Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 22 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4

  • Authors:
    • Ling Dong
    • Bo Dong
  • View Affiliations / Copyright

    Affiliations: Department of Rehabilitation Medicine, Guizhou Orthopedics Hospital, Guiyang, Guizhou 550000, P.R. China, Pain Rehabilitation Department of TCM Orthopedic Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
    Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1323
    |
    Published online on: September 20, 2021
       https://doi.org/10.3892/etm.2021.10758
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Intervertebral disc degeneration (IDD) is a common disease with a high morbidity rate, which results in a significant deterioration in the quality of life of patients. MicroRNAs (miRNAs/miRs) are a class of endogenous small non‑coding RNAs that influence target genes and serve critical roles in numerous biological processes. However, the role of miR‑489‑3p in lumbar disc degeneration is yet to be elucidated. In the present study, human NP cells were treated with 10 ng/ml lipopolysaccharide (LPS) for 24 h to investigate the role of miR‑489‑3p in IDD in an in vitro model. Reverse transcription‑quantitative (RT‑q)PCR was performed to determine the expression levels of miR‑489‑3p. Then, the TargetScan database was used to predict the potential binding sites between miR‑489‑3p and Toll‑like receptor (TLR)4, and a dual‑luciferase reporter assay was performed to verify the findings. Subsequently, RT‑qPCR and western blotting were used to analyze the expression levels of TLR4. In addition, human nucleus pulposus (NP) cells were transfected with a miR‑489‑3p mimic and TLR4 overexpression plasmid to study the effects of miR‑489‑3p on LPS‑induced human NP cells. Cell apoptosis and cell viability were also determined using flow cytometry and MTT assays, respectively. Finally, ELISAs were performed to analyze the levels of inflammatory factors. The expression levels of miR‑489‑3p were discovered to be downregulated in LPS‑treated human NP cells. In addition, TLR4 was revealed to be a direct target gene of miR‑489‑3p, and its expression levels were upregulated in LPS‑treated human NP cells. miR‑489‑3p was found to inhibit the LPS‑induced decreases in cell viability and increases in apoptosis, and the concentration of inflammatory cytokines. Furthermore, miR‑489‑3p suppressed the LPS‑induced decreases in extracellular matrix deposition via decreasing the expression levels of aggrecan and collagen type II in human NP cells. Finally, the results revealed that miR‑489‑3p inhibited the LPS‑induced activation of the NF‑κB signaling pathway in human NP cells. Conversely, all of the effects of miR‑489‑3p on LPS‑induced human NP cells were reversed by the TLR4 overexpression plasmid. These findings suggested that miR‑489‑3p may represent a novel therapeutic target for the treatment of IDD.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Kadow T, Sowa G, Vo N and Kang JD: Molecular basis of intervertebral disc degeneration and herniations: What are the important translational questions? Clin Orthop Relat Res. 473:1903–1912. 2015.PubMed/NCBI View Article : Google Scholar

2 

Tang P, Gu JM, Xie ZA, Gu Y, Jie ZW, Huang KM, Wang JY, Fan SW, Jiang XS and Hu ZJ: Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radic Biol Med. 120:368–379. 2018.PubMed/NCBI View Article : Google Scholar

3 

Powell MC, Wilson M, Szypryt P, Symonds EM and Worthington BS: Prevalence of lumbar disc degeneration observed by magnetic resonance in symptomless women. Lancet. 2:1366–1367. 1986.PubMed/NCBI View Article : Google Scholar

4 

Hangai M, Kaneoka K, Kuno S, Hinotsu S, Sakane M, Mamizuka N, Sakai S and Ochiai N: Factors associated with lumbar intervertebral disc degeneration in the elderly. Spine J. 8:732–740. 2008.PubMed/NCBI View Article : Google Scholar

5 

Liuke M, Solovieva S, Lamminen A, Luoma K, Leino-Arjas P, Luukkonen R and Riihimäki H: Disc degeneration of the lumbar spine in relation to overweight. Int J Obes (Lond). 29:903–908. 2005.PubMed/NCBI View Article : Google Scholar

6 

Oda H, Matsuzaki H, Tokuhashi Y, Wakabayashi K, Uematsu Y and Iwahashi M: Degeneration of intervertebral discs due to smoking: Experimental assessment in a rat-smoking model. J Orthop Sci. 9:135–141. 2004.PubMed/NCBI View Article : Google Scholar

7 

Jhawar BS, Fuchs CS, Colditz GA and Stampfer MJ: Cardiovascular risk factors for physician-diagnosed lumbar disc herniation. Spine J. 6:684–691. 2006.PubMed/NCBI View Article : Google Scholar

8 

Kauppila LI: Atherosclerosis and disc degeneration/low-back pain-a systematic review. Eur J Vasc Endovasc Surg. 37:661–670. 2009.PubMed/NCBI View Article : Google Scholar

9 

Enercan M, Kahraman S, Cobanoglu M, Yilar S, Gokcen BH, Karadereler S, Mutlu A, Ulusoy LO, Ozturk C, Erturer E, et al: Selective thoracic fusion provides similar health-related quality of life but can cause more lumbar disc and facet joint degeneration: A comparison of adolescent idiopathic scoliosis patients with normal population 10 years after surgery. Spine Deform. 3:469–475. 2015.PubMed/NCBI View Article : Google Scholar

10 

Canbulat N, Oktenoglu T, Ataker Y, Sasani M, Ercelen O, Cerezci O, Suzer T and Ozer AF: A rehabilitation protocol for patients with lumbar degenerative disc disease treated with posterior transpedicular dynamic stabilization. Turk Neurosurg. 27:426–435. 2017.PubMed/NCBI View Article : Google Scholar

11 

Ji ML, Jiang H, Zhang XJ, Shi PL, Li C, Wu H, Wu XT, Wang YT, Wang C and Lu J: Preclinical development of a microRNA-based therapy for intervertebral disc degeneration. Nat Commun. 9(5051)2018.PubMed/NCBI View Article : Google Scholar

12 

Lv K: Expression profiles of miRNAs in polarized macrophages. Int J Mol Med. 31:797–802. 2013.PubMed/NCBI View Article : Google Scholar

13 

Chen X, Slack FJ and Zhao H: Joint analysis of expression profiles from multiple cancers improves the identification of microRNA-gene interactions. Bioinformatics. 29:2137–2145. 2013.PubMed/NCBI View Article : Google Scholar

14 

Wei Y, Nazari-Jahantigh M, Chan L, Zhu M, Heyll K, Corbalán-Campos J, Hartmann P, Thiemann A, Weber C and Schober A: The microRNA-342-5p fosters inflammatory macrophage activation through an akt1- and microRNA-155-depend-ent pathway during atherosclerosis. Circulation. 127:1609–1619. 2013.PubMed/NCBI View Article : Google Scholar

15 

Ono K, Kuwabara Y and Han J: MicroRNAs and cardiovascular diseases. FEBS J. 278:1619–1633. 2011.PubMed/NCBI View Article : Google Scholar

16 

Ro S, Park C, Young D, Sanders KM and Yan W: Tissue-dependent paired expression of miRNAs. Nucleic Acids Res. 35:5944–5953. 2007.PubMed/NCBI View Article : Google Scholar

17 

Mallory AC and Vaucheret H: MicroRNAs: Something important between the genes. Curr Opin Plant Biol. 7:120–125. 2004.PubMed/NCBI View Article : Google Scholar

18 

Garzon R, Calin GA and Croce CM: MicroRNAs in cancer. Annu Rev Med. 60:167–179. 2009.PubMed/NCBI View Article : Google Scholar

19 

Xu JY, Yang LL, Ma C, Huang YL, Zhu GX and Chen QL: MiR-25-3p attenuates the proliferation of tongue squamous cell carcinoma cell line Tca8113. Asian Pac J Trop Med. 6:743–747. 2013.PubMed/NCBI View Article : Google Scholar

20 

Lv F, Huang Y, Lv W, Yang L, Li F, Fan J and Sun J: MicroRNA-146a ameliorates inflammation via TRAF6/NF-κB pathway in intervertebral disc cells. Med Sci Monit. 23:659–664. 2017.PubMed/NCBI View Article : Google Scholar

21 

Liu W, Xia P, Feng J, Kang L, Huang M, Wang K, Song Y, Li S, Wu X, Yang S and Yang C: MicroRNA-132 upregulation promotes matrix degradation in intervertebral disc degeneration. Exp Cell Res. 359:39–49. 2017.PubMed/NCBI View Article : Google Scholar

22 

Wang WJ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, He WS, Chen WK, Yan YG and Wang C: MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed Pharmacother. 99:725–734. 2018.PubMed/NCBI View Article : Google Scholar

23 

Jiang R, Zhang C, Gu R and Wu H: MicroRNA-489-3p inhibits neurite growth by regulating PI3K/AKT pathway in spinal cord injury. Pharmazie. 72:272–278. 2017.PubMed/NCBI View Article : Google Scholar

24 

Wu Q, Han L, Yan W, Ji X, Han R, Yang J, Yuan J and Ni C: miR-489 inhibits silica-induced pulmonary fibrosis by targeting MyD88 and Smad3 and is negatively regulated by lncRNA CHRF. Sci Rep. 6(30921)2016.PubMed/NCBI View Article : Google Scholar

25 

Wiese CB, Zhong JY, Xu ZQ, Zhang Y, Ramirez Solano MA, Zhu W, Linton MF, Sheng Q, Kon V and Vickers KC: Dual inhibition of endothelial miR-92a-3p and miR-489-3p reduces renal injury-associated atherosclerosis. Atherosclerosis. 282:121–131. 2019.PubMed/NCBI View Article : Google Scholar

26 

Li Z, Shen J, Wu WK, Yu X, Liang J, Qiu G and Liu J: The role of leptin on the organization and expression of cytoskeleton elements in nucleus pulposus cells. J Orthop Res. 31:847–857. 2013.PubMed/NCBI View Article : Google Scholar

27 

Li Z, Liang J, Wu WK, Yu X, Yu J, Weng X and Shen J: Leptin activates RhoA/ROCK pathway to induce cytoskeleton remodeling in nucleus pulposus cells. Int J Mol Sci. 15:1176–1188. 2014.PubMed/NCBI View Article : Google Scholar

28 

Ding F, Shao ZW and Xiong LM: Cell death in intervertebral disc degeneration. Apoptosis. 18:777–785. 2013.PubMed/NCBI View Article : Google Scholar

29 

Risbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol. 10:44–56. 2014.PubMed/NCBI View Article : Google Scholar

30 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

31 

Cildir G, Low KC and Tergaonkar V: Noncanonical NF-κB signaling in health and disease. Trends Mol Med. 22:414–429. 2016.PubMed/NCBI View Article : Google Scholar

32 

Juniper M, Le TK and Mladsi D: The epidemiology, economic burden, and pharmacological treatment of chronic low back pain in France, Germany, Italy, Spain and the UK: A literature-based review. Expert Opin Pharmacother. 10:2581–2592. 2009.PubMed/NCBI View Article : Google Scholar

33 

Phillips C, Main C, Buck R, Aylward M, Wynne-Jones G and Farr A: Prioritising pain in policy making: The need for a whole systems perspective. Health Policy. 88:166–175. 2009.PubMed/NCBI View Article : Google Scholar

34 

Waddell G: Low back pain: A twentieth century health care enigma. Spine (Phila Pa 1976). 21(2820)1996.PubMed/NCBI View Article : Google Scholar

35 

Zhang YG, Sun Z, Zhang Z, Liu J and Guo X: Risk factors for lumbar intervertebral disc herniation in Chinese population: A case-control study. Spine (Phila Pa 1976). 34:918–922. 2009.PubMed/NCBI View Article : Google Scholar

36 

Madera M, Brady J, Deily S, McGinty T, Moroz L, Singh D, Tipton G and Truumees E: for the Seton Spine Rehabilitation Study Group. The role of physical therapy and rehabilitation after lumbar fusion surgery for degenerative disease: A systematic review. J Neurosurg Spine. 26:694–704. 2017.PubMed/NCBI View Article : Google Scholar

37 

Wang HQ, Yu XD, Liu ZH, Cheng X, Samartzis D, Jia LT, Wu SX, Huang J, Chen J and Luo ZJ: Deregulated mir-155 promotes Fas-mediated apoptosis in human intervertebral disc degeneration by targeting FAdd and caspase-3. J Pathol. 225:232–242. 2011.PubMed/NCBI View Article : Google Scholar

38 

Ji ML, Lu J, Shi PL, Zhang XJ, Wang SZ, Chang Q, Chen H and Wang C: Dysregulated mir-98 contributes to extracellular matrix degradation by targeting IL-6/StAt3 signaling pathway in human intervertebral disc degeneration. J Bone Miner Res. 31:900–909. 2016.PubMed/NCBI View Article : Google Scholar

39 

Yu X, Li Z, Shen J, Wu WK, Liang J, Weng X and Qiu G: MicroRNA-10b promotes nucleus pulposus cell proliferation through RhoC-Akt pathway by targeting HOXD10 in intervetebral disc degeneration. PLoS One. 8(e83080)2013.PubMed/NCBI View Article : Google Scholar

40 

Liu H, Huang X, Liu X, Xiao S, Zhang Y, Xiang T, Shen X, Wang G and Sheng B: miR-21 promotes human nucleus pulposus cell proliferation through PTEN/AKT signaling. Int J Mol Sci. 15:4007–4018. 2014.PubMed/NCBI View Article : Google Scholar

41 

Liu G, Cao P, Chen H, Yuan W, Wang J and Tang X: MiR-27a regulates apoptosis in nucleus pulposus cells by targeting PI3K. PLoS One. 8(e75251)2013.PubMed/NCBI View Article : Google Scholar

42 

Cheng X, Zhang L, Zhang K, Zhang G, Hu Y, Sun X, Zhao C, Li H, Li YM and Zhao J: Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis. 77:770–779. 2018.PubMed/NCBI View Article : Google Scholar

43 

Zhang H, Li L, Yuan C, Wang C, Gao T and Zheng Z: MiR-489 inhibited the development of gastric cancer via regulating HDAC7 and PI3K/AKT pathway. World J Surg Oncol. 18(73)2020.PubMed/NCBI View Article : Google Scholar

44 

Li F: Expression of miR-221 and miR-489 in breast cancer patients and their relationship with prognosis. Oncol Lett. 19:1523–1529. 2020.PubMed/NCBI View Article : Google Scholar

45 

Sun D, Yu M, Huang ZH, et al: Research progress in the action mechanism of miR-489 in tumors. Chem Life. 37:329–335. 2017.

46 

Mohr AM and Mott JL: Overview of microRNA biology. Semin Liver Dis. 35:3–11. 2015.PubMed/NCBI View Article : Google Scholar

47 

Yang YZ, Zhang YF, Yang L, Xu J, Mo XM and Peng W: MiR-760 mediates hypoxia-induced proliferation and apoptosis of human pulmonary artery smooth muscle cells via targeting TLR4. Int J Mol Med. 42:2437–2446. 2018.PubMed/NCBI View Article : Google Scholar

48 

Wang YC, Lin S and Yang QW: Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation. 8(134)2011.PubMed/NCBI View Article : Google Scholar

49 

Li WT and Zhang Q: MicroRNA-708-5p regulates mycobacterial vitality and the secretion of inflammatory factors in Mycobacterium tuberculosis-infected macrophages by targeting TLR4. Eur Rev Med Pharmacol Sci. 23:8028–8038. 2019.PubMed/NCBI View Article : Google Scholar

50 

Yang J, Chen Y, Jiang K, Yang Y, Zhao G, Guo S and Deng G: MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4. Int J Biol Sci. 15:2308–2319. 2019.PubMed/NCBI View Article : Google Scholar

51 

Gong XY and Zhang Y: Protective effect of miR-20a against hypoxia/reoxygenation treatment on cardiomyocytes cell viability and cell apoptosis by targeting TLR4 and inhibiting p38 MAPK/JNK signaling. In Vitro Cell Dev Biol Anim. 55:793–800. 2019.PubMed/NCBI View Article : Google Scholar

52 

Wu D, Zheng C, Wu J, Huang R, Chen X, Zhang T and Zhang L: Molecular biological effects of weightlessness and hypergravity on intervertebral disc degeneration. Aerosp Med Hum Perform. 88(1123)2017.PubMed/NCBI View Article : Google Scholar

53 

Wang J, Liew OJ, Richards AM and Chen YT: Overview of MicroRNAs in cardiac hypertrophy, fibrosis, and apoptosis. Int J Mol Sci. 17(749)2016.PubMed/NCBI View Article : Google Scholar

54 

Cheng AM, Byrom MW, Shelton J and Ford LP: Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33:1290–1297. 2005.PubMed/NCBI View Article : Google Scholar

55 

Moro A, Driscoll TP, Boraas LC, Armero W, Kasper DM, Baeyens N, Jouy C, Mallikarjun V, Swift J, Ahn SJ, et al: MicroRNA-dependent regulation of biomechanical genes establishes tissue stiffness homeostasis. Nat Cell Biol. 21:348–358. 2019.PubMed/NCBI View Article : Google Scholar

56 

Toyono T, Usui T, Villarreal G Jr, Kallay L, Matthaei M, Vianna LM, Zhu AY, Kuroda M, Amano S and Jun AS: MicroRNA-29b overexpression decreases extracellular matrix mRNA and protein production in human corneal endothelial cells. Cornea. 35:1466–1470. 2016.PubMed/NCBI View Article : Google Scholar

57 

Zhou J, Sun J, Markova DZ, Li S, Kepler CK, Hong J, Huang Y, Chen W, Xu K, Wei F and Ye W: MicroRNA-145 overexpression attenuates apoptosis and increases matrix synthesis in nucleus pulposus cells. Life Sci. 221:274–283. 2019.PubMed/NCBI View Article : Google Scholar

58 

Sun JC, Zheng B, Sun RX, Meng YK, Wang SM, Yang HS, Chen Y, Shi JG and Guo YF: MiR-499a-5p suppresses apoptosis of human nucleus pulposus cells and degradation of their extracellular matrix by targeting SOX4. Biomed Pharmacother. 113(108652)2019.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Dong L and Dong B: miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4. Exp Ther Med 22: 1323, 2021.
APA
Dong, L., & Dong, B. (2021). miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4. Experimental and Therapeutic Medicine, 22, 1323. https://doi.org/10.3892/etm.2021.10758
MLA
Dong, L., Dong, B."miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4". Experimental and Therapeutic Medicine 22.5 (2021): 1323.
Chicago
Dong, L., Dong, B."miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1323. https://doi.org/10.3892/etm.2021.10758
Copy and paste a formatted citation
x
Spandidos Publications style
Dong L and Dong B: miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4. Exp Ther Med 22: 1323, 2021.
APA
Dong, L., & Dong, B. (2021). miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4. Experimental and Therapeutic Medicine, 22, 1323. https://doi.org/10.3892/etm.2021.10758
MLA
Dong, L., Dong, B."miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4". Experimental and Therapeutic Medicine 22.5 (2021): 1323.
Chicago
Dong, L., Dong, B."miR‑489‑3p overexpression inhibits lipopolysaccharide‑induced nucleus pulposus cell apoptosis, inflammation and extracellular matrix degradation via targeting Toll‑like receptor 4". Experimental and Therapeutic Medicine 22, no. 5 (2021): 1323. https://doi.org/10.3892/etm.2021.10758
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team