Open Access

C1q/TNF‑related protein 9 decreases cardiomyocyte hypoxia/reoxygenation‑induced inflammation by inhibiting the TLR4/MyD88/NF‑κB signaling pathway

  • Authors:
    • Zhongyi Huang
    • Dan Zhao
    • Yongjian Wang
    • Xiaolei Li
    • Jianqiu Li
    • Jie Han
    • Lisi Jiang
    • Fen Ai
    • Zhaoxiong Zhou
  • View Affiliations

  • Published online on: August 8, 2021     https://doi.org/10.3892/etm.2021.10573
  • Article Number: 1139
  • Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

C1q/TNF‑related protein 9 (CTRP9) acts as an adipokine and has been reported to exert numerous biological functions, such as anti‑inflammatory and anti‑oxidative stress effects, in ischemic heart disease. In the present study, the role of CTRP9 in neonatal rat cardiomyocytes (NRCMs) following hypoxia/reoxygenation (H/R) and the underlying mechanism was investigated. Adenoviral vectors containing CTRP9 or green fluorescent protein were transfected into NRCMs. A H/R model was constructed 2 days after transfection by 2 h incubation under hypoxia followed by 4 h of reoxygenation. Lactate dehydrogenase (LDH), creatine kinase (CK) and CK‑myocardial band (CK‑MB) levels were detected by a biochemical analyzer using biochemical kits. In addition, cell viability was detected using trypan blue staining to determine the extent of cell injury. Inflammatory cytokines TNF‑α, IL‑6 and IL‑10 were measured by ELISA. Western blotting and reverse transcription‑quantitative PCR were used to evaluate the expression levels of CTRP9, toll‑like receptor 4 (TLR4), myeloid differentiation primary response (MyD88) and NF‑κB. The DNA binding activity of NF‑κB was also detected using an electrophoretic mobility shift assay. The results indicated that transfection with adenoviral vectors containing CTRP9 could markedly enhance CTRP9 expression. CTRP9 overexpression increased cell viability and decreased the release of LDH, CK and CK‑MB. In addition, CTRP9 overexpression reduced TNF‑α and IL‑6 levels whilst increasing IL‑10 levels, but decreased the expression of TLR4, MyD88 and NF‑κB. Furthermore, the DNA binding activity of NF‑κB under H/R was also decreased by CTRP9 overexpression. In conclusion, the results of the present study suggested that CTRP9 could protect cardiomyocytes from H/R injury, which was at least partially due to the inhibition of the TLR4/MyD88/NF‑κB signaling pathway to reduce the release of inflammatory cytokines.
View Figures
View References

Related Articles

Journal Cover

October-2021
Volume 22 Issue 4

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Huang Z, Zhao D, Wang Y, Li X, Li J, Han J, Jiang L, Ai F and Zhou Z: C1q/TNF‑related protein 9 decreases cardiomyocyte hypoxia/reoxygenation‑induced inflammation by inhibiting the TLR4/MyD88/NF‑κB signaling pathway. Exp Ther Med 22: 1139, 2021
APA
Huang, Z., Zhao, D., Wang, Y., Li, X., Li, J., Han, J. ... Zhou, Z. (2021). C1q/TNF‑related protein 9 decreases cardiomyocyte hypoxia/reoxygenation‑induced inflammation by inhibiting the TLR4/MyD88/NF‑κB signaling pathway. Experimental and Therapeutic Medicine, 22, 1139. https://doi.org/10.3892/etm.2021.10573
MLA
Huang, Z., Zhao, D., Wang, Y., Li, X., Li, J., Han, J., Jiang, L., Ai, F., Zhou, Z."C1q/TNF‑related protein 9 decreases cardiomyocyte hypoxia/reoxygenation‑induced inflammation by inhibiting the TLR4/MyD88/NF‑κB signaling pathway". Experimental and Therapeutic Medicine 22.4 (2021): 1139.
Chicago
Huang, Z., Zhao, D., Wang, Y., Li, X., Li, J., Han, J., Jiang, L., Ai, F., Zhou, Z."C1q/TNF‑related protein 9 decreases cardiomyocyte hypoxia/reoxygenation‑induced inflammation by inhibiting the TLR4/MyD88/NF‑κB signaling pathway". Experimental and Therapeutic Medicine 22, no. 4 (2021): 1139. https://doi.org/10.3892/etm.2021.10573