|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2020. CA Cancer J Clin. 70:7–30. 2020.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Ghantous Y and Abu Elnaaj I: Global
incidence and risk factors of oral cancer. Harefuah. 156:645–649.
2017.PubMed/NCBI
|
|
4
|
Haddad RI and Shin DM: Recent advances in
head and neck cancer. N Engl J Med. 359:1143–1154. 2008.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Bhat AA, Yousuf P, Wani NA, Rizwan A,
Chauhan S, Siddiqi MA, Bedognetti D, El-Rifai W, Frenneaux MP,
Batraet SK, et al: Tumor microenvironment: An evil nexus promoting
aggressive head and neck squamous cell carcinoma and avenue for
targeted therapy. Signal Transduct Target Ther.
6(12)2021.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Wang HC, Chan LP and Cho SF: Targeting the
immune microenvironment in the treatment of head and neck squamous
cell carcinoma. Front Oncol. 9(1084)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Solomon I, Voiculescu VM, Caruntu C, Lupu
M, Popa A, Ilie MA, Albulescu R, Caruntu A, Tanase C, Constantin C,
et al: Neuroendocrine factors and head and neck squamous cell
carcinoma: An affair to remember. Dis Markers.
2018(9787831)2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Hsu WL, Yu KJ, Chiang CJ, Chen TC and Wang
CP: Head and neck cancer incidence trends in Taiwan, 1980-2014. Int
J Head Neck Sci. 1:180–189. 2017.
|
|
9
|
Chaturvedi AK, Engels EA, Pfeiffer RM,
Hernandez BY, Xiao W, Kim E, Jiang B, Goodman MT, Sibug-Saber M,
Cozen W, et al: Human papillomavirus and rising oropharyngeal
cancer incidence in the United States. J Clin Oncol. 29:4294–4301.
2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Hashibe M, Brennan P, Chuang SC, Boccia S,
Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova
E, et al: Interaction between tobacco and alcohol use and the risk
of head and neck cancer: Pooled analysis in the international head
and neck cancer epidemiology consortium. Cancer Epidemiol
Biomarkers Prev. 18:541–550. 2009.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Maier H, Dietz A, Gewelke U, Heller WD and
Weidauer H: Tobacco and alcohol and the risk of head and neck
cancer. Clin Investig. 70:320–327. 1992.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Sturgis EM and Wei Q: Genetic
susceptibility-molecular epidemiology of head and neck cancer. Curr
Opin Oncol. 14:310–317. 2002.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Preston-Martin S, Thomas DC, White SC and
Cohen D: Prior exposure to medical and dental x-rays related to
tumors of the parotid gland. J Natl Cancer Inst. 80:943–949.
1988.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Boffetta P, Richiardi L, Berrino F, Estève
J, Pisani P, Crosignani P, Raymond L, Zubiri L, Del Moral A,
Lehmannet W, et al: Occupation and larynx and hypopharynx cancer:
An international case-control study in France, Italy, Spain, and
Switzerland. Cancer Causes Control. 14:203–212. 2003.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Chien YC, Chen JY, Liu MY, Yang HI, Hsu
MM, Chen CJ and Yanget CS: Serologic markers of Epstein-Barr virus
infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J
Med. 345:1877–1882. 2001.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kobayashi I, Shima K, Saito I, Kiyoshima
T, Matsuo K, Ozeki S, Ohishi M and Sakai H: Prevalence of
Epstein-Barr virus in oral squamous cell carcinoma. J Pathol.
189(34)1999.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Mahale P, Sturgis EM, Tweardy DJ,
Ariza-Heredia EJ and Torres HA: Association between hepatitis C
virus and head and neck cancers. J Natl Cancer Inst.
108(djw035)2016.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Vermorken JB, Mesia R, Rivera F, Remenar
E, Kawecki A, Rottey S, Erfan J, Zabolotnyy D, Kienzer HR, Cupissol
D, et al: Platinum-based chemotherapy plus cetuximab in head and
neck cancer. N Engl J Med. 359:1116–1127. 2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Chow LQM, Haddad R, Gupta S, Mahipal A,
Mehra R, Tahara M, Berger R, Eder JP, Burtness B, Lee SH, et al:
Antitumor activity of pembrolizumab in biomarker-unselected
patients with recurrent and/or metastatic head and neck squamous
cell carcinoma: Results from the phase Ib KEYNOTE-012 expansion
cohort. J Clin Oncol. 34:3838–3845. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Ferris RL, Blumenschein GR, Fayette J,
Guigay J, Colevas AD, Licitra LF, Harrington KJ, Kasper S, Vokes
EE, Even C, et al: Further evaluations of nivolumab (nivo) versus
investigator's choice (IC) chemotherapy for recurrent or metastatic
(R/M) squamous cell carcinoma of the head and neck (SCCHN): Check
Mate 141. Am Soc Clin Oncol. 34 (Suppl 15)(S6009)2016.
|
|
21
|
Wu T and Dai Y: Tumor microenvironment and
therapeutic response. Cancer Lett. 387:61–68. 2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Soysal SD, Tzankov A and Muenst SE: Role
of the tumor microenvironment in breast cancer. Pathobiology.
82:142–152. 2015.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Denton AE, Roberts EW and Fearon DT:
Stromal cells in the tumor microenvironment. Adv Exp Med Biol.
1060:99–114. 2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Peltanova B, Raudenska M and Masarik M:
Effect of tumor microenvironment on pathogenesis of the head and
neck squamous cell carcinoma: A systematic review. Mol Cancer.
18(63)2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Giancotti FG: Deregulation of cell
signaling in cancer. FEBS Lett. 588:2558–2570. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Arneth B: Tumor microenvironment. Medicina
(Kaunas). 56(15)2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ludwig S, Sharma P, Theodoraki MN,
Pietrowska M, Yerneni SS, Lang S, Ferrone S and Whitesideet TL:
Molecular and functional profiles of exosomes from HPV (+) and HPV
(-) head and neck cancer cell lines. Front Oncol.
8(445)2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Keck MK, Zuo Z, Khattri A, Stricker TP,
Brown CD, Imanguli M, Rieke D, Endhardt K, Fang P, Brägelmann J, et
al: Integrative analysis of head and neck cancer identifies two
biologically distinct HPV and three non-HPV subtypes. Clin Cancer
Res. 21:870–881. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Cristina V, Herrera-Gómez RG, Szturz P,
Espeli V and Siano M: Immunotherapies and future combination
strategies for head and neck squamous cell carcinoma. Int J Mol
Sci. 20(5399)2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Chaudhary S, Ganguly K, Muniyan S,
Pothuraju R, Sayed Z, Jones DT, Batra SK and Macha MA:
Immunometabolic alterations by HPV infection: New dimensions to
head and neck cancer disparity. J Natl Cancer Inst. 111:233–244.
2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Quezada SA, Peggs KS, Simpson TR and
Allison JP: Shifting the equilibrium in cancer immunoediting: From
tumor tolerance to eradication. Immunol Rev. 241:104–118.
2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Dobrenis K, Gauthier LR, Barroca V and
Magnon C: Granulocyte colony-stimulating factor off-target effect
on nerve outgrowth promotes prostate cancer development. Int J
Cancer. 136:982–988. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Hu P, Wang G, Shen M, Zhang P, Zhang J, Du
J and Liu Q: Intratumoral polymorphonuclear granulocyte is
associated with poor prognosis in squamous esophageal cancer by
promoting epithelial-mesenchymal transition. Future Oncol.
11:771–783. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Fang J, Li X, Ma D, Liu X, Chen Y, Wang Y,
Yan Lui VW, Xia J, Cheng B and Wang Z: Prognostic significance of
tumor infiltrating immune cells in oral squamous cell carcinoma.
BMC Cancer. 17(375)2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sakakura K, Chikamatsu K, Takahashi K,
Whiteside TL and Furuya N: Maturation of circulating dendritic
cells and imbalance of T-cell subsets in patients with squamous
cell carcinoma of the head and neck. Cancer Immunol Immunother.
55:151–159. 2006.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Whiteside TL: Immunobiology of head and
neck cancer. Cancer Metastasis Rev. 24:95–105. 2005.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Oweida A, Hararah MK, Phan A, Binder D,
Bhatia S, Lennon S, Bukkapatnam S, Van Court B, Uyanga N, Darraghet
L, et al: Resistance to radiotherapy and PD-L1 blockade is mediated
by TIM-3 upregulation and regulatory T-cell infiltration. Clin
Cancer Res. 24:5368–5380. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Echarri M, Lopez-Martin A and Hitt R:
Targeted therapy in locally advanced and recurrent/metastatic head
and neck squamous cell carcinoma (LA-R/M HNSCC). Cancers (Basel).
8(27)2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kather JN, Suarez-Carmona M, Charoentong
P, Weis CA, Hirsch D, Bankhead P, Horning M, Ferber D, Kel I,
Herpel E, et al: Topography of cancer-associated immune cells in
human solid tumors. Elife. 7(e36967)2018.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Johnson SD, De Costa AM and Young MR:
Effect of the premalignant and tumor microenvironment on immune
cell cytokine production in head and neck cancer. Cancers (Basel).
6:756–770. 2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Bonomi M, Patsias A, Posner M and Sikora
A: The role of inflammation in head and neck cancer. Adv Exp Med
Biol. 816:107–127. 2014.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Boda D, Docea AO, Calina D, Ilie MA,
Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE,
Voiculescu V, et al: Human papilloma virus: Apprehending the link
with carcinogenesis and unveiling new research avenues (Review).
Int J Oncol. 52:637–655. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Carpén T, Sjöblom A, Lundberg M, Haglund
C, Markkola A, Syrjänen S, Tarkkanen J, Mäkitie A, Hagström J and
Mattila P: Presenting symptoms and clinical findings in
HPV-positive and HPV-negative oropharyngeal cancer patients. Acta
Otolaryngol. 138:513–518. 2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Panwar A, Batra R, Lydiatt WM and Ganti
AK: Human papilloma virus positive oropharyngeal squamous cell
carcinoma: A growing epidemic. Cancer Treat Rev. 40:215–219.
2014.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Pytynia KB, Dahlstrom KR and Sturgis EM:
Epidemiology of HPV-associated oropharyngeal cancer. Oral Oncol.
50:380–386. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Cancer Genome Atlas Network. Comprehensive
genomic characterization of head and neck squamous cell carcinomas.
Nature. 517:576–582. 2015.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Seiwert TY, Zuo Z, Keck MK, Khattri A,
Pedamallu CS, Stricker T, Brown C, Pugh TJ, Stojanov P, Cho J, et
al: Integrative and comparative genomic analysis of HPV-positive
and HPV-negative head and neck squamous cell carcinomas. Clin
Cancer Res. 21:632–641. 2015.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Weinberger PM, Yu Z, Haffty BG, Kowalski
D, Harigopal M, Brandsma J, Sasaki C, Joe J, Camp RL, Rimmet DL, et
al: Molecular classification identifies a subset of human
papillomavirus-associated oropharyngeal cancers with favorable
prognosis. J Clin Oncol. 24:736–747. 2006.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Mandal R, Şenbabaoğlu Y, Desrichard A,
Havel JJ, Dalin MG, Riaz N, Lee K-W, Ganly I, Hakimi AA, Chan TA
and Morris LG: The head and neck cancer immune landscape and its
immunotherapeutic implications. JCI Insight.
1(e89829)2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Koneva LA, Zhang Y, Virani S, Hall PB,
McHugh JB, Chepeha DB, Wolf GT, Carey TE, Rozek LS and Sartor MA:
HPV integration in HNSCC correlates with survival outcomes, immune
response signatures, and candidate drivers. Mol Cancer Res.
16:90–102. 2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kindt N, Descamps G, Seminerio I, Bellier
J, Lechien JR, Mat Q, Pottier C, Delvenne P, Journé F and Saussez
S: High stromal Foxp3-positive T cell number combined to tumor
stage improved prognosis in head and neck squamous cell carcinoma.
Oral Oncol. 67:183–191. 2017.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Seminerio I, Descamps G, Dupont S, de
Marrez L, Laigle JA, Lechien JJ, Kindt N, Journe F and Saussez S:
Infiltration of FoxP3+ regulatory T cells is a strong
and independent prognostic factor in head and neck squamous cell
carcinoma. Cancers (Basel). 11(227)2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Punt S, Dronkers EA, Welters MJ, Goedemans
R, Koljenović S, Bloemena E, Snijders PJ, Gorter A, van der Burg
SH, Baatenburg de Jong RJ and Jordanova ES: A beneficial tumor
microenvironment in oropharyngeal squamous cell carcinoma is
characterized by a high T cell and low IL-17(+) cell frequency.
Cancer Immunol Immunother. 65:393–403. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Oguejiofor K, Hall J, Slater C, Betts G,
Hall G, Slevin N, Dovedi S, Stern PL and Westet CM: Stromal
infiltration of CD8 T cells is associated with improved clinical
outcome in HPV-positive oropharyngeal squamous carcinoma. Br J
Cancer. 113:886–893. 2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Lechien JR, Descamps G, Seminerio I,
Furgiuele S, Dequanter D, Mouawad F, Badoual C, Journe F and
Saussez S: HPV Involvement in the tumor microenvironment and immune
treatment in head and neck squamous cell carcinomas. Cancers.
12(1060)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wolf GT, Chepeha DB, Bellile E, Nguyen A,
Thomas D and McHugh J: Tumor infiltrating lymphocytes (TIL) and
prognosis in oral cavity squamous carcinoma: A preliminary study.
Oral Oncol. 51:90–95. 2015.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Seminerio I, Kindt N, Descamps G, Bellier
J, Lechien JR, Mat Q, Pottier C, Journé F and Saussez S: High
infiltration of CD68+ macrophages is associated with
poor prognoses of head and neck squamous cell carcinoma patients
and is influenced by human papillomavirus. Oncotarget.
9:11046–11059. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wagner S, Wittekindt C, Reuschenbach M,
Hennig B, Thevarajah M, Würdemann N, Prigge ES, von Knebel
Doeberitz M, Dreyer T, Gattenlöhneret S, et al: CD56-positive
lymphocyte infiltration in relation to human papillomavirus
association and prognostic significance in oropharyngeal squamous
cell carcinoma. Int J Cancer. 138:2263–2273. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Guess JC and McCance DJ: Decreased
migration of Langerhans precursor-like cells in response to human
keratinocytes expressing human papillomavirus type 16 E6/E7 is
related to reduced macrophage inflammatory protein-3alpha
production. J Virol. 79:14852–14862. 2005.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Kindt N, Descamps G, Seminerio I, Bellier
J, Lechien JR, Pottier C, Larsimont D, Journé F, Delvenne P and
Saussez S: Langerhans cell number is a strong and independent
prognostic factor for head and neck squamous cell carcinomas. Oral
Oncol. 62:1–10. 2016.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Matthews K, Leong CM, Baxter L, Inglis E,
Yun K, Bäckström T, Doorbar J and Hibma M: Depletion of Langerhans
cells in human papillomavirus type 16-infected skin is associated
with E6-mediated down regulation of E-cadherin. J Virol.
77:8378–8385. 2003.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kanodia S, Fahey LM and Kast WM:
Mechanisms used by human papillomaviruses to escape the host immune
response. Curr Cancer Drug Targets. 7:79–89. 2007.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wellenstein MD and de Visser KE:
Cancer-cell-intrinsic mechanisms shaping the tumor immune
landscape. Immunity. 48:399–416. 2018.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Outh-Gauer S, Morini A, Tartour E, Lépine
C, Jung AC and Badoual C: The microenvironment of head and neck
cancers: Papillomavirus involvement and potential impact of
immunomodulatory treatments. Head Neck Pathol. 14:330–340.
2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Zimmermann M, Zouhair A, Azria D and
Ozsahin M: The epidermal growth factor receptor (EGFR) in head and
neck cancer: Its role and treatment implications. Radiat Oncol.
1(11)2006.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Hernandez CP, Morrow K, Velasco C,
Wyczechowska DD, Naura AS and Rodriguez PC: Effects of cigarette
smoke extract on primary activated T cells. Cell Immunol.
282:38–43. 2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Desrichard A, Kuo F, Chowell D, Lee KW,
Riaz N, Wong RJ, Chan TA and Morris L: Tobacco smoking-associated
alterations in the immune microenvironment of squamous cell
carcinomas. J Natl Cancer Inst. 110:1386–1392. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Sok JC, Coppelli FM, Thomas SM, Lango MN,
Xi S, Hunt JL, Freilino ML, Graner MW, Wikstrand CJ, Bigner DD, et
al: Mutant epidermal growth factor receptor (EGFRvIII) contributes
to head and neck cancer growth and resistance to EGFR targeting.
Clin Cancer Res. 12:5064–5073. 2006.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Koyama S, Akbay EA, Li YY, Herter-Sprie
GS, Buczkowski KA, Richards WG, Gandhi L, Redig AJ, Rodig SJ,
Asahina H, et al: Adaptive resistance to therapeutic PD-1 blockade
is associated with upregulation of alternative immune checkpoints.
Nat Commun. 7(10501)2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Jenkins RW, Barbie DA and Flaherty KT:
Mechanisms of resistance to immune checkpoint inhibitors. Br J
Cancer. 118:9–16. 2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Peng W, Chen JQ, Liu C, Malu S, Creasy C,
Tetzlaff MT, Xu C, McKenzie JA, Zhang C, Liang X, et al: Loss of
PTEN promotes resistance to T cell-mediated immunotherapy. Cancer
Discov. 6:202–216. 2016.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zaretsky JM, Garcia-Diaz A, Shin DS,
Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY,
Abril-Rodriguez G, Sandoval S, Barthly L, et al: Mutations
associated with acquired resistance to PD-1 blockade in melanoma. N
Engl J Med. 375:819–829. 2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
O'Donnell JS, Long GV, Scolyer RA, Teng MW
and Smyth MJ: Resistance to PD1/PDL1 checkpoint inhibition. Cancer
Treat Rev. 52:71–81. 2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Vargas FA, Furness AJ, Solomon I, Joshi K,
Mekkaoui L, Lesko MH, Rota EM, Dahan R, Georgiou A, Sledzinska A,
et al: Fc-optimized anti-CD25 depletes tumor-infiltrating
regulatory T cells and synergizes with PD-1 blockade to eradicate
established tumors. Immunity. 46:577–586. 2017.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Lyford-Pike S, Peng S, Young GD, Taube JM,
Westra WH, Akpeng B, Bruno TC, Richmon JD, Wang H, Bishopet JA, et
al: Evidence for a role of the PD-1:PD-L1 pathway in immune
resistance of HPV-associated head and neck squamous cell carcinoma.
Cancer Res. 73:1733–1741. 2013.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wan Y, Vagenas D, Salazar C, Kenny L,
Perry C, Calvopiña D and Punyadeera C: Salivary miRNA panel to
detect HPV-positive and HPV-negative head and neck cancer patients.
Oncotarget. 8:99990–100001. 2017.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Vahabi M, Pulito C, Sacconi A, Donzelli S,
D'Andrea M, Manciocco V, Pellini R, Paci P, Sanguineti G,
Strigariet L, et al: miR-96-5p targets PTEN expression affecting
radio-chemosensitivity of HNSCC cells. J Exp Clin Cancer Res.
38(141)2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Meulendijks D, Tomasoa NB, Dewit L, Smits
PH, Bakker R, van Velthuysen ML, Rosenberg EH, Beijnen JH,
Schellens JHM and Cats A: HPV-negative squamous cell carcinoma of
the anal canal is unresponsive to standard treatment and frequently
carries disruptive mutations in TP53. Br J Cancer. 112:1358–1366.
2015.PubMed/NCBI View Article : Google Scholar
|
|
80
|
O'Sullivan B, Huang SH, Siu LL, Waldron J,
Zhao H, Perez-Ordonez B, Weinreb I, Kim J, Ringash J, Bayley A, et
al: Deintensification candidate subgroups in human
papillomavirus-related oropharyngeal cancer according to minimal
risk of distant metastasis. J Clin Oncol. 31:543–550.
2013.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Baruah P, Bullenkamp J, Wilson P, Lee M,
Kaski JC and Dumitriu IE: TLR9 mediated tumor-stroma interactions
in human papilloma virus (HPV)-positive head and neck squamous cell
carcinoma up-regulate PD-L1 and PD-L2. Front Immunol.
10(1644)2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Zandberg DP, Algazi AP, Jimeno A, Good JS,
Fayette J, Bouganim N, Ready NE, Clement PM, Even C, Janget RW, et
al: Durvalumab for recurrent or metastatic head and neck squamous
cell carcinoma: results from a single-arm, phase II study in
patients with >25% tumour cell PD-L1 expression who have
progressed on platinum-based chemotherapy. Eur J Cancer.
107:142–152. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ferris RL, Blumenschein G Jr, Fayette J,
Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE,
Even C, et al: Nivolumab for recurrent squamous-cell carcinoma of
the head and neck. N Engl J Med. 375:1856–1867. 2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Powell SF, Gold KA, Gitau MM, Sumey CJ,
Lohr MM, McGraw SC, Nowak RK, Jensen AW, Blanchard MJ, Fischer CD,
et al: Safety and efficacy of pembrolizumab with chemoradiotherapy
in locally advanced head and neck squamous cell carcinoma: A phase
IB study. J Clin Oncol. 38:2427–2437. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Ferris RL, Haddad R, Even C, Tahara M,
Dvorkin M, Ciuleanu TE, Clement PM, Mesia R, Kutukova S,
Zholudevaet L, et al: Durvalumab with or without tremelimumab in
patients with recurrent or metastatic head and neck squamous cell
carcinoma: EAGLE, a randomized, open-label phase III study. Ann
Oncol. 31:942–950. 2020.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Siu LL, Even C, Mesía R, Remenar E, Daste
A, Delord JP, Krauss J, Saba NF, Nabell L, Ready NE, et al: Safety
and efficacy of durvalumab with or without tremelimumab in patients
with PD-L1-Low/Negative recurrent or metastatic HNSCC: The phase 2
CONDOR randomized clinical trial. JAMA Oncol. 5:195–203.
2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Tsuchikawa T, Miyamoto M, Yamamura Y,
Shichinohe T, Hirano S and Kondo S: The immunological impact of
neoadjuvant chemotherapy on the tumor microenvironment of
esophageal squamous cell carcinoma. Ann Surgical Oncol.
19:1713–1719. 2012.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Bracci L, Schiavoni G, Sistigu A and
Belardelli F: Immune-based mechanisms of cytotoxic chemotherapy:
Implications for the design of novel and rationale-based combined
treatments against cancer. Cell Death Differ. 21:15–25.
2014.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Concu R and Cordeiro M: Cetuximab and the
head and neck squamous cell cancer. Curr Top Medicinal Chem.
18:192–198. 2018.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Burtness B, Harrington KJ, Greil R,
Soulières D, Tahara M, de Castro G Jr, Psyrri A, Basté N, Neupane
P, Bratland A, et al: Pembrolizumab alone or with chemotherapy
versus cetuximab with chemotherapy for recurrent or metastatic
squamous cell carcinoma of the head and neck (KEYNOTE-048): A
randomised, open-label, phase 3 study. Lancet. 394:1915–1928.
2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Şimşek H, Han Ü, Önal B and Şimişek G: The
expression of EGFR, cerbB2, p16, and p53 and their relationship
with conventional parameters in squamous cell carcinoma of the
larynx. Turkish J Med Sci. 44:411–416. 2014.PubMed/NCBI
|
|
92
|
Liang K, Ang KK, Milas L, Hunter N and Fan
Z: The epidermal growth factor receptor mediates radioresistance.
Int J Radiat Oncol Biol Phys. 57:246–254. 2003.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Young RJ, Rischin D, Fisher R, McArthur
GA, Fox SB, Peters LJ, Corry J, Lim A, Waldeck K and Solomon B:
Relationship between epidermal growth factor receptor status,
p16(INK4A), and outcome in head and neck squamous cell carcinoma.
Cancer Epidemiol Biomark Prev. 20:1230–1237. 2011.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Kumar B, Cordell KG, Lee JS, Worden FP,
Prince ME, Tran HH, Wolf GT, Urba SG, Chepeha DB, Teknoset TN, et
al: EGFR, p16, HPV Titer, Bcl-xL and p53, sex, and smoking as
indicators of response to therapy and survival in oropharyngeal
cancer. J Clin Oncol. 26:3128–3137. 2008.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Bernier J, Bentzen SM and Vermorken JB:
Molecular therapy in head and neck oncology. Nat Rev Clin Oncol.
6:266–277. 2009.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Henderson S, Chakravarthy A, Su X, Boshoff
C and Fenton TR: APOBEC-mediated cytosine deamination links PIK3CA
helical domain mutations to human papillomavirus-driven tumor
development. Cell Rep. 7:1833–1841. 2014.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Yarchoan M, Hopkins A and Jaffee EM: Tumor
mutational burden and response rate to PD-1 inhibition. N Engl J
Med. 377:2500–2501. 2017.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Cristescu R, Mogg R, Ayers M, Albright A,
Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhynet M, et al:
Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based
immunotherapy. Science. 362(eaar3593)2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Li W, Wildsmith S, Ye J, Si H, Morsli N,
He P, Shetty J, Yovine AJ, Holoweckyj N, Raja R, et al:
Plasma-based tumor mutational burden (bTMB) as predictor for
survival in phase III EAGLE study: Durvalumab (D) ± tremelimumab
(T) versus chemotherapy (CT) in recurrent/metastatic head and neck
squamous cell carcinoma (R/M HNSCC) after platinum failure. J Clin
Oncol. 38(6511)2020.
|
|
100
|
Hladikova K, Koucky V, Boucek J, Laco J,
Grega M, Hodek M, Zabrodsky M, Vosmik M, Rozkosova K, Vosmikova H,
et al: Tumor-infiltrating B cells affect the progression of
oropharyngeal squamous cell carcinoma via cell-to-cell interactions
with CD8(+) T cells. J Immunother Cancer. 7(26)2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Galon J, Fox BA, Bifulco CB, Masucci G,
Rau T, Botti G, Marincola FM, Ciliberto G, Pages F, Ascierto PA and
Capone M: Immunoscore and immunoprofiling in cancer: An update from
the melanoma and immunotherapy bridge 2015. J Transl Med.
14(273)2016.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Zhang XM, Song LJ, Shen J, Yue H, Han YQ,
Yang CL, Liu SY, Deng JW, Jiang Y, Fu GH and Shen WW: Prognostic
and predictive values of immune infiltrate in patients with head
and neck squamous cell carcinoma. Hum Pathol. 82:104–112.
2018.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Jamieson NB and Maker AV: Gene-expression
profiling to predict responsiveness to immunotherapy. Cancer Gene
Ther. 24:134–140. 2017.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Prat A, Navarro A, Pare L, Reguart N,
Galvan P, Pascual T, Martinez A, Nuciforo P, Comerma L, Alos L, et
al: Immune-related gene expression profiling after PD-1 blockade in
non-small cell lung carcinoma, head and neck squamous cell
carcinoma, and melanoma. Cancer Res. 77:3540–3550. 2017.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 Blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Luchini C, Bibeau F, Ligtenberg MJ, Singh
N, Nottegar A, Bosse T, Miller R, Riaz N, Douillard JY, Andre F, et
al: ESMO recommendations on microsatellite instability testing for
immunotherapy in cancer, and its relationship with PD-1/PD-L1
expression and tumour mutational burden: A systematic review-based
approach. Ann Oncol. 30:1232–1243. 2019.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Roy S and Trinchieri G: Microbiota: A key
orchestrator of cancer therapy. Nat Rev Cancer. 17:271–285.
2017.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Greenhill C: Gut microbiota: Anti-cancer
therapies affected by gut microbiota. Nat Rev Gastroenterol
Hepatol. 11(1)2014.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Brandi G and Frega G: Microbiota: Overview
and implication in immunotherapy-based cancer treatments. Int J Mol
Sci. 20(2699)2019.PubMed/NCBI View Article : Google Scholar
|