Faggioni M and Knollmann BC: Efficacy of flecainide in catecholaminergic polymorphic ventricular tachycardia is mutation-independent but reduced by calcium overload. Front Physiol. 10(992)2019.PubMed/NCBI View Article : Google Scholar

97 

Wei Q, Zhou HY, Shi XD, Cao HY and Qin L: Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J Cardiovasc Pharmacol. 74:535–541. 2019.PubMed/NCBI View Article : Google Scholar

98 

Camfield P and Camfield C: Regression in children with epilepsy. Neurosci Biobehav Rev. 96:210–218. 2019.PubMed/NCBI View Article : Google Scholar

99 

Devinsky O, Vezzani A, Najjar S, De Lanerolle NC and Rogawski MA: Glia and epilepsy: Excitability and inflammation. Trends Neurosci. 36:174–184. 2013.PubMed/NCBI View Article : Google Scholar

100 

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, Engel J Jr, Forsgren L, French JA, Glynn M, et al: ILAE official report: A practical clinical definition of epilepsy. Epilepsia. 55:475–482. 2014.PubMed/NCBI View Article : Google Scholar

101 

Hunsberger JG, Bennett AH, Selvanayagam E, Duman RS and Newton SS: Gene profiling the response to kainic acid induced seizures. Brain research. Mol Brain Res. 141:95–112. 2005.PubMed/NCBI View Article : Google Scholar

102 

Sharma AK, Searfoss GH, Reams RY, Jordan WH, Snyder PW, Chiang AY, Jolly RA and Ryan TP: Kainic acid-induced F-344 rat model of mesial temporal lobe epilepsy: Gene expression and canonical pathways. Toxicol Pathol. 37:776–789. 2009.PubMed/NCBI View Article : Google Scholar

103 

Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S and Aronica E: Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis. 62:508–520. 2014.PubMed/NCBI View Article : Google Scholar

104 

Pernice HF, Schieweck R, Kiebler MA and Popper B: mTOR and MAPK: From localized translation control to epilepsy. BMC Neurosci. 17(73)2016.PubMed/NCBI View Article : Google Scholar

105 

Wu DM, Zhang YT, Lu J and Zheng YL: Effects of microRNA-129 and its target gene c-Fos on proliferation and apoptosis of hippocampal neurons in rats with epilepsy via the MAPK signaling pathway. J Cell Physiol. 233:6632–6643. 2018.PubMed/NCBI View Article : Google Scholar

106 

Rajman M, Metge F, Fiore R, Khudayberdiev S, Aksoy-Aksel A, Bicker S, Ruedell Reschke C, Raoof R, Brennan GP, Delanty N, et al: A microRNA-129-5p/Rbfox crosstalk coordinates homeostatic downscaling of excitatory synapses. EMBO J. 36:1770–1787. 2017.PubMed/NCBI View Article : Google Scholar

107 

Siddoway B, Hou H and Xia H: Molecular mechanisms of homeostatic synaptic downscaling. Neuropharmacology. 78:38–44. 2014.PubMed/NCBI View Article : Google Scholar

108 

Wan Y and Yang ZQ: LncRNA NEAT1 affects inflammatory response by targeting miR-129-5p and regulating Notch signaling pathway in epilepsy. Cell Cycle. 19:419–431. 2020.PubMed/NCBI View Article : Google Scholar

109 

Tuomi T, Santoro N, Caprio S, Cai M, Weng J and Groop L: The many faces of diabetes: A disease with increasing heterogeneity. Lancet. 383:1084–1094. 2014.PubMed/NCBI View Article : Google Scholar

110 

Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic Mark M, Molina H, Kohsaka S, Di Giannatale A, Ceder S, et al: Tumour exosome integrins determine organotropic metastasis. Nature. 527:329–335. 2015.PubMed/NCBI View Article : Google Scholar

111 

Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari N, et al: Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. 523:177–182. 2015.PubMed/NCBI View Article : Google Scholar

112 

Fu Q, Jiang H, Wang Z, Wang X, Chen H, Shen Z, Xiao L, Guo X and Yang T: Injury factors alter miRNAs profiles of exosomes derived from islets and circulation. Aging (Albany NY). 10:3986–3999. 2018.PubMed/NCBI View Article : Google Scholar

113 

Collinson P: Laboratory medicine is faced with the evolution of medical practice. J Med Biochem. 36:211–215. 2017.PubMed/NCBI View Article : Google Scholar

114 

Wicks K, Torbica T and Mace KA: Myeloid cell dysfunction and the pathogenesis of the diabetic chronic wound. Semin Immunol. 26:341–353. 2014.PubMed/NCBI View Article : Google Scholar

115 

Williams MD and Nadler JL: Inflammatory mechanisms of diabetic complications. Curr Diabet Rep. 7:242–248. 2007.PubMed/NCBI View Article : Google Scholar

116 

Daigle I and Simon HU: Critical role for caspases 3 and 8 in neutrophil but not eosinophil apoptosis. Int Arch Allergy Immuno. 126:147–156. 2001.PubMed/NCBI View Article : Google Scholar

117 

Pongracz J, Webb P, Wang K, Deacon E, Lunn OJ and Lord JM: Spontaneous neutrophil apoptosis involves caspase 3-mediated activation of protein kinase C-delta. J Biol Chem. 274:37329–37334. 1999.PubMed/NCBI View Article : Google Scholar

118 

Zhao R, Guan DW, Zhang W, Du Y, Xiong CY, Zhu BL and Zhang JJ: Increased expressions and activations of apoptosis-related factors in cell signaling during incised skin wound healing in mice: A preliminary study for forensic wound age estimation. Leg Med (Tokyo, Japan). 11 (Suppl 1):S155–S160. 2009.PubMed/NCBI View Article : Google Scholar

119 

Willenborg S, Lucas T, van Loo G, Knipper JA, Krieg T, Haase I, Brachvogel B, Hammerschmidt M, Nagy A, Ferrara N, et al: CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood. 120:613–625. 2012.PubMed/NCBI View Article : Google Scholar

120 

Devalaraja RM, Nanney LB, Du J, Qian Q, Yu Y, Devalaraja MN and Richmond A: Delayed wound healing in CXCR2 knockout mice. J Invest Dermatol. 115:234–244. 2000.PubMed/NCBI View Article : Google Scholar

121 

Umehara T, Mori R, Mace KA, Murase T, Abe Y, Yamamoto T and Ikematsu K: Identification of specific miRNAs in neutrophils of type 2 diabetic mice: Overexpression of miRNA-129-2-3p accelerates diabetic wound healing. Diabetes. 68:617–630. 2019.PubMed/NCBI View Article : Google Scholar

122 

Wang W, Yang C, Wang XY, Zhou LY, Lao GJ, Liu D, Wang C, Hu MD, Zeng TT, Yan L and Ren M: MicroRNA-129 and -335 promote diabetic wound healing by inhibiting Sp1-mediated MMP-9 expression. Diabetes. 67:1627–1638. 2018.PubMed/NCBI View Article : Google Scholar

123 

Jobin PG, Butler GS and Overall CM: New intracellular activities of matrix metalloproteinases shine in the moonlight. Biochim Biophys Acta Mol Cell Res. 1864:2043–2055. 2017.PubMed/NCBI View Article : Google Scholar

124 

Overall CM, Wrana JL and Sodek J: Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem. 266:14064–14071. 1991.PubMed/NCBI

125 

McBeth J and Jones K: Epidemiology of chronic musculoskeletal pain. Best Pract Res Clin Rheumatol. 21:403–425. 2007.PubMed/NCBI View Article : Google Scholar

126 

Wieser S, Horisberger B, Schmidhauser S, Eisenring C, Brügger U, Ruckstuhl A, Dietrich J, Mannion AF, Elfering A, Tamcan O and Müller U: Cost of low back pain in Switzerland in 2005. Eur J Health Econ. 12:455–467. 2011.PubMed/NCBI View Article : Google Scholar

127 

Dario AB, Ferreira ML, Refshauge KM, Lima TS, Ordoñana JR and Ferreira PH: The relationship between obesity, low back pain, and lumbar disc degeneration when genetics and the environment are considered: A systematic review of twin studies. Spine J. 15:1106–1117. 2015.PubMed/NCBI View Article : Google Scholar

128 

Johnson WE, Eisenstein SM and Roberts S: Cell cluster formation in degenerate lumbar intervertebral discs is associated with increased disc cell proliferation. Connect Tissue Res. 42:197–207. 2001.PubMed/NCBI View Article : Google Scholar

129 

Kim KW, Lim TH, Kim JG, Jeong ST, Masuda K and An HS: The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine (Phila Pa 1976). 28:982–990. 2003.PubMed/NCBI View Article : Google Scholar

130 

Patterson JE: The pre-travel medical evaluation: The traveler with chronic illness and the geriatric traveler. Yale J Biol Med. 65:317–327. 1992.PubMed/NCBI

131 

Li J, Yoon ST and Hutton WC: Effect of bone morphogenetic protein-2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech. 17:423–428. 2004.PubMed/NCBI View Article : Google Scholar

132 

Antunovic M, Matic I, Nagy B, Caput Mihalic K, Skelin J, Stambuk J, Josipovic P, Dzinic T, Paradzik M and Marijanovic I: FADD-deficient mouse embryonic fibroblasts undergo RIPK1-dependent apoptosis and autophagy after NB-UVB irradiation. J Photochem Photobiol B. 194:32–45. 2019.PubMed/NCBI View Article : Google Scholar

133 

Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, Wu SX, Huang J, Chen J and Luo ZJ: Deregulated miR-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FADD and caspase-3. J Pathol. 225:232–242. 2011.PubMed/NCBI View Article : Google Scholar

134 

Li N, Gao Q, Zhou W, Lv X, Yang X and Liu X: MicroRNA-129-5p affects immune privilege and apoptosis of nucleus pulposus cells via regulating FADD in intervertebral disc degeneration. Cell Cycle. 19:933–948. 2020.PubMed/NCBI View Article : Google Scholar

135 

Zhao K, Zhang Y, Kang L, Song Y, Wang K, Li S, Wu X, Hua W, Shao Z, Yang S and Yang C: Methylation of microRNA-129-5P modulates nucleus pulposus cell autophagy by targeting Beclin-1 in intervertebral disc degeneration. Oncotarget. 8:86264–86276. 2017.PubMed/NCBI View Article : Google Scholar

136 

Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O and Kroemer G: BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy. 3:374–376. 2007.PubMed/NCBI View Article : Google Scholar

137 

Pluta R, Ulamek-Koziol M, Januszewski S and Czuczwar SJ: Gut microbiota and pro/prebiotics in Alzheimer's disease. Aging (Albany NY). 12:5539–5550. 2020.PubMed/NCBI View Article : Google Scholar

138 

Shi Y, Han Y, Niu L, Li J and Chen Y: MiR-499 inhibited hypoxia/reoxygenation induced cardiomyocytes injury by targeting SOX6. Biotechnol Lett. 41:837–847. 2019.PubMed/NCBI View Article : Google Scholar

139 

Zaletel I, Schwirtlich M, Perović M, Jovanović M, Stevanović M, Kanazir S and Puškaš N: Early impairments of hippocampal neurogenesis in 5xFAD mouse model of Alzheimer's disease are associated with altered expression of SOXB transcription factors. J Alzheimer's Dis. 65:963–976. 2018.PubMed/NCBI View Article : Google Scholar

140 

Zeng Z, Liu Y, Zheng W, Liu L, Yin H, Zhang S, Bai H, Hua L, Wang S, Wang Z, et al: MicroRNA-129-5p alleviates nerve injury and inflammatory response of Alzheimer's disease via downregulating SOX6. Cell Cycle. 18:3095–3110. 2019.PubMed/NCBI View Article : Google Scholar

141 

Geng Z, Xu F and Zhang Y: MiR-129-5p-mediated Beclin-1 suppression inhibits endothelial cell autophagy in atherosclerosis. Am J Transl Res. 8:1886–1894. 2016.PubMed/NCBI

142 

Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R and Liang Q: MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 40(BSR20193315)2020.PubMed/NCBI View Article : Google Scholar

143 

Huang S, Lv Z, Wen Y, Wei Y, Zhou L, Ke Y, Zhang Y, Xu Q, Li L, Guo Y, et al: miR-129-2-3p directly targets SYK gene and associates with the risk of ischaemic stroke in a Chinese population. J Cell Mol Med. 23:167–176. 2019.PubMed/NCBI View Article : Google Scholar

144 

Xu M, Li H, Bai Y, He J, Chen R, An N, Li Y and Dong Y: miR-129 blocks secondary hyperparathyroidism-inducing Fgf23/αKlotho signaling in mice with chronic kidney disease. Am J Med Sci. 361:624–634. 2021.PubMed/NCBI View Article : Google Scholar

145 

Zhu Y, Hu Y, Cheng X, Li Q and Niu Q: Elevated miR-129-5p attenuates hepatic fibrosis through the NF-κB signaling pathway via PEG3 in a carbon CCl4 rat model. J Mol Histol. 52:491–501. 2021.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Deng B, Tang X and Wang Y: Role of microRNA‑129 in cancer and non‑cancerous diseases (Review). Exp Ther Med 22: 918, 2021.
APA
Deng, B., Tang, X., & Wang, Y. (2021). Role of microRNA‑129 in cancer and non‑cancerous diseases (Review). Experimental and Therapeutic Medicine, 22, 918. https://doi.org/10.3892/etm.2021.10350
MLA
Deng, B., Tang, X., Wang, Y."Role of microRNA‑129 in cancer and non‑cancerous diseases (Review)". Experimental and Therapeutic Medicine 22.3 (2021): 918.
Chicago
Deng, B., Tang, X., Wang, Y."Role of microRNA‑129 in cancer and non‑cancerous diseases (Review)". Experimental and Therapeutic Medicine 22, no. 3 (2021): 918. https://doi.org/10.3892/etm.2021.10350
Copy and paste a formatted citation
x
Spandidos Publications style
Deng B, Tang X and Wang Y: Role of microRNA‑129 in cancer and non‑cancerous diseases (Review). Exp Ther Med 22: 918, 2021.
APA
Deng, B., Tang, X., & Wang, Y. (2021). Role of microRNA‑129 in cancer and non‑cancerous diseases (Review). Experimental and Therapeutic Medicine, 22, 918. https://doi.org/10.3892/etm.2021.10350
MLA
Deng, B., Tang, X., Wang, Y."Role of microRNA‑129 in cancer and non‑cancerous diseases (Review)". Experimental and Therapeutic Medicine 22.3 (2021): 918.
Chicago
Deng, B., Tang, X., Wang, Y."Role of microRNA‑129 in cancer and non‑cancerous diseases (Review)". Experimental and Therapeutic Medicine 22, no. 3 (2021): 918. https://doi.org/10.3892/etm.2021.10350
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team