|
1
|
Ghebreyesus WD-GTA: WHO Director-General's
opening remarks at the media briefing on COVID-19-11 March 2020
USA. World Health Organisation, 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020.
Accessed in February 15, 2021.
|
|
2
|
Gharebaghi N, Nejadrahim R, Mousavi SJ,
Sadat-Ebrahimi SR and Hajizadeh R: The use of intravenous
immunoglobulin gamma for the treatment of severe coronavirus
disease 2019: A randomized placebo-controlled double-blind clinical
trial. BMC Infect Dis. 20(786)2020.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Shao Z, Feng Y, Zhong L, Xie Q, Lei M, Liu
Z, Wang C, Ji J, Liu H, Gu Z, et al: Clinical efficacy of
intravenous immunoglobulin therapy in critical ill patients with
COVID-19: A multicenter retrospective cohort study. Clin Transl
Immunology. 9(e1192)2020.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Zhu N, Zhang D, Wang W, Li X, Yang B, Song
J, Zhao X, Huang B, Shi W, Lu R, et al: China novel coronavirus
investigating and research team: A novel coronavirus from patients
with pneumonia in China, 2019. N Engl J Med. 382:727–733.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He
JX, Liu L, Shan H, Lei CL, Hui DSC, et al: Clinical characteristics
of coronavirus disease 2019 in China. N Engl J Med. 382:1708–1720.
2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J,
Wang B, Xiang H, Cheng Z, Xiong Y, et al: Clinical characteristics
of 138 hospitalized patients with 2019 novel coronavirus-infected
pneumonia in Wuhan, China. JAMA. 323:1061–1069. 2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zink W, Kollmar R and Schwab S: Critical
illness polyneuropathy and myopathy in the intensive care unit. Nat
Rev Neurol. 5:372–379. 2009.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Osler W: The Principles and Practice of
Medicine, 1st edition, D. Appleton and Company, New York, 1892.
|
|
10
|
Mertens HG: Disseminated neuropathy
following coma. On the differentation of so-called toxic
polyneuropathy. Nervenarzt. 32:71–79. 1961.PubMed/NCBI(In German).
|
|
11
|
Bolton CF, Gilbert JJ, Hahn AF and Sibbald
WJ: Polyneuropathy in critically ill patients. J Neurol Neurosurg
Psychiatry. 47:1223–1231. 1984.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Bolton CF, Laverty DA, Brown JD, Witt NJ,
Hahn AF and Sibbald WJ: Critically ill polyneuropathy:
Electrophysiological studies and differentiation from
Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry. 49:563–573.
1986.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Bolton CF: Sepsis and the systemic
inflammatory response syndrome: Neuromuscular manifestations. Crit
Care Med. 24:1408–1416. 1996.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Bolton CF: Neuromuscular manifestations of
critical illness. Muscle Nerve. 32:140–163. 2005.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Friedrich O: Critical illness myopathy:
Sepsis-mediated failure of the peripheral nervous system. Eur J
Anaesthesiol Suppl. 42:73–82. 2008.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Hermans G, De Jonghe B, Bruyninckx F and
Van den Berghe G: Clinical review: Critical illness polyneuropathy
and myopathy. Crit Care. 12(238)2008.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Lacomis D and Campellone JV: Critical
illness neuromyopathies. Adv Neurol. 88:325–335. 2002.PubMed/NCBI
|
|
18
|
Bolton CF: The discovery of critical
illness polyneuropathy: A memoir. Can J Neurol Sci. 37:431–438.
2010.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Cabañes-Martínez L, Villadóniga M,
González-Rodríguez L, Araque L, Díaz-Cid A, Ruz-Caracuel I, Pian H,
Sánchez-Alonso S, Fanjul S, Del Álamo M and Regidor I:
Neuromuscular involvement in COVID-19 critically ill patients. Clin
Neurophysiol. 131:2809–2816. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhou C, Wu L, Ni F, Ji W, Wu J and Zhang
H: Critical illness polyneuropathy and myopathy: A systematic
review. Neural Regen Res. 9:101–110. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Casas-Rojo JM, Antón-Santos JM,
Millán-Núñez-Cortés J, Lumbreras-Bermejo C, Ramos-Rincón JM,
Roy-Vallejo E, Artero-Mora A, Arnalich-Fernández F, García-Bruñén
JM, Vargas-Núñez JA, et al: Clinical characteristics of patients
hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19
Registry. Rev Clin Esp. 220:480–494. 2020.PubMed/NCBI View Article : Google Scholar : (In Spanish).
|
|
22
|
Epidemiology Working Group for NCIP
Epidemic Response, Chinese center for disease control and
prevention. The epidemiological characteristics of an outbreak of
2019 novel coronavirus diseases (COVID-19) in China. Zhonghua Liu
Xing Bing Xue Za Zhi. 41:145–151. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
23
|
De Jonghe B, Sharshar T, Lefaucheur JP,
Authier FJ, Durand-Zaleski I, Boussarsar M, Cerf C, Renaud E,
Mesrati F, Carlet J, et al: Paresis acquired in the intensive care
unit: A prospective multicenter study. JAMA. 288:2859–2867.
2002.PubMed/NCBI View Article : Google Scholar
|
|
24
|
de Letter MA, Schmitz PI, Visser LH,
Verheul FA, Schellens RL, Op de Coul DA and van der Meché FG: Risk
factors for the development of polyneuropathy and myopathy in
critically ill patients. Crit Care Med. 29:2281–2286.
2001.PubMed/NCBI View Article : Google Scholar
|
|
25
|
De Jonghe B, Bastuji-Garin S, Sharshar T,
Outin H and Brochard L: Does ICU-acquired paresis lengthen weaning
from mechanical ventilation? Intensive Care Med. 30:1117–1121.
2004.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Leijten FS, De Weerd AW, Poortvliet DC, De
Ridder VA, Ulrich C and Harink-De Weerd JE: Critical illness
polyneuropathy in multiple organ dysfunction syndrome and weaning
from the ventilator. Intensive Care Med. 22:856–861.
1996.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Garnacho-Montero J, Amaya-Villar R,
García-Garmendía JL, Madrazo-Osuna J and Ortiz-Leyba C: Effect of
critical illness polyneuropathy on the withdrawal from mechanical
ventilation and the length of stay in septic patients. Crit Care
Med. 33:349–354. 2005.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Leijten FS, Harinck-de Weerd JE,
Poortvliet DC and de Weerd AW: The role of polyneuropathy in motor
convalescence after prolonged mechanical ventilation. JAMA.
274:1221–1225. 1995.PubMed/NCBI
|
|
29
|
Van den Berghe G, Schoonheydt K, Becx P,
Bruyninckx F and Wouters PJ: Insulin therapy protects the central
and peripheral nervous system of intensive care patients.
Neurology. 64:1348–1353. 2005.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Hermans G, Schrooten M, Van Damme P,
Berends N, Bouckaert B, De Vooght W, Robberecht W and Van den
Berghe G: Benefits of intensive insulin therapy on neuromuscular
complications in routine daily critical care practice: A
retrospective study. Crit Care. 13(R5)2009.PubMed/NCBI View
Article : Google Scholar
|
|
31
|
Hermans G, Wilmer A, Meersseman W, Milants
I, Wouters PJ, Bobbaers H, Bruyninckx F and Van den Berghe G:
Impact of intensive insulin therapy on neuromuscular complications
and ventilator dependency in the medical intensive care unit. Am J
Respir Crit Care Med. 175:480–489. 2007.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Latronico N and Bolton CF: Critical
illness polyneuropathy and myopathy: A major cause of muscle
weakness and paralysis. Lancet Neurol. 10:931–941. 2011.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Bednarík J, Vondracek P, Dusek L,
Moravcova E and Cundrle I: Risk factors for critical illness
polyneuromyopathy. J Neurol. 252:343–351. 2005.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Tennilä A, Salmi T, Pettilä V, Roine RO,
Varpula T and Takkunen O: Early signs of critical illness
polyneuropathy in ICU patients with systemic inflammatory response
syndrome or sepsis. Intensive Care Med. 26:1360–1363.
2000.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Bercker S, Weber-Carstens S, Deja M, Grimm
C, Wolf S, Behse F, Busch T, Falke KJ and Kaisers U: Critical
illness polyneuropathy and myopathy in patients with acute
respiratory distress syndrome. Crit Care Med. 33:711–715.
2005.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Hermans G, De Jonghe B, Bruyninckx F and
Van den Berghe G: Interventions for preventing critical illness
polyneuropathy and critical illness myopathy. Cochrane Database
Syst Rev: Jan 30, 2009 (Epub ahead of print). doi:
10.1002/14651858.CD006832.pub3.
|
|
37
|
De Jonghe B, Bastuji-Garin S, Durand MC,
Malissin I, Rodrigues P, Cerf C, Outin H and Sharshar T: Groupe de
Réflexion et d'Etude des Neuromyopathies en Réanimation.
Respiratory weakness is associated with limb weakness and delayed
weaning in critical illness. Crit Care Med. 35:2007–2015.
2007.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Eikermann M, Koch G, Gerwig M, Ochterbeck
C, Beiderlinden M, Koeppen S, Neuhäuser M and Peters J: Muscle
force and fatigue in patients with sepsis and multiorgan failure.
Intensive Care Med. 32:251–259. 2006.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Zifko UA, Zipko HT and Bolton CF: Clinical
and electrophysiological findings in critical illness
polyneuropathy. J Neurol Sci. 159:186–193. 1998.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Bird SJ: Diagnosis and management of
critical illness polyneuropathy and critical illness myopathy. Curr
Treat Options Neurol. 9:85–92. 2007.PubMed/NCBI View Article : Google Scholar
|
|
41
|
van Mook WN and Hulsewé-Evers RP: Critical
illness polyneuropathy. Curr Opin Crit Care. 8:302–310.
2002.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Latronico N, Fenzi F, Recupero D, Guarneri
B, Tomelleri G, Tonin P, De Maria G, Antonini L, Rizzuto N and
Candiani A: Critical illness myopathy and neuropathy. Lancet.
347:1579–1582. 1996.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Bednarík J, Lukas Z and Vondracek P:
Critical illness polyneuromyopathy: The electrophysiological
components of a complex entity. Intensive Care Med. 29:1505–1514.
2003.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Latronico N, Bertolini G, Guarneri B,
Botteri M, Peli E, Andreoletti S, Bera P, Luciani D, Nardella A,
Vittorielli E, et al: Simplified electrophysiological evaluation of
peripheral nerves in critically ill patients: The Italian
multi-centre CRIMYNE study. Crit Care. 11(R11)2007.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Dhand UK: Clinical approach to the weak
patient in the intensive care unit. Respir Care. 51:1024–1041.
2006.PubMed/NCBI
|
|
46
|
Z'Graggen WJ, Lin CS, Howard RS, Beale RJ
and Bostock H: Nerve excitability changes in critical illness
polyneuropathy. Brain. 129:2461–2470. 2006.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Z'Graggen WJ and Bostock H: Nerve membrane
excitability testing. Eur J Anaesthesiol Suppl. 42:68–72.
2008.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Cankayali I, Dogan YH, Solak I, Demirag K,
Eris O, Demirgoren S and Moral AR: Neuromuscular deterioration in
the early stage of sepsis in rats. Crit Care. 11(R1)2007.PubMed/NCBI View Article : Google Scholar
|
|
49
|
van der Meché FG and van Doorn PA:
Guillain-Barré syndrome and chronic inflammatory demyelinating
polyneuropathy: Immune mechanisms and update on current therapies.
Ann Neurol. 37 (Suppl 1):S14–S31. 1995.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lad H, Saumur TM, Herridge MS, Dos Santos
CC, Mathur S, Batt J and Gilbert PM: Intensive care unit-acquired
weakness: Not just another muscle atrophying condition. Int J Mol
Sci. 21(7840)2020.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Schweickert WD and Hall J: ICU-acquired
weakness. Chest. 131:1541–1549. 2007.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Young GB: Critical illness myopathy:
Deeper insights. Crit Care Med. 36(1977)2008.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Nanas S, Kritikos K, Angelopoulos E,
Siafaka A, Tsikriki S, Poriazi M, Kanaloupiti D, Kontogeorgi M,
Pratikaki M, Zervakis D, et al: Predisposing factors for critical
illness polyneuromyopathy in a multidisciplinary intensive care
unit. Acta Neurol Scand. 118:175–181. 2008.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Visser LH: Critical illness polyneuropathy
and myopathy: Clinical features, risk factors and prognosis. Eur J
Neurol. 13:1203–1212. 2006.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Hough CL and Needham DM: The role of
future longitudinal studies in ICU survivors: Understanding
determinants and pathophysiology of weakness and neuromuscular
dysfunction. Curr Opin Crit Care. 13:489–496. 2007.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Herridge MS, Cheung AM, Tansey CM,
Matte-Martyn A, Diaz-Granados N, Al-Saidi F, Cooper AB, Guest CB,
Mazer CD, Mehta S, et al: Canadian critical care trials Group.
One-year outcomes in survivors of the acute respiratory distress
syndrome. N Engl J Med. 348:683–693. 2003.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Witt NJ, Zochodne DW, Bolton CF,
Grand'Maison F, Wells G, Young GB and Sibbald WJ: Peripheral nerve
function in sepsis and multiple organ failure. Chest. 99:176–184.
1991.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Yang T, Li Z, Jiang L, Wang Y and Xi X:
Risk factors for intensive care unit-acquired weakness: A
systematic review and meta-analysis. Acta Neurol Scand.
138:104–114. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Fenzi F, Latronico N, Refatti N and
Rizzuto N: Enhanced expression of E-selectin on the vascular
endothelium of peripheral nerve in critically ill patients with
neuromuscular disorders. Acta Neuropathol. 106:75–82.
2003.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Lacomis D: Neuromuscular disorders in
critically ill patients: Review and update. J Clin Neuromuscul Dis.
12:197–218. 2011.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Friedrich O, Hund E, Weber C, Hacke W and
Fink RH: Critical illness myopathy serum fractions affect membrane
excitability and intracellular calcium release in mammalian
skeletal muscle. J Neurol. 251:53–65. 2004.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Rich MM and Pinter MJ: Crucial role of
sodium channel fast inactivation in muscle fibre inexcitability in
a rat model of critical illness myopathy. J Physiol. 547:555–566.
2003.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Haeseler G, Foadi N, Wiegand E, Ahrens J,
Krampfl K, Dengler R and Leuwer M: Endotoxin reduces availability
of voltage-gated human skeletal muscle sodium channels at
depolarized membrane potentials. Crit Care Med. 36:1239–1247.
2008.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Guarneri B, Bertolini G and Latronico N:
Long-term outcome in patients with critical illness myopathy or
neuropathy: The Italian multicentre CRIMYNE study. J Neurol
Neurosurg Psychiatry. 79:838–841. 2008.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Brealey D, Brand M, Hargreaves I, Heales
S, Land J, Smolenski R, Davies NA, Cooper CE and Singer M:
Association between mitochondrial dysfunction and severity and
outcome of septic shock. Lancet. 360:219–223. 2002.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Druschky A, Herkert M, Radespiel-Tröger M,
Druschky K, Hund E, Becker CM, Hilz MJ, Erbguth F and Neundörfer B:
Critical illness polyneuropathy: Clinical findings and cell culture
assay of neurotoxicity assessed by a prospective study. Intensive
Care Med. 27:686–693. 2001.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Guadarrama-Ortiz P, Choreño-Parra JA,
Sánchez-Martínez CM, Pacheco-Sánchez FJ, Rodríguez-Nava AI and
García-Quintero G: Neurological aspects of SARS-CoV-2 infection:
Mechanisms and manifestations. Front Neurol.
11(1039)2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Yang Y, Shen C, Li J, Yuan J, Wei J, Huang
F, Wang F, Li G, Li Y, Xing L, et al: Plasma IP-10 and MCP-3 levels
are highly associated with disease severity and predict the
progression of COVID-19. J Allergy Clin Immunol. 146:119–127.e4.
2020.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Chen G, Wu D, Guo W, Cao Y, Huang D, Wang
H, Wang T, Zhang X, Chen H, Yu H, et al: Clinical and immunological
features of severe and moderate coronavirus disease 2019. J Clin
Invest. 130:2620–2629. 2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Winkelman C: Inactivity and inflammation:
Selected cytokines as biologic mediators in muscle dysfunction
during critical illness. AACN Clin Issues. 15:74–82.
2004.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Maier S, Motataianu A, Barcutean L, Balint
A, Hutanu A, Bajko Z, Stoian A, And one S and Balasa R:
Interferon-β 1A, an immunomodulator in relapsing remitting multiple
sclerosis patients. The effect on pro-inflammatory cytokines.
Farmacia. 68:65–75. 2020.
|
|
72
|
Crisafulli S, Isgrò V, La Corte L, Atzeni
F and Trifirò G: Potential role of anti-interleukin (IL)-6 drugs in
the treatment of COVID-19: Rationale, clinical evidence and risks.
BioDrugs. 34:415–422. 2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Mehta P, McAuley DF, Brown M, Sanchez E,
Tattersall RS and Manson JJ: HLH Across Speciality Collaboration,
UK. COVID-19: Consider cytokine storm syndromes and
immunosuppression. Lancet. 395:1033–1034. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Van Aerde N, Van den Berghe G, Wilmer A,
Gosselink R and Hermans G: COVID-19 Consortium. Intensive care unit
acquired muscle weakness in COVID-19 patients. Intensive Care Med.
46:2083–2085. 2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Tuttle CS, Thang LAN and Maier AB: Markers
of inflammation and their association with muscle strength and
mass: A systematic review and meta-analysis. Ageing Res Rev.
64(101185)2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Morley JE, Kalantar-Zadeh K and Anker SD:
COVID-19: A major cause of cachexia and sarcopenia? J Cachexia
Sarcopenia Muscle. 11:863–865. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Madia F, Merico B, Primiano G, Cutuli SL,
De Pascale G and Servidei S: Acute myopathic quadriplegia in
patients with COVID-19 in the intensive care unit. Neurology.
95:492–494. 2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Li YP and Reid MB: NF-kappaB mediates the
protein loss induced by TNF-alpha in differentiated skeletal muscle
myotubes. Am J Physiol Regul Integr Comp Physiol. 279:R1165–R1170.
2000.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Li YP, Schwartz RJ, Waddell ID, Holloway
BR and Reid MB: Skeletal muscle myocytes undergo protein loss and
reactive oxygen-mediated NF-kappaB activation in response to tumor
necrosis factor alpha. FASEB J. 12:871–880. 1998.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cooney RN, Maish GO III, Gilpin T, Shumate
ML, Lang CH and Vary TC: Mechanism of IL-1 induced inhibition of
protein synthesis in skeletal muscle. Shock. 11:235–241.
1999.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Shakoory B, Carcillo JA, Chatham WW, Amdur
RL, Zhao H, Dinarello CA, Cron RQ and Opal SM: Interleukin-1
receptor blockade is associated with reduced mortality in sepsis
patients with features of macrophage activation syndrome:
reanalysis of a prior phase III trial. Crit Care Med. 44:275–281.
2016.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Del Valle DM, Kim-Schulze S, Huang HH,
Beckmann ND, Nirenberg S, Wang B, Lavin Y, Swartz TH, Madduri D,
Stock A, et al: An inflammatory cytokine signature predicts
COVID-19 severity and survival. Nat Med. 26:1636–1643.
2020.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Ruan Q, Yang K, Wang W, Jiang L and Song
J: Clinical predictors of mortality due to COVID-19 based on an
analysis of data of 150 patients from Wuhan, China. Intensive Care
Med. 46:846–848. 2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang J, Zhang H, Qiao R, Ge Q, Zhang S,
Zhao Z, Tian C, Ma Q and Shen N: Thrombo-inflammatory features
predicting mortality in patients with COVID-19: The FAD-85 score. J
Int Med Res. 48(300060520955037)2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Chinese Clinical Trial Register (ChiCTR):
The World Health Organization International Clinical Trials
Registered Organization Registered Platform. Available from:
http://www.chictr.org.cn/showprojen.aspx?proj=49409.
|
|
86
|
Ristimäki A, Narko K and Hla T:
Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript
isoforms by dexamethasone: Evidence for post-transcriptional
regulation. Biochem J. 318:325–331. 1996.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Almawi WY and Melemedjian OK: Negative
regulation of nuclear factor-kappaB activation and function by
glucocorticoids. J Mol Endocrinol. 28:69–78. 2002.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Yang Z and Liu J, Zhou Y, Zhao X, Zhao Q
and Liu J: The effect of corticosteroid treatment on patients with
coronavirus infection: A systematic review and meta-analysis. J
Infect. 81:e13–e20. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Gupta A and Gupta Y:
Glucocorticoid-induced myopathy: Pathophysiology, diagnosis, and
treatment. Indian J Endocrinol Metab. 17:913–916. 2013.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Wang W, Su B, Pang L, Qiao L, Feng Y,
Ouyang Y, Guo X, Shi H, Wei F, Su X, et al: High-dimensional immune
profiling by mass cytometry revealed immunosuppression and
dysfunction of immunity in COVID-19 patients. Cell Mol Immunol.
17:650–652. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning
L, Chen L, Li M, Liu Y, Wang G, et al: Reduction and functional
exhaustion of T cells in patients with coronavirus disease 2019
(COVID-19). Front Immunol. 11(827)2020.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Ono S, Tsujimoto H, Hiraki S and Aosasa S:
Mechanisms of sepsis-induced immunosuppression and immunological
modification therapies for sepsis. Ann Gastroenterol Surg.
2:351–358. 2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q,
Chang J, Hong C, Zhou Y, Wang D, et al: Neurologic manifestations
of hospitalized patients with coronavirus disease 2019 in Wuhan,
China. JAMA Neurol. 77:683–690. 2020.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Yu YM, Ryan CM, Fei ZW, Lu XM, Castillo L,
Schultz JT, Tompkins RG and Young VR: Plasma L-5-oxoproline
kinetics and whole blood glutathione synthesis rates in severely
burned adult humans. Am J Physiol Endocrinol Metab. 282:E247–E258.
2002.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Beigel JH, Tomashek KM, Dodd LE, Mehta AK,
Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et
al: Remdesivir for the treatment of Covid-19-final report. N Engl J
Med. 383:1813–1826. 2020.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Alattar R, Ibrahim TBH, Shaar SH, Abdalla
S, Shukri K, Daghfal JN, Khatib MY, Aboukamar M, Abukhattab M,
Alsoub HA, et al: Tocilizumab for the treatment of severe
coronavirus disease 2019. J Med Virol. 92:2042–2049.
2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Alvarez JI, Dodelet-Devillers A, Kebir H,
Ifergan I, Fabre PJ, Terouz S, Sabbagh M, Wosik K, Bourbonnière L,
Bernard M, et al: The Hedgehog pathway promotes blood-brain barrier
integrity and CNS immune quiescence. Science. 334:1727–1731.
2011.PubMed/NCBI View Article : Google Scholar
|
|
98
|
De Luca G, Cavalli G, Campochiaro C,
Della-Torre E, Angelillo P, Tomelleri A, Boffini N, Tentori S,
Mette F, Farina N, et al: GM-CSF blockade with mavrilimumab in
severe COVID-19 pneumonia and systemic hyperinflammation: A
single-centre, prospective cohort study. Lancet Rheumatol.
2:e465–e473. 2020.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Villar J, Ferrando C, Martínez D, Ambrós
A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E,
Conesa LA, et al: Dexamethasone treatment for the acute respiratory
distress syndrome: A multicentre, randomised controlled trial.
Lancet Respir Med. 8:267–276. 2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Stoian A, Moțățăianu A, Bărcuțean L, Maier
S, Bazko Z, Voidăzan S, Fărcaș A and Bălașa R: Understandig the
mechanism of action of intravenous immunoglobulins: A ten years
experience in treating Guillain-Barrésyndrome. Farmacia.
68:426–435. 2020.
|
|
101
|
Khanna N, Widmer AF, Decker M, Steffen I,
Halter J, Heim D, Weisser M, Gratwohl A, Fluckiger U and Hirsch HH:
Respiratory syncytial virus infection in patients with
hematological diseases: Single-center study and review of the
literature. Clin Infect Dis. 46:402–412. 2008.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Wang JT, Sheng WH, Fang CT, Chen YC, Wang
JL, Yu CJ, Chang SC and Yang PC: Clinical manifestations,
laboratory findings, and treatment outcomes of SARS patients. Emerg
Infect Dis. 10:818–824. 2004.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Arabi YM, Arifi AA, Balkhy HH, Najm H,
Aldawood AS, Ghabashi A, Hawa H, Alothman A, Khaldi A and Al Raiy
B: Clinical course and outcomes of critically ill patients with
Middle East respiratory syndrome coronavirus infection. Ann Intern
Med. 160:389–397. 2014.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Brunner R, Rinner W, Haberler C,
Kitzberger R, Sycha T, Herkner H, Warszawska J, Madl C and
Holzinger U: Early treatment with IgM-enriched intravenous
immunoglobulin does not mitigate critical illness polyneuropathy
and/or myopathy in patients with multiple organ failure and
SIRS/sepsis: A prospective, randomized, placebo-controlled,
double-blinded trial. Crit Care. 17(R213)2013.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Mohr M, Englisch L, Roth A, Burchardi H
and Zielmann S: Effects of early treatment with immunoglobulin on
critical illness polyneuropathy following multiple organ failure
and gram-negative sepsis. Intensive Care Med. 23:1144–1149.
1997.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Koch S, Wollersheim T, Bierbrauer J, Haas
K, Mörgeli R, Deja M, Spies CD, Spuler S, Krebs M and
Weber-Carstens S: Long-term recovery In critical illness myopathy
is complete, contrary to polyneuropathy. Muscle Nerve. 50:431–436.
2014.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Latronico N and Guarneri B: Critical
illness myopathy and neuropathy. Minerva Anestesiol. 74:319–323.
2008.PubMed/NCBI
|
|
108
|
Zifko UA: Long-term outcome of critical
illness polyneuropathy. Muscle Nerve Suppl. 9:S49–S52.
2000.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Fletcher SN, Kennedy DD, Ghosh IR, Misra
VP, Kiff K, Coakley JH and Hinds CJ: Persistent neuromuscular and
neurophysiologic abnormalities in long-term survivors of prolonged
critical illness. Crit Care Med. 31:1012–1016. 2003.PubMed/NCBI View Article : Google Scholar
|
|
110
|
de Sèze M, Petit H, Wiart L, Cardinaud JP,
Gaujard E, Joseph PA, Mazaux JM and Barat M: Critical illness
polyneuropathy. A 2-year follow-up study in 19 severe cases. Eur
Neurol. 43:61–69. 2000.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Kerbaul F, Brousse M, Collart F,
Pellissier JF, Planche D, Fernandez C, Gouin F and Guidon C:
Combination of histopathological and electromyographic patterns can
help to evaluate functional outcome of critical ill patients with
neuromuscular weakness syndromes. Crit Care. 8:R358–R366.
2004.PubMed/NCBI View
Article : Google Scholar
|
|
112
|
Herridge MS, Tansey CM, Matté A, Tomlinson
G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart
TE, et al: Functional disability 5 years after acute respiratory
distress syndrome. N Engl J Med. 364:1293–1304. 2011.PubMed/NCBI View Article : Google Scholar
|
|
113
|
McClafferty B, Umer I, Fye G, Kepko D,
Kalayanamitra R, Shahid Z, Ramgobin D, Cai A, Groff A, Bhandari A,
et al: Approach to critical illness myopathy and polyneuropathy in
the older SARS-CoV-2 patients. J Clin Neurosci. 79:241–245.
2020.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Tsai LK, Hsieh ST, Chao CC, Chen YC, Lin
YH, Chang SC and Chang YC: Neuromuscular disorders in severe acute
respiratory syndrome. Arch Neurol. 61:1669–1673. 2004.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Cao W, Liu X, Bai T, Fan H, Hong K, Song
H, Han Y, Lin L, Ruan L and Li T: High-dose intravenous
immunoglobulin as a therapeutic option for deteriorating patients
with coronavirus disease 2019. Open Forum Infect Dis.
7(ofaa102)2020.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Richardson S, Hirsch JS, Narasimhan M,
Crawford JM, McGinn T and Davidson KW: the Northwell COVID-19
Research Consortium. Barnaby DP, Becker LB, Chelico JD, Cohen SL,
et al: Presenting characteristics, comorbidities, and outcomes
among 5700 patients hospitalized with COVID-19 in the New York City
Area. JAMA. 323:2052–2059. 2020.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Chen LYC, Hoiland RL, Stukas S, Wellington
CL and Sekhon MS: Confronting the controversy: Interleukin-6 and
the COVID-19 cytokine storm syndrome. Eur Respir J.
56(2003006)2020.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Shimizu M: Clinical Features of Cytokine
Storm Syndrome. In: Cytokine Storm Syndrome. Cron RQ and Behrens EM
(eds). Springer International Publishing, Cham, pp31-41, 2019.
|
|
119
|
Lucas C, Wong P, Klein J, Castro TBR,
Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, et al:
Longitudinal analyses reveal immunological misfiring in severe
COVID-19. Nature. 584:463–469. 2020.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Blanco-Melo D, Nilsson-Payant BE, Liu WC,
Uhl S, Hoagland D, Møller R, Jordan TX, Oishi K, Panis M, Sachs D,
et al: Imbalanced host response to SARS-CoV-2 drives development of
COVID-19. Cell. 181:1036–1045.e.9. 2020.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Chen LYC, Hayden A and Mattman A: Extreme
hyperferritinaemia, soluble interleukin-2 receptor, and
haemophagocytic lymphohistiocytosis. Br J Haematol. 185:605–606.
2019.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Giamarellos-Bourboulis EJ, Netea MG,
Rovina N, Akinosoglou K, Antoniadou A, Antonakos N, Damoraki G,
Gkavogianni T, Adami ME, Katsaounou P, et al: Complex immune
dysregulation in COVID-19 patients with severe respiratory failure.
Cell Host Microbe. 27:992–1000.e3. 2020.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Mazzoni A, Salvati L, Maggi L, Capone M,
Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli
A, et al: Impaired immune cell cytotoxicity in severe COVID-19 is
IL-6 dependent. J Clin Invest. 130:4694–4703. 2020.PubMed/NCBI View Article : Google Scholar
|
|
124
|
RECOVERY Collaborative Group. Horby P, Lim
WS, Emberson JR, Mafham M, Bell JL, Linsell L, Staplin N,
Brightling C, Ustianowski A, et al: Dexamethasone in Hospitalized
Patients with Covid-19. N Engl J Med. 384:693–704. 2021.PubMed/NCBI View Article : Google Scholar
|
|
125
|
San-Juan D, Jiménez CR, Camilli CX, de la
Cruz Reyes LA, Galindo EG, Burbano GE, Penela MM, Perassolo MB,
Valdéz AT, Godoy JG, et al: Guidance for clinical neurophysiology
examination throughout the COVID-19 pandemic. Latin American
chapter of the IFCN task force-COVID-19. Clin Neurophysiol.
131:1589–1598. 2020.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Fan E, Cheek F, Chlan L, Gosselink R, Hart
N, Herridge MS, Hopkins RO, Hough CL, Kress JP, Latronico N, et al:
An official American Thoracic Society Clinical Practice guideline:
The diagnosis of intensive care unit-acquired weakness in adults.
Am J Respir Crit Care Med. 190:1437–1446. 2014.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Batt J, dos Santos CC, Cameron JI and
Herridge MS: Intensive care unit-acquired weakness: Clinical
phenotypes and molecular mechanisms. Am J Respir Crit Care Med.
187:238–246. 2013.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Z'Graggen WJ and Tankisi H: Critical
illness myopathy. J Clin Neurophysiol. 37:200–204. 2020.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Stoian A, Șerban G, Bajko Z, And one S,
Mosora O and Bălașa A: Therapeutic plasma exchange as a
first-choice therapy for axonal Guillain-Barré syndrome: A
case-based review of the literature (Review). Exp Ther Med.
21(265)2021.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Barreiro E: Models of disuse muscle
atrophy: Therapeutic implications in critically ill patients. Ann
Transl Med. 6(29)2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Batt J, Herridge M and Dos Santos C:
Mechanism of ICU-acquired weakness: Skeletal muscle loss in
critical illness. Intensive Care Med. 43:1844–1846. 2017.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Parotto M, Batt J and Herridge M: The
pathophysiology of neuromuscular dysfunction in critical illness.
Crit Care Clin. 34:549–556. 2018.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Stoian A, Moțățăianu A, Bajko Z and Bălașa
A: Guillain-barré and acute transverse myelitis overlap syndrome
following obstetric surgery. J Crit Care Med (Targu Mures).
6:74–79. 2020.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Burch PM, Pogoryelova O, Goldstein R,
Bennett D, Guglieri M, Straub V, Bushby K, Lochmüller H and Morris
C: Muscle-derived proteins as serum biomarkers for monitoring
disease progression in three forms of muscular dystrophy. J
Neuromuscul Dis. 2:241–255. 2015.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Baird MF, Graham SM, Baker JS and
Bickerstaff GF: Creatine-kinase- and exercise-related muscle damage
implications for muscle performance and recovery. J Nutr Metab.
2012(960363)2012.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Kim EY, Lee JW, Suh MR, Choi WA, Kang SW
and Oh HJ: Correlation of serum creatine kinase level with
pulmonary function in Duchenne muscular dystrophy. Ann Rehabil Med.
41:306–312. 2017.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Tabarsi P, Barati S, Jamaati H, Haseli S,
Marjani M, Moniri A, Abtahian Z, Dastan A, Yousefian S, Eskandari
R, et al: Evaluating the effects of Intravenous Immunoglobulin
(IVIg) on the management of severe COVID-19 cases: A randomized
controlled trial. Int Immunopharmacol. 90(107205)2021.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Jain A, Deval N and Paul L: A recovered
case of COVID-19 myocarditis treated with IV immunoglobulin. Chest.
158(A281)2020.
|
|
139
|
Galeotti C, Kaveri SV and Bayry J:
IVIG-mediated effector functions in autoimmune and inflammatory
diseases. Int Immunol. 29:491–498. 2017.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Hartung HP: Advances in the understanding
of the mechanism of action of IVIg. J Neurol. 255 (Suppl 3):3–6.
2008.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Lai ST: Treatment of severe acute
respiratory syndrome. Eur J Clin Microbiol Infect Dis. 24:583–591.
2005.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Balasa R: Therapeutic plasma exchange: An
indispensable therapy for severe neurological condition. J Crit
Care Med (Targu Mures). 6:89–90. 2020.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Hung IFN, To KKW, Lee CK, Lee KL, Yan WW,
Chan K, Chan WM, Ngai CW, Law KI, Chow FL, et al: Hyperimmune IV
immunoglobulin treatment: A multicenter double-blind randomized
controlled trial for patients with severe 2009 influenza A(H1N1)
infection. Chest. 144:464–473. 2013.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Nguyen AA, Habiballah SB, Platt CD, Geha
RS, Chou JS and McDonald DR: Immunoglobulins in the treatment of
COVID-19 infection: Proceed with caution! Clin. Immunol.
216(108459)2020.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang
W, Yang L, Fu S and Wang R: Effect of regular intravenous
immunoglobulin therapy on prognosis of severe pneumonia in patients
with COVID-19. J Infect. 81:318–356. 2020.PubMed/NCBI View Article : Google Scholar
|
|
146
|
Reynaga E, Carrillo J, Santos JR, Roure S,
Mateu L, Paredes R, Clotet B, Izquierdo-Useros N and Pedro-Botet
ML: Outcome of hospitalized patients with COVID-19 pneumonia
treated with high-dose immunoglobulin therapy in a prospective case
series. Clin Microbiol Infect. 27:651–652. 2021.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Busani S, Damiani E, Cavazzuti I, Donati A
and Girardis M: Intravenous immunoglobulin in septic shock: Review
of the mechanisms of action and meta-analysis of the clinical
effectiveness. Minerva Anestesiol. 82:559–572. 2016.PubMed/NCBI
|
|
148
|
Schwab I and Nimmerjahn F: Intravenous
immunoglobulin therapy: How does IgG modulate the immune system?
Nat Rev Immunol. 13:176–189. 2013.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Davey RT Jr, Fernández-Cruz E, Markowitz
N, Pett S, Babiker AG, Wentworth D, Khurana S, Engen N, Gordin F,
Jain MK, et al: Anti-influenza hyperimmune intravenous
immunoglobulin for adults with influenza A or B infection
(FLU-IVIG): A double-blind, randomised, placebo-controlled trial.
Lancet Respir Med. 7:951–963. 2019.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Docea AO, Tsatsakis A, Albulescu D,
Cristea O, Zlatian O, Vinceti M, Moschos SA, Tsoukalas D, Goumenou
M, Drakoulis N, et al: A new threat from an old enemy: Re-emergence
of coronavirus (Review). Int J Mol Med. 45:1631–1643.
2020.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Calina D, Docea AO, Petrakis D, Egorov AM,
Ishmukhametov AA, Gabibov AG, Shtilman MI, Kostoff R, Carvalho F,
Vinceti M, et al: Towards effective COVID-19 vaccines: Updates,
perspectives and challenges (Review). Int J Mol Med. 46:3–16.
2020.PubMed/NCBI View Article : Google Scholar
|