Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Emerging roles of growth differentiation factor‑15 in brain disorders (Review)

  • Authors:
    • Wei-Wei Jiang
    • Zi-Zhen Zhang
    • Ping-Ping He
    • Li-Ping Jiang
    • Jin-Zhi Chen
    • Xing-Ting Zhang
    • Mi Hu
    • Yang-Kai Zhang
    • Xin-Ping Ouyang
  • View Affiliations / Copyright

    Affiliations: Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China, Department of Medical Humanities, School of Medicine, Hunan Polytechnic of Environment and Biology, Hengyang, Hunan 421001, P.R. China, Hunan Province Cooperative Innovation Centre for Molecular Target New Drug Study, Nursing School, University of South China, Hengyang, Hunan 421001, P.R. China
    Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1270
    |
    Published online on: September 7, 2021
       https://doi.org/10.3892/etm.2021.10705
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Brain disorders, such as Alzheimer's and Parkinson's disease and cerebral stroke, are an important contributor to mortality and disability worldwide, where their pathogenesis is currently a topic of intense research. The mechanisms underlying the development of brain disorders are complex and vary widely, including aberrant protein aggregation, ischemic cell necrosis and neuronal dysfunction. Previous studies have found that the expression and function of growth differentiation factor‑15 (GDF15) is closely associated with the incidence of brain disorders. GDF15 is a member of the TGFβ superfamily, which is a dimer‑structured stress‑response protein. The expression of GDF15 is regulated by a number of proteins upstream, including p53, early growth response‑1, non‑coding RNAs and hormones. In particular, GDF15 has been reported to serve an important role in regulating angiogenesis, apoptosis, lipid metabolism and inflammation. For example, GDF15 can promote angiogenesis by promoting the proliferation of human umbilical vein endothelial cells, apoptosis of prostate cancer cells and fat metabolism in fasted mice, and GDF15 can decrease the inflammatory response of lipopolysaccharide‑treated mice. The present article reviews the structure and biosynthesis of GDF15, in addition to the possible roles of GDF15 in Alzheimer's disease, cerebral stroke and Parkinson's disease. The purpose of the present review is to summarize the mechanism underlying the role of GDF15 in various brain disorders, which hopes to provide evidence and guide the prevention and treatment of these debilitating conditions.
View Figures

Figure 1

Figure 2

View References

1 

Raggi A and Leonardi M: Burden of brain disorders in Europe in 2017 and comparison with other non-communicable disease groups. J Neurol Neurosurg Psychiatry. 91:104–105. 2020.PubMed/NCBI View Article : Google Scholar

2 

Bautista-Aguilera OM, Ismaili L, Iriepa I, Diez-Iriepa D, Chabchoub F, Marco-Contelles J and Pérez M: Tacrines as therapeutic agents for alzheimer's disease. V. recent developments. Chem Rec. 21:162–174. 2021.PubMed/NCBI View Article : Google Scholar

3 

Bootcov MR, Bauskin AR, Valenzuela SM, Moore AG, Bansal M, He XY, Zhang HP, Donnellan M, Mahler S, Pryor K, et al: MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-beta superfamily. Proc Natl Acad Sci USA. 94:11514–11519. 1997.PubMed/NCBI View Article : Google Scholar

4 

Yokoyama-Kobayashi M, Saeki M, Sekine S and Kato S: Human cDNA encoding a novel TGF-beta superfamily protein highly expressed in placenta. J Biochem. 122:622–626. 1997.PubMed/NCBI View Article : Google Scholar

5 

Bottner M, Laaff M, Schechinger B, Rappold G, Unsicker K and Suter-Crazzolara C: Characterization of the rat, mouse, and human genes of growth/differentiation factor-15/macrophage inhibiting cytokine-1 (GDF-15/MIC-1). Gene. 237:105–111. 1999.PubMed/NCBI View Article : Google Scholar

6 

Koopmann J, Buckhaults P, Brown DA, Zahurak ML, Sato N, Fukushima N, Sokoll LJ, Chan DW, Yeo CJ, Hruban RH, et al: Serum macrophage inhibitory cytokine 1 as a marker of pancreatic and other periampullary cancers. Clin Cancer Res. 10:2386–2392. 2004.PubMed/NCBI View Article : Google Scholar

7 

Wiklund FE, Bennet AM, Magnusson PK, Eriksson UK, Lindmark F, Wu L, Yaghoutyfam N, Marquis CP, Stattin P, Pedersen NL, et al: Macrophage inhibitory cytokine-1 (MIC-1/GDF15): A new marker of all-cause mortality. Aging Cell. 9:1057–1064. 2010.PubMed/NCBI View Article : Google Scholar

8 

Conte M, Martucci M, Chiariello A, Franceschi C and Salvioli S: Mitochondria, immunosenescence and inflammaging: A role for mitokines? Semin Immunopathol. 42:607–617. 2020.PubMed/NCBI View Article : Google Scholar

9 

Rochette L, Zeller M, Cottin Y and Vergely C: Insights into mechanisms of GDF15 and receptor GFRAL: Therapeutic targets. Trends Endocrinol Metab. 31:939–951. 2020.PubMed/NCBI View Article : Google Scholar

10 

Kang YE, Kim JM, Lim MA, Lee SE, Yi S, Kim JT, Oh C, Liu L, Jin Y, Jung SN, et al: Growth differentiation factor 15 is a cancer cell-induced mitokine that primes thyroid cancer cells for invasiveness. Thyroid. 31:772–786. 2021.PubMed/NCBI View Article : Google Scholar

11 

Nakayasu ES, Syed F, Tersey SA, Gritsenko MA, Mitchell HD, Chan CY, Dirice E, Turatsinze JV, Cui Y, Kulkarni RN, et al: Comprehensive proteomics analysis of stressed human islets identifies GDF15 as a target for type 1 diabetes intervention. Cell Metab. 31:363–374.e6. 2020.PubMed/NCBI View Article : Google Scholar

12 

Wang Y, Zhen C, Wang R and Wang G: Growth-differentiation factor-15 predicts adverse cardiac events in patients with acute coronary syndrome: A meta-analysis. Am J Emerg Med. 37:1346–1352. 2019.PubMed/NCBI View Article : Google Scholar

13 

Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, Wu X, Huang T, Hultman K, Paulsen SJ, et al: GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 23:1158–1166. 2017.PubMed/NCBI View Article : Google Scholar

14 

Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-Mason TD, et al: GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat Med. 23:1150–1157. 2017.PubMed/NCBI View Article : Google Scholar

15 

Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, Kutach A, Joo W, Gao Z, Fu D, et al: Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature. 550:255–259. 2017.PubMed/NCBI View Article : Google Scholar

16 

Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, Coskun T, Hamang MJ, Sindelar DK, Ballman KK, et al: The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 23:1215–1219. 2017.PubMed/NCBI View Article : Google Scholar

17 

Borner T, Shaulson ED, Ghidewon MY, Barnett AB, Horn CC, Doyle RP, Grill HJ, Hayes MR and De Jonghe BC: GDF15 induces anorexia through Nausea and Emesis. Cell Metab. 31:351–362.e5. 2020.PubMed/NCBI View Article : Google Scholar

18 

Klaus S, Igual Gil C and Ost M: Regulation of diurnal energy balance by mitokines. Cell Mol Life Sci. 78:3369–3384. 2021.PubMed/NCBI View Article : Google Scholar

19 

Kim DH, Lee D, Lim H, Choi SJ, Oh W, Yang YS, Chang JH and Jeon HB: Effect of growth differentiation factor-15 secreted by human umbilical cord blood-derived mesenchymal stem cells on amyloid beta levels in in vitro and in vivo models of Alzheimer's disease. Biochem Biophys Res Commun. 504:933–940. 2018.PubMed/NCBI View Article : Google Scholar

20 

Kostuk EW, Cai J and Iacovitti L: Subregional differences in astrocytes underlie selective neurodegeneration or protection in Parkinson's disease models in culture. Glia. 67:1542–1557. 2019.PubMed/NCBI View Article : Google Scholar

21 

Breniere C, Meloux A, Pedard M, Marie C, Thouant P, Vergely C and Béjot Y: Growth differentiation factor-15 (GDF-15) is associated with mortality in ischemic stroke patients treated with acute revascularization therapy. Front Neurol. 10(611)2019.PubMed/NCBI View Article : Google Scholar

22 

Li S, Wang Y, Cao B, Wu Y, Ji L, Li YX, Liu M, Zhao Y, Qiao J, Wang H, et al: Maturation of growth differentiation factor 15 in human placental trophoblast cells depends on the interaction with Matrix Metalloproteinase-26. J Clin Endocrinol Metab. 99:E2277–E2287. 2014.PubMed/NCBI View Article : Google Scholar

23 

Couture F, Sabbagh R, Kwiatkowska A, Desjardins R, Guay SP, Bouchard L and Day R: PACE4 undergoes an oncogenic alternative splicing switch in cancer. Cancer Res. 77:6863–6879. 2017.PubMed/NCBI View Article : Google Scholar

24 

Fairlie WD, Russell PK, Wu WM, Moore AG, Zhang HP, Brown PK, Bauskin AR and Breit SN: Epitope mapping of the transforming growth factor-beta superfamily protein, macrophage inhibitory cytokine-1 (MIC-1): Identification of at least five distinct epitope specificities. Biochemistry. 40:65–73. 2001.PubMed/NCBI View Article : Google Scholar

25 

Bauskin AR, Zhang HP, Fairlie WD, He XY, Russell PK, Moore AG, Brown DA, Stanley KK and Breit SN: The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-beta superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO J. 19:2212–2220. 2000.PubMed/NCBI View Article : Google Scholar

26 

Bauskin AR, Jiang L, Luo XW, Wu L, Brown DA and Breit SN: The TGF-beta superfamily cytokine MIC-1/GDF15: secretory mechanisms facilitate creation of latent stromal stores. J Interferon Cytokine Res. 30:389–397. 2010.PubMed/NCBI View Article : Google Scholar

27 

Bauskin AR, Brown DA, Junankar S, Rasiah KK, Eggleton S, Hunter M, Liu T, Smith D, Kuffner T, Pankhurst GJ, et al: The propeptide mediates formation of stromal stores of PROMIC-1: Role in determining prostate cancer outcome. Cancer Res. 65:2330–2336. 2005.PubMed/NCBI View Article : Google Scholar

28 

Tsai VWW, Husaini Y, Sainsbury A, Brown DA and Breit SN: The MIC-1/GDF15-GFRAL pathway in energy homeostasis: Implications for obesity, cachexia, and other associated diseases. Cell Metab. 28:353–368. 2018.PubMed/NCBI View Article : Google Scholar

29 

Wollert KC, Kempf T and Wallentin L: Growth differentiation factor 15 as a biomarker in cardiovascular disease. Clin Chem. 63:140–151. 2017.PubMed/NCBI View Article : Google Scholar

30 

Demir O, Barros EP, Offutt TL, Rosenfeld M and Amaro RE: An integrated view of p53 dynamics, function, and reactivation. Curr Opin Struct Biol. 67:187–194. 2021.PubMed/NCBI View Article : Google Scholar

31 

Tan M, Wang Y, Guan K and Sun Y: PTGF-beta, a type beta transforming growth factor (TGF-beta) superfamily member, is a p53 target gene that inhibits tumor cell growth via TGF-beta signaling pathway. Proc Natl Acad Sci USA. 97:109–114. 2000.PubMed/NCBI View Article : Google Scholar

32 

Kannan K, Amariglio N, Rechavi G and Givol D: Profile of gene expression regulated by induced p53: Connection to the TGF-beta family. FEBS Lett. 470:77–82. 2000.PubMed/NCBI View Article : Google Scholar

33 

Li PX, Wong J, Ayed A, Ngo D, Brade AM, Arrowsmith C, Austin RC and Klamut HJ: Placental transforming growth factor-beta is a downstream mediator of the growth arrest and apoptotic response of tumor cells to DNA damage and p53 overexpression. J Biol Chem. 275:20127–20135. 2000.PubMed/NCBI View Article : Google Scholar

34 

Yang H, Filipovic Z, Brown D, Breit SN and Vassilev LT: Macrophage inhibitory cytokine-1: A novel biomarker for p53 pathway activation. Mol Cancer Ther. 2:1023–1029. 2003.PubMed/NCBI

35 

Tiwari KK, Moorthy B and Lingappan K: Role of GDF15 (growth and differentiation factor 15) in pulmonary oxygen toxicity. Toxicol In Vitro. 29:1369–1376. 2015.PubMed/NCBI View Article : Google Scholar

36 

Kim Y, Noren Hooten N and Evans MK: CRP stimulates GDF15 expression in endothelial cells through p53. Mediators Inflamm. 2018(8278039)2018.PubMed/NCBI View Article : Google Scholar

37 

Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C and Klibanski A: Activation of p53 by MEG3 non-coding RNA. J Biol Chem. 282:24731–24742. 2007.PubMed/NCBI View Article : Google Scholar

38 

Osada M, Park HL, Park MJ, Liu JW, Wu G, Trink B and Sidransky D: A p53-type response element in the GDF15 promoter confers high specificity for p53 activation. Biochem Biophys Res Commun. 354:913–918. 2007.PubMed/NCBI View Article : Google Scholar

39 

Pagel JI and Deindl E: Disease progression mediated by egr-1 associated signaling in response to oxidative stress. Int J Mol Sci. 13:13104–13117. 2012.PubMed/NCBI View Article : Google Scholar

40 

Baek SJ, Kim JS, Nixon JB, DiAugustine RP and Eling TE: Expression of NAG-1, a transforming growth factor-beta superfamily member, by troglitazone requires the early growth response gene EGR-1. J Biol Chem. 279:6883–6892. 2004.PubMed/NCBI View Article : Google Scholar

41 

Baek SJ, Kim JS, Moore SM, Lee SH, Martinez J and Eling TE: Cyclooxygenase inhibitors induce the expression of the tumor suppressor gene EGR-1, which results in the upregulation of NAG-1, an antitumorigenic protein. Mol Pharmacol. 67:356–364. 2005.PubMed/NCBI View Article : Google Scholar

42 

Chintharlapalli S, Papineni S, Baek SJ, Liu S and Safe S: 1,1-Bis(3'-indolyl)-1-(p-substitutedphenyl)methanes are peroxisome proliferator-activated receptor gamma agonists but decrease HCT-116 colon cancer cell survival through receptor-independent activation of early growth response-1 and nonsteroidal anti-inflammatory drug-activated gene-1. Mol Pharmacol. 68:1782–1792. 2005.PubMed/NCBI View Article : Google Scholar

43 

Kadowaki M, Yoshioka H, Kamitani H, Watanabe T, Wade PA and Eling TE: DNA methylation-mediated silencing of nonsteroidal anti-inflammatory drug-activated gene (NAG-1/GDF15) in glioma cell lines. Int J Cancer. 130:267–277. 2012.PubMed/NCBI View Article : Google Scholar

44 

Woo SM, Min KJ, Kim S, Park JW, Kim DE, Chun KS, Kim YH, Lee TJ, Kim SH, Choi YH, et al: Silibinin induces apoptosis of HT29 colon carcinoma cells through early growth response-1 (EGR-1)-mediated non-steroidal anti-inflammatory drug-activated gene-1 (NAG-1) upregulation. Chem Biol Interact. 211:36–43. 2014.PubMed/NCBI View Article : Google Scholar

45 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021.PubMed/NCBI View Article : Google Scholar

46 

Kong J, Sun W, Zhu W, Liu C, Zhang H and Wang H: Long noncoding RNA LINC01133 inhibits oral squamous cell carcinoma metastasis through a feedback regulation loop with GDF15. J Surg Oncol. 118:1326–1334. 2018.PubMed/NCBI View Article : Google Scholar

47 

Xiong X, Yuan J, Zhang N, Zheng Y, Liu J and Yang M: Silencing of lncRNA PVT1 by miR-214 inhibits the oncogenic GDF15 signaling and suppresses hepatocarcinogenesis. Biochem Biophys Res Commun. 521:478–484. 2020.PubMed/NCBI View Article : Google Scholar

48 

Guo LL and Wang SF: Downregulated long noncoding RNA GAS5 fails to function as decoy of CEBPB, resulting in increased GDF15 expression and rapid ovarian cancer cell proliferation. Cancer Biother Radiopharm. 34:537–546. 2019.PubMed/NCBI View Article : Google Scholar

49 

Liu B, Li J and Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform. 15:1–19. 2014.PubMed/NCBI View Article : Google Scholar

50 

Teng MS, Hsu LA, Juan SH, Lin WC, Lee MC, Su CW, Wu S and Ko YL: A GDF15 3' UTR variant, rs1054564, results in allele-specific translational repression of GDF15 by hsa-miR-1233-3p. PLoS One. 12(e0183187)2017.PubMed/NCBI View Article : Google Scholar

51 

Jones MF, Li XL, Subramanian M, Shabalina SA, Hara T, Zhu Y, Huang J, Yang Y, Wakefield LM, Prasanth KV and Lal A: Growth differentiation factor-15 encodes a novel microRNA 3189 that functions as a potent regulator of cell death. Cell Death Differ. 22:1641–1653. 2015.PubMed/NCBI View Article : Google Scholar

52 

Coll AP, Chen M, Taskar P, Rimmington D, Patel S, Tadross JA, Cimino I, Yang M, Welsh P, Virtue S, et al: GDF15 mediates the effects of metformin on body weight and energy balance. Nature. 578:444–448. 2020.PubMed/NCBI View Article : Google Scholar

53 

Melvin A, Chantzichristos D, Kyle CJ, Mackenzie SD, Walker BR, Johannsson G, Stimson RH and O'Rahilly S: GDF15 is elevated in conditions of glucocorticoid deficiency and is modulated by glucocorticoid replacement. J Clin Endocrinol Metab. 105:1427–1434. 2020.PubMed/NCBI View Article : Google Scholar

54 

Campderros L, Moure R, Cairo M, Gavaldà-Navarro A, Quesada-López T, Cereijo R, Giralt M, Villarroya J and Villarroya F: Brown Adipocytes Secrete GDF15 in response to thermogenic activation. Obesity (Silver Spring). 27:1606–1616. 2019.PubMed/NCBI View Article : Google Scholar

55 

Zhao J, Li M, Chen Y, Zhang S, Ying H, Song Z, Lu Y, Li X, Xiong X and Jiang J: Elevated serum growth differentiation Factor 15 levels in hyperthyroid patients. Front Endocrinol (Lausanne). 9(793)2019.PubMed/NCBI View Article : Google Scholar

56 

Liu H, Dai W, Cui Y, Lyu Y and Li Y: Potential associations of circulating growth differentiation factor-15 with sex hormones in male patients with coronary artery disease. Biomed Pharmacother. 114(108792)2019.PubMed/NCBI View Article : Google Scholar

57 

Ha G, De Torres F, Arouche N, Benzoubir N, Ferratge S, Hatem E, Anginot A and Uzan G: GDF15 secreted by senescent endothelial cells improves vascular progenitor cell functions. PLoS One. 14(e0216602)2019.PubMed/NCBI View Article : Google Scholar

58 

Jin YJ, Lee JH, Kim YM, Oh GT and Lee H: Macrophage inhibitory cytokine-1 stimulates proliferation of human umbilical vein endothelial cells by up-regulating cyclins D1 and E through the PI3K/Akt-, ERK-, and JNK-dependent AP-1 and E2F activation signaling pathways. Cell Signal. 24:1485–1495. 2012.PubMed/NCBI View Article : Google Scholar

59 

Song H, Yin D and Liu Z: GDF-15 promotes angiogenesis through modulating p53/HIF-1α signaling pathway in hypoxic human umbilical vein endothelial cells. Mol Biol Rep. 39:4017–4022. 2012.PubMed/NCBI View Article : Google Scholar

60 

Wang S, Li M, Zhang W, Hua H, Wang N, Zhao J, Ge J, Jiang X, Zhang Z, Ye D and Yang C: Growth differentiation factor 15 promotes blood vessel growth by stimulating cell cycle progression in repair of critical-sized calvarial defect. Sci Rep. 7(9027)2017.PubMed/NCBI View Article : Google Scholar

61 

Lugano R, Ramachandran M and Dimberg A: Tumor angiogenesis: causes, consequences, challenges and opportunities. Cell Mol Life Sci. 77:1745–1770. 2020.PubMed/NCBI View Article : Google Scholar

62 

Dong G, Zheng QD, Ma M, Wu SF, Zhang R, Yao RR, Dong YY, Ma H, Gao DM, Ye SL, et al: Angiogenesis enhanced by treatment damage to hepatocellular carcinoma through the release of GDF15. Cancer Med. 7:820–830. 2018.PubMed/NCBI View Article : Google Scholar

63 

Whitson RJ, Lucia MS and Lambert JR: Growth differentiation factor-15 (GDF-15) suppresses in vitro angiogenesis through a novel interaction with connective tissue growth factor (CCN2). J Cell Biochem. 114:1424–1433. 2013.PubMed/NCBI View Article : Google Scholar

64 

Kist M and Vucic D: Cell death pathways: Intricate connections and disease implications. EMBO J. 40(e106700)2021.PubMed/NCBI View Article : Google Scholar

65 

Zhu S, Yang N, Guan Y, Wang X, Zang G, Lv X, Deng S, Wang W, Li T and Chen J: GDF15 promotes glioma stem cell-like phenotype via regulation of ERK1/2-c-Fos-LIF signaling. Cell Death Discov. 7(3)2021.PubMed/NCBI View Article : Google Scholar

66 

Zhang W, Hu C, Wang X, Bai S, Cao S, Kobelski M, Lambert JR, Gu J and Zhan Y: Role of GDF15 in methylseleninic acid-mediated inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. PLoS One. 14(e0222812)2019.PubMed/NCBI View Article : Google Scholar

67 

Liu T, Bauskin AR, Zaunders J, Brown DA, Pankhurst S, Russell PJ and Breit SN: Macrophage inhibitory cytokine 1 reduces cell adhesion and induces apoptosis in prostate cancer cells. Cancer Res. 63:5034–5040. 2003.PubMed/NCBI

68 

Schlittenhardt D, Schober A, Strelau J, Bonaterra GA, Schmiedt W, Unsicker K, Metz J and Kinscherf R: Involvement of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in oxLDL-induced apoptosis of human macrophages in vitro and in arteriosclerotic lesions. Cell Tissue Res. 318:325–333. 2004.PubMed/NCBI View Article : Google Scholar

69 

Tarfiei GA, Shadboorestan A, Montazeri H, Rahmanian N, Tavosi G and Ghahremani MH: GDF15 induced apoptosis and cytotoxicity in A549 cells depends on TGFBR2 expression. Cell Biochem Funct. 37:320–330. 2019.PubMed/NCBI View Article : Google Scholar

70 

Li J, Yang L, Qin W, Zhang G, Yuan J and Wang F: Adaptive induction of growth differentiation factor 15 attenuates endothelial cell apoptosis in response to high glucose stimulus. PLoS One. 8(e65549)2013.PubMed/NCBI View Article : Google Scholar

71 

Nickel N, Jonigk D, Kempf T, Bockmeyer CL, Maegel L, Rische J, Laenger F, Lehmann U, Sauer C, Greer M, et al: GDF-15 is abundantly expressed in plexiform lesions in patients with pulmonary arterial hypertension and affects proliferation and apoptosis of pulmonary endothelial cells. Respir Res. 12(62)2011.PubMed/NCBI View Article : Google Scholar

72 

Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, et al: Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med. 26:1264–1270. 2020.PubMed/NCBI View Article : Google Scholar

73 

Chrysovergis K, Wang X, Kosak J, Lee SH, Kim JS, Foley JF, Travlos G, Singh S, Baek SJ and Eling TE: NAG-1/GDF-15 prevents obesity by increasing thermogenesis, lipolysis and oxidative metabolism. Int J Obes (Lond). 38:1555–1564. 2014.PubMed/NCBI View Article : Google Scholar

74 

Tsai VW, Zhang HP, Manandhar R, Schofield P, Christ D, Lee-Ng KKM, Lebhar H, Marquis CP, Husaini Y, Brown DA and Breit SN: GDF15 mediates adiposity resistance through actions on GFRAL neurons in the hindbrain AP/NTS. Int J Obes (Lond). 43:2370–2380. 2019.PubMed/NCBI View Article : Google Scholar

75 

Zhang Z, Xu X, Tian W, Jiang R, Lu Y, Sun Q, Fu R, He Q, Wang J, Liu Y, et al: ARRB1 inhibits non-alcoholic steatohepatitis progression by promoting GDF15 maturation. J Hepatol. 72:976–989. 2020.PubMed/NCBI View Article : Google Scholar

76 

Zhang M, Sun W, Qian J and Tang Y: Fasting exacerbates hepatic growth differentiation factor 15 to promote fatty acid β-oxidation and ketogenesis via activating XBP1 signaling in liver. Redox Biol. 16:87–96. 2018.PubMed/NCBI View Article : Google Scholar

77 

Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, et al: GDF15 is an inflammation-induced central mediator of tissue tolerance. Cell. 178:1231–1244.e11. 2019.PubMed/NCBI View Article : Google Scholar

78 

Wu Q, Jiang D, Schaefer NR, Harmacek L, O'Connor BP, Eling TE, Eickelberg O and Chu HW: Overproduction of growth differentiation factor 15 promotes human rhinovirus infection and virus-induced inflammation in the lung. Am J Physiol Lung Cell Mol Physiol. 314:L514–L527. 2018.PubMed/NCBI View Article : Google Scholar

79 

Abulizi P, Loganathan N, Zhao D, Mele T, Zhang Y, Zwiep T, Liu K and Zheng X: Growth differentiation factor-15 deficiency augments inflammatory response and exacerbates septic heart and renal injury induced by lipopolysaccharide. Sci Rep. 7(1037)2017.PubMed/NCBI View Article : Google Scholar

80 

Li A, Zhao F, Zhao Y, Liu H and Wang Z: ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci. 275(119356)2021.PubMed/NCBI View Article : Google Scholar

81 

Li M, Song K, Huang X, Fu S and Zeng Q: GDF15 prevents LPS and D-galactosamine-induced inflammation and acute liver injury in mice. Int J Mol Med. 42:1756–1764. 2018.PubMed/NCBI View Article : Google Scholar

82 

Hu X, Wang T and Jin F: Alzheimer's disease and gut microbiota. Sci China Life Sci. 59:1006–1023. 2016.PubMed/NCBI View Article : Google Scholar

83 

Chen YG: Research progress in the pathogenesis of Alzheimer's disease. Chin Med J (Engl). 131:1618–1624. 2018.PubMed/NCBI View Article : Google Scholar

84 

Strelau J, Sullivan A, Bottner M, Lingor P, Falkenstein E, Suter-Crazzolara C, Galter D, Jaszai J, Krieglstein K and Unsicker K: Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci. 20:8597–8603. 2000.PubMed/NCBI View Article : Google Scholar

85 

Schober A, Bottner M, Strelau J, Kinscherf R, Bonaterra GA, Barth M, Schilling L, Fairlie WD, Breit SN and Unsicker K: Expression of growth differentiation factor-15/macrophage inhibitory cytokine-1 (GDF-15/MIC-1) in the perinatal, adult, and injured rat brain. J Comp Neurol. 439:32–45. 2001.PubMed/NCBI View Article : Google Scholar

86 

Fuchs T, Trollor JN, Crawford J, Brown DA, Baune BT, Samaras K, Campbell L, Breit SN, Brodaty H, Sachdev P and Smith E: Macrophage inhibitory cytokine-1 is associated with cognitive impairment and predicts cognitive decline-the Sydney memory and aging study. Aging Cell. 12:882–889. 2013.PubMed/NCBI View Article : Google Scholar

87 

Chai YL, Hilal S, Chong JPC, Ng YX, Liew OW, Xu X, Ikram MK, Venketasubramanian N, Richards AM, Lai MKP and Chen CP: Growth differentiation factor-15 and white matter hyperintensities in cognitive impairment and dementia. Medicine (Baltimore). 95(e4566)2016.PubMed/NCBI View Article : Google Scholar

88 

Low JK, Ambikairajah A, Shang K, Brown DA, Tsai VW, Breit SN and Karl T: First behavioural characterisation of a knockout mouse model for the transforming growth factor (TGF)-β superfamily cytokine, MIC-1/GDF15. PLoS One. 12(e0168416)2017.PubMed/NCBI View Article : Google Scholar

89 

Nasrabady SE, Rizvi B, Goldman JE and Brickman AM: White matter changes in Alzheimer's disease: A focus on myelin and oligodendrocytes. Acta Neuropathol Commun. 6(22)2018.PubMed/NCBI View Article : Google Scholar

90 

Jiang J, Trollor JN, Brown DA, Crawford JD, Thalamuthu A, Smith E, Breit SN, Liu T, Brodaty H, Baune BT, et al: An inverse relationship between serum macrophage inhibitory cytokine-1 levels and brain white matter integrity in community-dwelling older individuals. Psychoneuroendocrinology. 62:80–88. 2015.PubMed/NCBI View Article : Google Scholar

91 

Jiang J, Wen W, Brown DA, Crawford J, Thalamuthu A, Smith E, Breit SN, Liu T, Zhu W, Brodaty H, et al: The relationship of serum macrophage inhibitory cytokine-1 levels with gray matter volumes in community-dwelling older individuals. PLoS One. 10(e0123399)2015.PubMed/NCBI View Article : Google Scholar

92 

Mu Y and Gage FH: Adult hippocampal neurogenesis and its role in Alzheimer's disease. Mol Neurodegener. 6(85)2011.PubMed/NCBI View Article : Google Scholar

93 

Strelau J, Strzelczyk A, Rusu P, Bendner G, Wiese S, Diella F, Altick AL, von Bartheld CS, Klein R, Sendtner M and Unsicker K: Progressive postnatal motoneuron loss in mice lacking GDF-15. J Neurosci. 29:13640–13648. 2009.PubMed/NCBI View Article : Google Scholar

94 

Carrillo-Garcia C, Prochnow S, Simeonova IK, Strelau J, Hölzl-Wenig G, Mandl C, Unsicker K, von Bohlen Und Halbach O and Ciccolini F: Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice. Development. 141:773–783. 2014.PubMed/NCBI View Article : Google Scholar

95 

Kim DH, Lee D, Chang EH, Kim JH, Hwang JW, Kim JY, Kyung JW, Kim SH, Oh JS, Shim SM, et al: GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model. Stem Cells Dev. 24:2378–2390. 2015.PubMed/NCBI View Article : Google Scholar

96 

Sudhof TC: Molecular neuroscience in the 21st Century: A personal perspective. Neuron. 96:536–541. 2017.PubMed/NCBI View Article : Google Scholar

97 

Liu DD, Lu JM, Zhao QR, Hu C and Mei YA: Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels. Sci Rep. 6(28653)2016.PubMed/NCBI View Article : Google Scholar

98 

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D and Jones E: Alzheimer's disease. Lancet. 377:1019–1031. 2011.PubMed/NCBI View Article : Google Scholar

99 

Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, et al: Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest. 116:3060–3069. 2006.PubMed/NCBI View Article : Google Scholar

100 

Das P and Golde T: Dysfunction of TGF-beta signaling in Alzheimer's disease. J Clin Invest. 116:2855–2857. 2006.PubMed/NCBI View Article : Google Scholar

101 

Koh SH and Park HH: Neurogenesis in stroke recovery. Transl Stroke Res. 8:3–13. 2017.PubMed/NCBI View Article : Google Scholar

102 

Barthels D and Das H: Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 1866(165260)2020.PubMed/NCBI View Article : Google Scholar

103 

Xiang Y, Zhang T, Guo J, Peng YF and Wei YS: The association of growth differentiation factor-15 gene polymorphisms with growth differentiation factor-15 serum levels and risk of ischemic stroke. J Stroke Cerebrovasc Dis. 26:2111–2119. 2017.PubMed/NCBI View Article : Google Scholar

104 

Brown DA, Breit SN, Buring J, Fairlie WD, Bauskin AR, Liu T and Ridker PM: Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: A nested case-control study. Lancet. 359:2159–2163. 2002.PubMed/NCBI View Article : Google Scholar

105 

Worthmann H, Kempf T, Widera C, Tryc AB, Goldbecker A, Ma YT, Deb M, Tountopoulou A, Lambrecht J, Heeren M, et al: Growth differentiation factor 15 plasma levels and outcome after ischemic stroke. Cerebrovasc Dis. 32:72–78. 2011.PubMed/NCBI View Article : Google Scholar

106 

Yin J, Zhu Z, Guo D, Wang A, Zeng N, Zheng X, Peng Y, Zhong C, Wang G, Zhou Y, et al: Increased growth differentiation factor 15 is associated with unfavorable clinical outcomes of acute ischemic stroke. Clin Chem. 65:569–578. 2019.PubMed/NCBI View Article : Google Scholar

107 

Groschel K, Schnaudigel S, Edelmann F, Niehaus CF, Weber-Krüger M, Haase B, Lahno R, Seegers J, Wasser K, Wohlfahrt J, et al: Growth-differentiation factor-15 and functional outcome after acute ischemic stroke. J Neurol. 259:1574–1579. 2012.PubMed/NCBI View Article : Google Scholar

108 

Dong X and Nao J: Association of serum growth differentiation factor 15 level with acute ischemic stroke in a Chinese population. Int J Neurosci. 129:1247–1255. 2019.PubMed/NCBI View Article : Google Scholar

109 

Wang X, Zhu L, Wu Y, Sun K, Su M, Yu L, Chen J, Li W, Yang J, Yuan Z and Hui R: Plasma growth differentiation factor 15 predicts first-ever stroke in hypertensive patients. Medicine (Baltimore). 95(e4342)2016.PubMed/NCBI View Article : Google Scholar

110 

Schindowski K, von Bohlen und Halbach O, Strelau J, Ridder DA, Herrmann O, Schober A, Schwaninger M and Unsicker K: Regulation of GDF-15, a distant TGF-β superfamily member, in a mouse model of cerebral ischemia. Cell Tissue Res. 343:399–409. 2011.PubMed/NCBI View Article : Google Scholar

111 

Dickson DW: Neuropathology of Parkinson disease. Parkinsonism Relat Disord. 46 (Suppl 1):S30–S33. 2018.PubMed/NCBI View Article : Google Scholar

112 

Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AH and Halliday G: Missing pieces in the Parkinson's disease puzzle. Nat Med. 16:653–661. 2010.PubMed/NCBI View Article : Google Scholar

113 

Maetzler W, Deleersnijder W, Hanssens V, Bernard A, Brockmann K, Marquetand J, Wurster I, Rattay TW, Roncoroni L, Schaeffer E, et al: GDF15/MIC1 and MMP9 cerebrospinal fluid levels in Parkinson's disease and lewy body dementia. PLoS One. 11(e0149349)2016.PubMed/NCBI View Article : Google Scholar

114 

Movement Disorder Society Task Force on Rating Scales for Parkinson's Disease. The unified Parkinson's disease rating scale (UPDRS): Status and recommendations. Mov Disord. 18:738–750. 2003.PubMed/NCBI View Article : Google Scholar

115 

Yao X, Wang D, Zhang L, Wang L, Zhao Z, Chen S, Wang X, Yue T and Liu Y: Serum growth differentiation factor 15 in Parkinson disease. Neurodegener Dis. 17:251–260. 2017.PubMed/NCBI View Article : Google Scholar

116 

Luthman J, Fredriksson A, Sundstrom E, Jonsson G and Archer T: Selective lesion of central dopamine or noradrenaline neuron systems in the neonatal rat: Motor behavior and monoamine alterations at adult stage. Behav Brain Res. 33:267–277. 1989.PubMed/NCBI View Article : Google Scholar

117 

Machado V, Haas SJ, von Bohlen Und Halbach O, Wree A, Krieglstein K, Unsicker K and Spittau B: Growth/differentiation factor-15 deficiency compromises dopaminergic neuron survival and microglial response in the 6-hydroxydopamine mouse model of Parkinson's disease. Neurobiol Dis. 88:1–15. 2016.PubMed/NCBI View Article : Google Scholar

118 

Machado V, Gilsbach R, Das R, Schober A, Bogatyreva L, Hauschke D, Krieglstein K, Unsicker K and Spittau B: Gdf-15 deficiency does not alter vulnerability of nigrostriatal dopaminergic system in MPTP-intoxicated mice. Cell Tissue Res. 365:209–223. 2016.PubMed/NCBI View Article : Google Scholar

119 

Hirsch E, Graybiel AM and Agid YA: Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature. 334:345–348. 1988.PubMed/NCBI View Article : Google Scholar

120 

Liu H, Liu J, Si L, Guo C, Liu W and Liu Y: GDF-15 promotes mitochondrial function and proliferation in neuronal HT22 cells. J Cell Biochem. 120:10530–10547. 2019.PubMed/NCBI View Article : Google Scholar

121 

Miyaue N, Yabe H and Nagai M: Serum growth differentiation factor 15, but not lactate, is elevated in patients with Parkinson's disease. J Neurol Sci. 409(116616)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiang W, Zhang Z, He P, Jiang L, Chen J, Zhang X, Hu M, Zhang Y and Ouyang X: Emerging roles of growth differentiation factor‑15 in brain disorders (Review). Exp Ther Med 22: 1270, 2021.
APA
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X. ... Ouyang, X. (2021). Emerging roles of growth differentiation factor‑15 in brain disorders (Review). Experimental and Therapeutic Medicine, 22, 1270. https://doi.org/10.3892/etm.2021.10705
MLA
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X., Hu, M., Zhang, Y., Ouyang, X."Emerging roles of growth differentiation factor‑15 in brain disorders (Review)". Experimental and Therapeutic Medicine 22.5 (2021): 1270.
Chicago
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X., Hu, M., Zhang, Y., Ouyang, X."Emerging roles of growth differentiation factor‑15 in brain disorders (Review)". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1270. https://doi.org/10.3892/etm.2021.10705
Copy and paste a formatted citation
x
Spandidos Publications style
Jiang W, Zhang Z, He P, Jiang L, Chen J, Zhang X, Hu M, Zhang Y and Ouyang X: Emerging roles of growth differentiation factor‑15 in brain disorders (Review). Exp Ther Med 22: 1270, 2021.
APA
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X. ... Ouyang, X. (2021). Emerging roles of growth differentiation factor‑15 in brain disorders (Review). Experimental and Therapeutic Medicine, 22, 1270. https://doi.org/10.3892/etm.2021.10705
MLA
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X., Hu, M., Zhang, Y., Ouyang, X."Emerging roles of growth differentiation factor‑15 in brain disorders (Review)". Experimental and Therapeutic Medicine 22.5 (2021): 1270.
Chicago
Jiang, W., Zhang, Z., He, P., Jiang, L., Chen, J., Zhang, X., Hu, M., Zhang, Y., Ouyang, X."Emerging roles of growth differentiation factor‑15 in brain disorders (Review)". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1270. https://doi.org/10.3892/etm.2021.10705
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team