Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of protein phosphatase 2A in kidney disease (Review)

  • Authors:
    • Lishi Shao
    • Yiqun Ma
    • Qixiang Fang
    • Ziye Huang
    • Shanshan Wan
    • Jiaping Wang
    • Li Yang
  • View Affiliations / Copyright

    Affiliations: Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China, Department of Urology, The First Affiliated Hospital of the Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China, Department of Urology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China, Department of Radiology, Yunnan Kun‑Gang Hospital, Anning, Yunnan 650300, P.R. China, Department of Anatomy, Histology and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
    Copyright: © Shao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1236
    |
    Published online on: August 31, 2021
       https://doi.org/10.3892/etm.2021.10671
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Kidney disease affects millions of people worldwide and is a financial burden on the healthcare system. Protein phosphatase 2A (PP2A), which is involved in renal development and the function of ion‑transport proteins, aquaporin‑2 and podocytes, is likely to serve an important role in renal processes. PP2A is associated with the pathogenesis of a variety of different kidney diseases including podocyte injury, inflammation, tumors and chronic kidney disease. The current review aimed to discuss the structure and function of PP2A subunits in the context of kidney diseases. How dysregulation of PP2A in the kidneys causes podocyte death and the inactivation of PP2A in renal carcinoma tissues is discussed. Inhibition of PP2A activity prevents epithelial‑mesenchymal transition and attenuates renal fibrosis, creating a favorable inflammatory microenvironment and promoting the initiation and progression of tumor pathogenesis. The current review also indicates that PP2A serves an important role in protection against renal inflammation. Understanding the detailed mechanisms of PP2A provides information that can be utilized in the design and application of novel therapeutics for the treatment and prevention of renal diseases.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Klein J and Schanstra JP: Implementation of proteomics biomarkers in nephrology: From animal models to human application? Proteomics Clin Appl. 13(e1800089)2019.PubMed/NCBI View Article : Google Scholar

2 

Ferenbach DA and Bonventre JV: Acute kidney injury and chronic kidney disease: From the laboratory to the clinic. Nephrol Ther. 12 (Suppl 1):S41–S48. 2016.PubMed/NCBI View Article : Google Scholar

3 

Ferenbach DA and Bonventre JV: Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 11:264–276. 2015.PubMed/NCBI View Article : Google Scholar

4 

Eirin A, Lerman A and Lerman LO: The emerging role of mitochondrial targeting in kidney disease. Handb Exp Pharmacol. 240:229–250. 2017.PubMed/NCBI View Article : Google Scholar

5 

Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY and Yang CW: Chronic kidney disease: Global dimension and perspectives. Lancet. 382:260–272. 2013.PubMed/NCBI View Article : Google Scholar

6 

Chertow GM, Burdick E, Honour M, Bonventre JV and Bates DW: Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol. 16:3365–3370. 2005.PubMed/NCBI View Article : Google Scholar

7 

Mumby MC and Walter G: Protein serine/threonine phosphatases: Structure, regulation, and functions in cell growth. Physiol Rev. 73:673–699. 1993.PubMed/NCBI View Article : Google Scholar

8 

Eichhorn PJ, Creyghton MP and Bernards R: Protein phosphatase 2A regulatory subunits and cancer. Biochim Biophys Acta. 1795:1–15. 2009.PubMed/NCBI View Article : Google Scholar

9 

Tsao CC, Nica AF, Kurinna SM, Jiffar T, Mumby M and Ruvolo PP: Mitochondrial protein phosphatase 2A regulates cell death induced by simulated ischemia in kidney NRK-52E cells. Cell Cycle. 6:2377–2385. 2007.PubMed/NCBI View Article : Google Scholar

10 

Deng Y, Guo Y, Liu P, Zeng R, Ning Y, Pei G, Li Y, Chen M, Guo S, Li X, et al: Blocking protein phosphatase 2A signaling prevents endothelial-to-mesenchymal transition and renal fibrosis: A peptide-based drug therapy. Sci Rep. 6(19821)2016.PubMed/NCBI View Article : Google Scholar

11 

Jin Jung K, Hyun Kim D, Kyeong Lee E, Woo Song C, Pal Yu B and Young Chung H: Oxidative stress induces inactivation of protein phosphatase 2A, promoting proinflammatory NF-kappaB in aged rat kidney. Free Radic Biol Med. 61:206–217. 2013.PubMed/NCBI View Article : Google Scholar

12 

Li J, Sheng C, Li W and Zheng JH: Protein phosphatase-2A is down-regulated in patients within clear cell renal cell carcinoma. Int J Clin Exp Pathol. 7:1147–1153. 2014.PubMed/NCBI

13 

Sen CK: Cellular thiols and redox-regulated signal transduction. Curr Top Cell Regul. 36:1–30. 2000.PubMed/NCBI View Article : Google Scholar

14 

Barik S: Protein phosphorylation and signal transduction. Subcell Biochem. 26:115–164. 1996.PubMed/NCBI View Article : Google Scholar

15 

Shi Y: Serine/threonine phosphatases: Mechanism through structure. Cell. 139:468–484. 2009.PubMed/NCBI View Article : Google Scholar

16 

Barford D, Das AK and Egloff MP: The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annu Rev Biophys Biomol Struct. 27:133–164. 1998.PubMed/NCBI View Article : Google Scholar

17 

Barford D: Colworth medal lecture. Structural studies of reversible protein phosphorylation and protein phosphatases. Biochem Soc Trans. 27:751–766. 1999.PubMed/NCBI View Article : Google Scholar

18 

Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V and Sullivan M: PhosphoSitePlus: A comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40:D261–D270. 2012.PubMed/NCBI View Article : Google Scholar

19 

Geraldes P: Protein phosphatases and podocyte function. Curr Opin Nephrol Hypertens. 27:49–55. 2018.PubMed/NCBI View Article : Google Scholar

20 

Kumar S and Tikoo K: Independent role of PP2A and mTORc1 in palmitate induced podocyte death. Biochimie. 112:73–84. 2015.PubMed/NCBI View Article : Google Scholar

21 

Reiser J, Pixley FJ, Hug A, Kriz W, Smoyer WE, Stanley ER and Mundel P: Regulation of mouse podocyte process dynamics by protein tyrosine phosphatases rapid communication. Kidney Int. 57:2035–2042. 2000.PubMed/NCBI View Article : Google Scholar

22 

Svennilson J, Durbeej M, Celsi G, Laestadius A, da Cruz e Silva EF, Ekblom P and Aperia A: Evidence for a role of protein phosphatases 1 and 2A during early nephrogenesis. Kidney Int. 48:103–110. 1995.PubMed/NCBI View Article : Google Scholar

23 

Everett AD, Xue C and Stoops T: Developmental expression of protein phosphatase 2A in the kidney. J Am Soc Nephrol. 10:1737–1745. 1999.PubMed/NCBI View Article : Google Scholar

24 

Gotz J, Probst A, Mistl C, Nitsch RM and Ehler E: Distinct role of protein phosphatase 2A subunit Calpha in the regulation of E-cadherin and beta-catenin during development. Mech Dev. 93:83–93. 2000.PubMed/NCBI View Article : Google Scholar

25 

Mumby M: The 3D structure of protein phosphatase 2A: New insights into a ubiquitous regulator of cell signaling. ACS Chem Biol. 2:99–103. 2007.PubMed/NCBI View Article : Google Scholar

26 

Janssens V and Goris J: Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J. 353:417–439. 2001.PubMed/NCBI View Article : Google Scholar

27 

Turowski P, Favre B, Campbell KS, Lamb NJ and Hemmings BA: Modulation of the enzymatic properties of protein phosphatase 2A catalytic subunit by the recombinant 65-kDa regulatory subunit PR65alpha. Eur J Biochem. 248:200–208. 1997.PubMed/NCBI View Article : Google Scholar

28 

Sontag E: Protein phosphatase 2A: The Trojan horse of cellular signaling. Cell Signal. 13:7–16. 2001.PubMed/NCBI View Article : Google Scholar

29 

O'Connor CM, Perl A, Leonard D, Sangodkar J and Narla G: Therapeutic targeting of PP2A. Int J Biochem Cell Biol. 96:182–193. 2018.PubMed/NCBI View Article : Google Scholar

30 

Forester CM, Maddox J, Louis JV, Goris J and Virshup DM: Control of mitotic exit by PP2A regulation of Cdc25C and Cdk1. Proc Natl Acad Sci USA. 104:19867–19872. 2007.PubMed/NCBI View Article : Google Scholar

31 

Slupe AM, Merrill RA and Strack S: Determinants for substrate specificity of protein phosphatase 2A. Enzyme Res. 2011(398751)2011.PubMed/NCBI View Article : Google Scholar

32 

Flegg CP, Sharma M, Medina-Palazon C, Jamieson C, Galea M, Brocardo MG, Mills K and Henderson BR: Nuclear export and centrosome targeting of the protein phosphatase 2A subunit B56alpha: Role of B56alpha in nuclear export of the catalytic subunit. J Biol Chem. 285:18144–18154. 2010.PubMed/NCBI View Article : Google Scholar

33 

Bononi A, Agnoletto C, De Marchi E, Marchi S, Patergnani S, Bonora M, Giorgi C, Missiroli S, Poletti F, Rimessi A and Pinton P: Protein kinases and phosphatases in the control of cell fate. Enzyme Res. 2011(329098)2011.PubMed/NCBI View Article : Google Scholar

34 

Riedel CG, Katis VL, Katou Y, Mori S, Itoh T, Helmhart W, Gálová M, Petronczki M, Gregan J and Cetin B: Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature. 441:53–61. 2006.PubMed/NCBI View Article : Google Scholar

35 

Jin Z, Shi J, Saraf A, Mei W, Zhu GZ, Strack S and Yang J: The 48-kDa alternative translation isoform of PP2A:B56epsilon is required for Wnt signaling during midbrain-hindbrain boundary formation. J Biol Chem. 284:7190–7200. 2009.PubMed/NCBI View Article : Google Scholar

36 

Seshacharyulu P, Pandey P, Datta K and Batra SK: Phosphatase: PP2A structural importance, regulation and its aberrant expression in cancer. Cancer Lett. 335:9–18. 2013.PubMed/NCBI View Article : Google Scholar

37 

Kanno T, Tsuchiya A, Shimizu T, Nakao S, Tanaka A and Nishizaki T: Effects of newly synthesized DCP-LA-phospholipids on protein kinase C and protein phosphatases. Cell Physiol Biochem. 31:555–564. 2013.PubMed/NCBI View Article : Google Scholar

38 

Kurimchak A and Grana X: PP2A counterbalances phosphorylation of pRB and mitotic proteins by multiple CDKs: Potential implications for PP2A disruption in cancer. Genes Cancer. 3:739–748. 2012.PubMed/NCBI View Article : Google Scholar

39 

Svennilson J, Sandberg-Nordqvist A and Aperia A: Age-dependent expression of protein phosphatase 2A in the developing rat kidney. Pediatr Nephrol. 13:800–805. 1999.PubMed/NCBI View Article : Google Scholar

40 

Yang J, Wu J, Tan C and Klein PS: PP2A:B56epsilon is required for Wnt/beta-catenin signaling during embryonic development. Development. 130:5569–5578. 2003.PubMed/NCBI View Article : Google Scholar

41 

Jørgensen PL: Sodium and potassium ion pump in kidney tubules. Physiol Rev. 60:864–917. 1980.PubMed/NCBI View Article : Google Scholar

42 

Rangel LB, Lopes AG, Lara LS, Carvalho TL, Silva IV, Oliveira MM, Einicker-Lamas M, Vieyra A, Nogaroli L and Caruso-Neves C: PI-PLCbeta is involved in the modulation of the proximal tubule Na+-ATPase by angiotensin II. Regul Pept. 127:177–182. 2005.PubMed/NCBI View Article : Google Scholar

43 

Gates J Jr, Ferguson SM, Blakely RD and Apparsundaram S: Regulation of choline transporter surface expression and phosphorylation by protein kinase C and protein phosphatase 1/2A. J Pharmacol Exp Ther. 310:536–545. 2004.PubMed/NCBI View Article : Google Scholar

44 

Vieira-Filho LD, Cabral EV, Farias JS, Silva PA, Muzi-Filho H, Vieyra A and Paixão AD: Renal molecular mechanisms underlying altered Na+ handling and genesis of hypertension during adulthood in prenatally undernourished rats. Br J Nutr. 111:1932–1944. 2014.PubMed/NCBI View Article : Google Scholar

45 

Dias J, Ferrao FM, Axelband F, Carmona AK, Lara LS and Vieyra A: ANG-(3-4) inhibits renal Na+-ATPase in hypertensive rats through a mechanism that involves dissociation of ANG II receptors, heterodimers, and PKA. Am J Physiol Renal Physiol. 306:F855–F863. 2014.PubMed/NCBI View Article : Google Scholar

46 

Vieira-Filho LD, Lara LS, Silva PA, Santos FT, Luzardo R, Oliveira FS, Paixão AD and Vieyra A: Placental malnutrition changes the regulatory network of renal Na-ATPase in adult rat progeny: Reprogramming by maternal α-tocopherol during lactation. Arch Biochem Biophys. 505:91–97. 2011.PubMed/NCBI View Article : Google Scholar

47 

Silva PA, Muzi-Filho H, Pereira-Acacio A, Dias J, Martins JF, Landim-Vieira M, Verdoorn KS, Lara LS, Vieira-Filho LD, Cabral EV, et al: Altered signaling pathways linked to angiotensin II underpin the upregulation of renal Na(+)-ATPase in chronically undernourished rats. Biochim Biophys Acta. 1842:2357–2366. 2014.PubMed/NCBI View Article : Google Scholar

48 

Gildea JJ, Xu P, Kemp BA, Carey RM, Jose PA and Felder RA: The dopamine D1 receptor and angiotensin II type-2 receptor are required for inhibition of sodium transport through a protein phosphatase 2A pathway. Hypertension. 73:1258–1265. 2019.PubMed/NCBI View Article : Google Scholar

49 

Lecuona E, Garcia A and Sznajder JI: A novel role for protein phosphatase 2A in the dopaminergic regulation of Na, K-ATPase. FEBS Lett. 481:217–220. 2000.PubMed/NCBI View Article : Google Scholar

50 

Li D, Cheng SX, Fisone G, Caplan MJ, Ohtomo Y and Aperia A: Effects of okadaic acid, calyculin A, and PDBu on state of phosphorylation of rat renal Na+-K+-ATPase. Am J Physiol. 275:F863–F869. 1998.PubMed/NCBI View Article : Google Scholar

51 

Tiran Z, Peretz A, Sines T, Shinder V, Sap J, Attali B and Elson A: Tyrosine phosphatases epsilon and alpha perform specific and overlapping functions in regulation of voltage-gated potassium channels in Schwann cells. Mol Biol Cell. 17:4330–4342. 2006.PubMed/NCBI View Article : Google Scholar

52 

Capdevila J and Wang W: Role of cytochrome P450 epoxygenase in regulating renal membrane transport and hypertension. Curr Opin Nephrol Hypertens. 22:163–169. 2013.PubMed/NCBI View Article : Google Scholar

53 

Nielsen S and Agre P: The aquaporin family of water channels in kidney. Kidney Int. 48:1057–1068. 1995.PubMed/NCBI View Article : Google Scholar

54 

Christensen BM, Zelenina M, Aperia A and Nielsen S: Localization and regulation of PKA-phosphorylated AQP2 in response to V(2)-receptor agonist/antagonist treatment. Am J Physiol Renal Physiol. 278:F29–F42. 2000.PubMed/NCBI View Article : Google Scholar

55 

Hoffert JD, Pisitkun T, Wang G, Shen RF and Knepper MA: Quantitative phosphoproteomics of vasopressin-sensitive renal cells: Regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA. 103:7159–7164. 2006.PubMed/NCBI View Article : Google Scholar

56 

Tamma G, Robben JH, Trimpert C, Boone M and Deen PM: Regulation of AQP2 localization by S256 and S261 phosphorylation and ubiquitination. Am J Physiol Cell Physiol. 300:C636–C646. 2011.PubMed/NCBI View Article : Google Scholar

57 

Moeller HB, Knepper MA and Fenton RA: Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells. Kidney Int. 75:295–303. 2009.PubMed/NCBI View Article : Google Scholar

58 

Brown D: The ins and outs of aquaporin-2 trafficking. Am J Physiol Renal Physiol. 284:F893–F901. 2003.PubMed/NCBI View Article : Google Scholar

59 

Kamsteeg EJ, Heijnen I, van Os CH and Deen PM: The subcellular localization of an aquaporin-2 tetramer depends on the stoichiometry of phosphorylated and nonphosphorylated monomers. J Cell Biol. 151:919–930. 2000.PubMed/NCBI View Article : Google Scholar

60 

Hoffert JD, Fenton RA, Moeller HB, Simons B, Tchapyjnikov D, McDill BW, Yu MJ, Pisitkun T, Chen F and Knepper MA: Vasopressin-stimulated increase in phosphorylation at Ser269 potentiates plasma membrane retention of aquaporin-2. J Biol Chem. 283:24617–24627. 2008.PubMed/NCBI View Article : Google Scholar

61 

Ren H, Yang B, Ruiz JA, Efe O, Ilori TO, Sands JM and Klein JD: Phosphatase inhibition increases AQP2 accumulation in the rat IMCD apical plasma membrane. Am J Physiol Renal Physiol. 311:F1189–F1197. 2016.PubMed/NCBI View Article : Google Scholar

62 

Tamma G, Lasorsa D, Trimpert C, Ranieri M, Di Mise A, Mola MG, Mastrofrancesco L, Devuyst O, Svelto M, Deen PM and Valenti G: A protein kinase A-independent pathway controlling aquaporin 2 trafficking as a possible cause for the syndrome of inappropriate antidiuresis associated with polycystic kidney disease 1 haploinsufficiency. J Am Soc Nephrol. 25:2241–2253. 2014.PubMed/NCBI View Article : Google Scholar

63 

Valenti G, Procino G, Carmosino M, Frigeri A, Mannucci R, Nicoletti I and Svelto M: The phosphatase inhibitor okadaic acid induces AQP2 translocation independently from AQP2 phosphorylation in renal collecting duct cells. J Cell Sci. 113:1985–1992. 2000.PubMed/NCBI

64 

Millward TA, Zolnierowicz S and Hemmings BA: Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 24:186–191. 1999.PubMed/NCBI View Article : Google Scholar

65 

Lee TH, Solomon MJ, Mumby MC and Kirschner MW: INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell. 64:415–423. 1991.PubMed/NCBI View Article : Google Scholar

66 

Izumi T, Walker DH and Maller JL: Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol Biol Cell. 3:927–939. 1992.PubMed/NCBI View Article : Google Scholar

67 

Haystead TA, Weiel JE, Litchfield DW, Tsukitani Y, Fischer EH and Krebs EG: Okadaic acid mimics the action of insulin in stimulating protein kinase activity in isolated adipocytes. The role of protein phosphatase 2a in attenuation of the signal. J Biol Chem. 265:16571–16580. 1990.PubMed/NCBI

68 

Tsao H and Greene LA: The roles of macromolecular synthesis and phosphorylation in the regulation of a protein kinase activity transiently stimulated by nerve growth factor. J Biol Chem. 266:12981–12988. 1991.PubMed/NCBI

69 

Stark K, Vainio S, Vassileva G and McMahon AP: Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature. 372:679–683. 1994.PubMed/NCBI View Article : Google Scholar

70 

Zeng L, Fagotto F, Zhang T, Hsu W, Vasicek TJ, Perry WL III, Lee JJ, Tilghman SM, Gumbiner BM and Costantini F: The mouse Fused locus encodes Axin, an inhibitor of the Wnt signaling pathway that regulates embryonic axis formation. Cell. 90:181–192. 1997.PubMed/NCBI View Article : Google Scholar

71 

Altintas MM and Reiser J: Bridges to cross, burn, and mend: Cells of renin lineage as podocyte progenitors. Am J Physiol Renal Physiol. 309:F499–F500. 2015.PubMed/NCBI View Article : Google Scholar

72 

Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L and Meyer TW: Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest. 99:342–348. 1997.PubMed/NCBI View Article : Google Scholar

73 

Huber TB and Benzing T: The slit diaphragm: A signaling platform to regulate podocyte function. Curr Opin Nephrol Hypertens. 14:211–216. 2005.PubMed/NCBI View Article : Google Scholar

74 

Sedor JR, Madhavan SM, Kim JH and Konieczkowski M: Out on a LIM: Chronic kidney disease, podocyte phenotype and the Wilm's tumor interacting protein (WTIP). Trans Am Clin Climatol Assoc. 122:184–197. 2011.PubMed/NCBI

75 

Liu M, Liang K, Zhen J, Zhou M, Wang X, Wang Z, Wei X, Zhang Y, Sun Y, Zhou Z, et al: Sirt6 deficiency exacerbates podocyte injury and proteinuria through targeting Notch signaling. Nat Commun. 8(413)2017.PubMed/NCBI View Article : Google Scholar

76 

Kobayashi N, Reiser J, Schwarz K, Sakai T, Kriz W and Mundel P: Process formation of podocytes: Morphogenetic activity of microtubules and regulation by protein serine/threonine phosphatase PP2A. Histochem Cell Biol. 115:255–266. 2001.PubMed/NCBI View Article : Google Scholar

77 

Zhu X, Ye Y, Xu C, Gao C, Zhang Y, Zhou J, Lin W and Mao J: Protein phosphatase 2A modulates podocyte maturation and glomerular functional integrity in mice. Cell Commun Signal. 17(91)2019.PubMed/NCBI View Article : Google Scholar

78 

Hanssen L, Frye BC, Ostendorf T, Alidousty C, Djudjaj S, Boor P, Rauen T, Floege J, Mertens PR and Raffetseder U: Y-box binding protein-1 mediates profibrotic effects of calcineurin inhibitors in the kidney. J Immunol. 187:298–308. 2011.PubMed/NCBI View Article : Google Scholar

79 

Zhong Y, Lee K, Deng Y, Ma Y, Chen Y, Li X, Wei C, Yang S, Wang T, Wong NJ, et al: Arctigenin attenuates diabetic kidney disease through the activation of PP2A in podocytes. Nat Commun. 10(4523)2019.PubMed/NCBI View Article : Google Scholar

80 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.PubMed/NCBI View Article : Google Scholar

81 

Qiu M, Liu L, Chen L, Tan G, Liang Z, Wang K, Liu J and Chen H: MicroRNA-183 plays as oncogenes by increasing cell proliferation, migration and invasion via targeting protein phosphatase 2A in renal cancer cells. Biochem Biophys Res Commun. 452:163–169. 2014.PubMed/NCBI View Article : Google Scholar

82 

Liu P, Xiang Y, Liu X, Zhang T, Yang R, Chen S, Xu L, Yu Q, Zhao H, Zhang L, et al: Cucurbitacin B induces the lysosomal degradation of EGFR and suppresses the CIP2A/PP2A/Akt signaling axis in gefitinib-resistant non-small cell lung cancer. Molecules. 24(647)2019.PubMed/NCBI View Article : Google Scholar

83 

Cairns J, Ly RC, Niu N, Kalari KR, Carlson EE and Wang L: CDC25B partners with PP2A to induce AMPK activation and tumor suppression in triple negative breast cancer. NAR Cancer. 2(zcaa39)2020.PubMed/NCBI View Article : Google Scholar

84 

Vicente C, Arriazu E, Martínez-Balsalobre E, Peris I, Marcotegui N, García-Ramírez P, Pippa R, Rabal O, Oyarzábal J, Guruceaga E, et al: A novel FTY720 analogue targets SET-PP2A interaction and inhibits growth of acute myeloid leukemia cells without inducing cardiac toxicity. Cancer Lett. 468:1–13. 2020.PubMed/NCBI View Article : Google Scholar

85 

Westermarck J and Hahn WC: Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 14:152–160. 2008.PubMed/NCBI View Article : Google Scholar

86 

Xing ML, Lu YF, Wang DF, Zou XY, Zhang SX and Yun Z: Clinical significance of sCIP2A levels in breast cancer. Eur Rev Med Pharmacol Sci. 20:82–91. 2016.PubMed/NCBI

87 

Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M and Croce CM: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 101:2999–3004. 2004.PubMed/NCBI View Article : Google Scholar

88 

Kauko O and Westermarck J: Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol. 96:157–164. 2018.PubMed/NCBI View Article : Google Scholar

89 

Lambrecht C, Haesen D, Sents W, Ivanova E and Janssens V: Structure, regulation, and pharmacological modulation of PP2A phosphatases. Methods Mol Biol. 1053:283–305. 2013.PubMed/NCBI View Article : Google Scholar

90 

Ou YC, Li JR, Wang JD, Chen WY, Kuan YH, Yang CP, Liao SL, Lu HC and Chen CJ: Aspirin restores ABT-737-mediated apoptosis in human renal carcinoma cells. Biochem Biophys Res Commun. 502:187–193. 2018.PubMed/NCBI View Article : Google Scholar

91 

de Fatima A, Zambuzzi WF, Modolo LV, Tarsitano CA, Gadelha FR, Hyslop S, de Carvalho JE, Salgado I, Ferreira CV and Pilli RA: Cytotoxicity of goniothalamin enantiomers in renal cancer cells: Involvement of nitric oxide, apoptosis and autophagy. Chem Biol Interact. 176:143–150. 2008.PubMed/NCBI View Article : Google Scholar

92 

Seo SU, Woo SM, Min KJ and Kwon TK: Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-induced apoptosis through upregulation of Bim expression. Biochem Biophys Res Commun. 498:849–854. 2018.PubMed/NCBI View Article : Google Scholar

93 

Tsai YT, Chuang MJ, Tang SH, Wu ST, Chen YC, Sun GH, Hsiao PW, Huang SM, Lee HJ, Yu CP, et al: Novel cancer therapeutics with allosteric modulation of the mitochondrial C-Raf-DAPK complex by raf inhibitor combination therapy. Cancer Res. 75:3568–3582. 2015.PubMed/NCBI View Article : Google Scholar

94 

Ou YC, Kuan YH, Li JR, Raung SL, Wang CC, Hung YY and Chen CJ: Induction of apoptosis by luteolin involving akt inactivation in human 786-o renal cell carcinoma cells. Evid Based Complement Alternat Med. 2013(109105)2013.PubMed/NCBI View Article : Google Scholar

95 

Liu Y: Renal fibrosis: New insights into the pathogenesis and therapeutics. Kidney Int. 69:213–217. 2006.PubMed/NCBI View Article : Google Scholar

96 

Daehn I and Bottinger EP: Microvascular endothelial cells poised to take center stage in experimental renal fibrosis. J Am Soc Nephrol. 26:767–769. 2015.PubMed/NCBI View Article : Google Scholar

97 

Bohle A, Mackensen-Haen S and Wehrmann M: Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. Kidney Blood Press Res. 19:191–195. 1996.PubMed/NCBI View Article : Google Scholar

98 

Fine LG, Orphanides C and Norman JT: Progressive renal disease: The chronic hypoxia hypothesis. Kidney Int Suppl. 65 (Suppl):S74–S78. 1998.PubMed/NCBI

99 

Wu F and Wilson JX: Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction. Cardiovasc Res. 81:38–45. 2009.PubMed/NCBI View Article : Google Scholar

100 

Kása A, Czikora I, Verin AD, Gergely P and Csortos C: Protein phosphatase 2A activity is required for functional adherent junctions in endothelial cells. Microvasc Res. 89:86–94. 2013.PubMed/NCBI View Article : Google Scholar

101 

Kriz W, Kaissling B and Le Hir M: Epithelial-mesenchymal transition (EMT) in kidney fibrosis: Fact or fantasy? J Clin Invest. 121:468–474. 2011.PubMed/NCBI View Article : Google Scholar

102 

Lipphardt M, Dihazi H, Jeon NL, Dadafarin S, Ratliff BB, Rowe DW, Müller GA and Goligorsky MS: Dickkopf-3 in aberrant endothelial secretome triggers renal fibroblast activation and endothelial-mesenchymal transition. Nephrol Dial Transplant. 34:49–62. 2019.PubMed/NCBI View Article : Google Scholar

103 

Zeisberg EM, Potenta SE, Sugimoto H, Zeisberg M and Kalluri R: Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. J Am Soc Nephrol. 19:2282–2287. 2008.PubMed/NCBI View Article : Google Scholar

104 

Matsumoto K, Xavier S, Chen J, Kida Y, Lipphardt M, Ikeda R, Gevertz A, Caviris M, Hatzopoulos AK, Kalajzic I, et al: Instructive role of the microenvironment in preventing renal fibrosis. Stem Cells Transl Med. 6:992–1005. 2017.PubMed/NCBI View Article : Google Scholar

105 

Chen CL, Chou KJ, Fang HC, Hsu CY, Huang WC, Huang CW, Huang CK, Chen HY and Lee PT: Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition. Stem Cell Res Ther. 6(239)2015.PubMed/NCBI View Article : Google Scholar

106 

Xavier S, Vasko R, Matsumoto K, Zullo JA, Chen R, Maizel J, Chander PN and Goligorsky MS: Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial-mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol. 26:817–829. 2015.PubMed/NCBI View Article : Google Scholar

107 

Li J, Qu X and Bertram JF: Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am J Pathol. 175:1380–1388. 2009.PubMed/NCBI View Article : Google Scholar

108 

Xie T, Chen C, Peng Z, Brown BC, Reisz JA, Xu P, Zhou Z, Song A, Zhang Y, Bogdanov MV, et al: Erythrocyte metabolic reprogramming by sphingosine 1-phosphate in chronic kidney disease and therapies. Circ Res. 127:360–375. 2020.PubMed/NCBI View Article : Google Scholar

109 

Hou T, Xiao Z, Li Y, You YH, Li H, Liu YP, Xi YY, Li J, Duan SB, Liu H, et al: Norcantharidin inhibits renal interstitial fibrosis by downregulating PP2Ac expression. Am J Transl Res. 7:2199–2211. 2015.PubMed/NCBI

110 

Deng Y, Cai Y, Liu L, Lin X, Lu P, Guo Y, Han M and Xu G: Blocking Tyr265 nitration of protein phosphatase 2A attenuates nitrosative stress-induced endothelial dysfunction in renal microvessels. FASEB J. 33:3718–3730. 2019.PubMed/NCBI View Article : Google Scholar

111 

Wright RS, Reeder GS, Herzog CA, Albright RC, Williams BA, Dvorak DL, Miller WL, Murphy JG, Kopecky SL and Jaffe AS: Acute myocardial infarction and renal dysfunction: A high-risk combination. Ann Intern Med. 137:563–570. 2002.PubMed/NCBI View Article : Google Scholar

112 

Rodrigues FB, Bruetto RG, Torres US, Otaviano AP, Zanetta DM and Burdmann EA: Effect of kidney disease on acute coronary syndrome. Clin J Am Soc Nephrol. 5:1530–1536. 2010.PubMed/NCBI View Article : Google Scholar

113 

Barnes JL and Glass Ii WF: Renal interstitial fibrosis: A critical evaluation of the origin of myofibroblasts. Contrib Nephrol. 169:73–93. 2011.PubMed/NCBI View Article : Google Scholar

114 

Tobisawa T, Yano T, Tanno M, Miki T, Kuno A, Kimura Y, Ishikawa S, Kouzu H, Nishizawa K, Yoshida H and Miura T: Insufficient activation of Akt upon reperfusion because of its novel modification by reduced PP2A-B55α contributes to enlargement of infarct size by chronic kidney disease. Basic Res Cardiol. 112(31)2017.PubMed/NCBI View Article : Google Scholar

115 

Sato Y and Yanagita M: Immune cells and inflammation in AKI to CKD progression. Am J Physiol Renal Physiol. 315:F1501–F1512. 2018.PubMed/NCBI View Article : Google Scholar

116 

Rahman MM, Rumzhum NN, Morris JC, Clark AR, Verrills NM and Ammit AJ: Basal protein phosphatase 2A activity restrains cytokine expression: Role for MAPKs and tristetraprolin. Sci Rep. 5(10063)2015.PubMed/NCBI View Article : Google Scholar

117 

Crispin JC, Apostolidis SA, Rosetti F, Keszei M, Wang N, Terhorst C, Mayadas TN and Tsokos GC: Cutting edge: Protein phosphatase 2A confers susceptibility to autoimmune disease through an IL-17-dependent mechanism. J Immunol. 188:3567–3571. 2012.PubMed/NCBI View Article : Google Scholar

118 

Hsieh CY, Hsiao G, Hsu MJ, Wang YH and Sheu JR: PMC, a potent hydrophilic α-tocopherol derivative, inhibits NF-κB activation via PP2A but not IKBα-dependent signals in vascular smooth muscle cells. J Cell Mol Med. 18:1278–1289. 2014.PubMed/NCBI View Article : Google Scholar

119 

Yang J, Fan GH, Wadzinski BE, Sakurai H and Richmond A: Protein phosphatase 2A interacts with and directly dephosphorylates RelA. J Biol Chem. 276:47828–47833. 2001.PubMed/NCBI View Article : Google Scholar

120 

Zhang Y, Cuevas S, Asico LD, Escano C, Yang Y, Pascua AM, Wang X, Jones JE, Grandy D, Eisner G, et al: Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure. PLoS One. 7(e38745)2012.PubMed/NCBI View Article : Google Scholar

121 

Asghar M, Chugh G and Lokhandwala MF: Inflammation compromises renal dopamine D1 receptor function in rats. Am J Physiol Renal Physiol. 297:F1543–F1549. 2009.PubMed/NCBI View Article : Google Scholar

122 

Yang S, Yao B, Zhou Y, Yin H, Zhang MZ and Harris RC: Intrarenal dopamine modulates progressive angiotensin II-mediated renal injury. Am J Physiol Renal Physiol. 302:F742–F749. 2012.PubMed/NCBI View Article : Google Scholar

123 

Chugh G, Lokhandwala MF and Asghar M: Oxidative stress alters renal D1 and AT1 receptor functions and increases blood pressure in old rats. Am J Physiol Renal Physiol. 300:F133–F138. 2011.PubMed/NCBI View Article : Google Scholar

124 

Yang Y, Zhang Y, Cuevas S, Villar VA, Escano C, D Asico L, Yu P, Grandy DK, Felder RA, Armando I and Jose PA: Paraoxonase 2 decreases renal reactive oxygen species production, lowers blood pressure, and mediates dopamine D2 receptor-induced inhibition of NADPH oxidase. Free Radic Biol Med. 53:437–446. 2012.PubMed/NCBI View Article : Google Scholar

125 

Armando I, Wang X, Villar VA, Jones JE, Asico LD, Escano C and Jose PA: Reactive oxygen species-dependent hypertension in dopamine D2 receptor-deficient mice. Hypertension. 49:672–678. 2007.PubMed/NCBI View Article : Google Scholar

126 

Zhang Y, Jiang X, Qin C, Cuevas S, Jose PA and Armando I: Dopamine D2 receptors' effects on renal inflammation are mediated by regulation of PP2A function. Am J Physiol Renal Physiol. 310:F128–F134. 2016.PubMed/NCBI View Article : Google Scholar

127 

Marasa BS, Xiao L, Rao JN, Zou T, Liu L, Wang J, Bellavance E, Turner DJ and Wang JY: Induced TRPC1 expression increases protein phosphatase 2A sensitizing intestinal epithelial cells to apoptosis through inhibition of NF-kappaB activation. Am J Physiol Cell Physiol. 294:C1277–C1287. 2008.PubMed/NCBI View Article : Google Scholar

128 

Li S, Wang L, Berman MA, Zhang Y and Dorf ME: RNAi screen in mouse astrocytes identifies phosphatases that regulate NF-kappaB signaling. Mol Cell. 24:497–509. 2006.PubMed/NCBI View Article : Google Scholar

129 

Kim SI, Kwak JH, Wang L and Choi ME: Protein phosphatase 2A is a negative regulator of transforming growth factor-beta1-induced TAK1 activation in mesangial cells. J Biol Chem. 283:10753–10763. 2008.PubMed/NCBI View Article : Google Scholar

130 

Jung KJ, Lee EK, Kim SJ, Song CW, Maruyama N, Ishigami A, Kim ND, Im DS, Yu BP and Chung HY: Anti-inflammatory activity of SMP30 modulates NF-κB through protein tyrosine kinase/phosphatase balance. J Mol Med (Berl). 93:343–356. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J and Yang L: Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 22: 1236, 2021.
APA
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., & Yang, L. (2021). Role of protein phosphatase 2A in kidney disease (Review). Experimental and Therapeutic Medicine, 22, 1236. https://doi.org/10.3892/etm.2021.10671
MLA
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., Yang, L."Role of protein phosphatase 2A in kidney disease (Review)". Experimental and Therapeutic Medicine 22.5 (2021): 1236.
Chicago
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., Yang, L."Role of protein phosphatase 2A in kidney disease (Review)". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1236. https://doi.org/10.3892/etm.2021.10671
Copy and paste a formatted citation
x
Spandidos Publications style
Shao L, Ma Y, Fang Q, Huang Z, Wan S, Wang J and Yang L: Role of protein phosphatase 2A in kidney disease (Review). Exp Ther Med 22: 1236, 2021.
APA
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., & Yang, L. (2021). Role of protein phosphatase 2A in kidney disease (Review). Experimental and Therapeutic Medicine, 22, 1236. https://doi.org/10.3892/etm.2021.10671
MLA
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., Yang, L."Role of protein phosphatase 2A in kidney disease (Review)". Experimental and Therapeutic Medicine 22.5 (2021): 1236.
Chicago
Shao, L., Ma, Y., Fang, Q., Huang, Z., Wan, S., Wang, J., Yang, L."Role of protein phosphatase 2A in kidney disease (Review)". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1236. https://doi.org/10.3892/etm.2021.10671
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team