|
1
|
The definition and classification of dry
eye disease. Report of the definition and classification
subcommittee of the international dry eye workshop (2007). Ocul
Surf. 5:75–92. 2007.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Takamiya M, Weger BD, Schindler S, Beil T,
Yang L, Armant O, Ferg M, Schlunck G, Reinhard T, Dickmeis T, et
al: Molecular description of eye defects in the zebrafish Pax6b
mutant, sunrise, reveals a Pax6b-dependent genetic network in the
developing anterior chamber. PLoS One. 10(e0117645)2015.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Baldassano VF Jr: Ocular manifestations of
rheumatic diseases. Curr Opin Ophthalmol. 9:85–88. 1998.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Kemeny-Beke A and Szodoray P: Ocular
manifestations of rheumatic diseases. Int Ophthalmol. 40:503–510.
2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Zoukhri D and Kublin CL: Impaired
neurotransmitter release from lacrimal and salivary gland nerves of
a murine model of Sjögren's syndrome. Invest Ophthalmol Vis Sci.
42:925–932. 2001.PubMed/NCBI
|
|
6
|
Toda I, Sullivan BD, Wickham LA and
Sullivan DA: Gender- and androgen-related influence on the
expression of proto-oncogene and apoptotic factor mRNAs in lacrimal
glands of autoimmune and non-autoimmune mice. J Steroid Biochem Mol
Biol. 71:49–61. 1999.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Schrader S, Mircheff AK and Geerling G:
Animal models of dry eye. Dev Ophthalmol. 41:298–312.
2008.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Watanabe-Fukunaga R, Brannan CI, Copeland
NG, Jenkins NA and Nagata S: Lymphoproliferation disorder in mice
explained by defects in Fas antigen that mediates apoptosis.
Nature. 356:314–317. 1992.PubMed/NCBI View
Article : Google Scholar
|
|
9
|
Singer GG and Abbas AK: The fas antigen is
involved in peripheral but not thymic deletion of T lymphocytes in
T cell receptor transgenic mice. Immunity. 1:365–371.
1994.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Törnwall J, Lane TE, Fox RI and Fox HS: T
cell attractant chemokine expression initiates lacrimal gland
destruction in nonobese diabetic mice. Lab Invest. 79:1719–1726.
1999.PubMed/NCBI
|
|
11
|
Robinson CP, Cornelius J, Bounous DE,
Yamamoto H, Humphreys-Beher MG and Peck AB: Characterization of the
changing lymphocyte populations and cytokine expression in the
exocrine tissues of autoimmune NOD mice. Autoimmunity. 27:29–44.
1998.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Yamamoto H, Sims NE, Macauley SP, Nguyen
KH, Nakagawa Y and HumphreysBeher MG: Alterations in the secretory
response of non-obese diabetic (NOD) mice to muscarinic receptor
stimulation. Clin Immunol Immunop. 78:245–255. 1996.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Coursey TG, Bian F, Zaheer M, Pflugfelder
SC, Volpe EA and de Paiva CS: Age-related spontaneous lacrimal
keratoconjunctivitis is accompanied by dysfunctional T regulatory
cells. Mucosal Immunol. 10:743–756. 2017.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Takahashi M, Ishimaru N, Yanagi K, Haneji
N, Saito I and Hayashi Y: High incidence of autoimmune
dacryoadenitis in male non-obese diabetic (NOD) mice depending on
sex steroid. Clin Exp Immunol. 109:555–561. 1997.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Vendramini ACL, Soo C and Sullivan DA:
Testosterone-induced suppression of autoimmune disease in lacrimal
tissue of a mouse model (NZB/NZW F1) of Sjögren's syndrome. Invest
Ophthalmol Vis Sci. 32:3002–3006. 1991.PubMed/NCBI
|
|
16
|
Sullivan DA and Edwards JA: Androgen
stimulation of lacrimal gland function in mouse models of Sjögren's
syndrome. J Steroid Biochem. 60:237–245. 1997.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Haneji N, Nakamura T, Takio K, Yanagi K,
Higashiyama H, Saito I, Noji S, Sugino H and Hayashi Y:
Identification of alpha-fodrin as a candidate autoantigen in
primary Sjögren's syndrome. Science. 276:604–607. 1997.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Song XJ, Li DQ, Farley W, Luo LH,
Heuckeroth RO, Milbrandt J and Pflugfelder SC: Neurturin-deficient
mice develop dry eye and keratoconjunctivitis sicca. Invest
Ophthalmol Vis Sci. 44:4223–4229. 2003.PubMed/NCBI View Article : Google Scholar
|
|
19
|
McCartney-Francis NL, Mizel DE,
Frazier-Jessen M, Kulkarni AB, McCarthy JB and Wahl SM: Lacrimal
gland inflammation is responsible for ocular pathology in TGF-beta
1 null mice. Am J Pathol. 151:1281–1288. 1997.PubMed/NCBI
|
|
20
|
McCartney-Francis NL, Mizel DE, Redman RS,
Frazier-Jessen M, Panek RB, Kulkarni AB, Ward JM, McCarthy JB and
Wahl SM: Autoimmune Sjögren's-like lesions in salivary glands of
TGF-beta1-deficient mice are inhibited by adhesion-blocking
peptides. J Immunol. 157:1306–1312. 1996.PubMed/NCBI
|
|
21
|
Konno A, Takada K, Saegusa J and Takiguchi
M: Presence of B7-2+ dendritic cells and expression of Th1
cytokines in the early development of sialodacryoadenitis in the
IqI/Jic mouse model of primary Sjörgren's syndrome. Autoimmunity.
36:247–254. 2003.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Li H, Dai M and Zhuang Y: A T cell
intrinsic role of Id3 in a mouse model for primary Sjogren's
syndrome. Immunity. 21:551–560. 2004.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Shinomiya K, Ueta M and Kinoshita S: A new
dry eye mouse model produced by exorbital and intraorbital lacrimal
gland excision. Sci Rep. 8(1483)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Nakamura T, Hata Y, Nagata M, Yokoi N,
Yamaguchi S, Kaku T and Kinoshita S: JBP485 promotes tear and mucin
secretion in ocular surface epithelia. Sci Rep.
5(10248)2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Bron AJ, de Paiva CS, Chauhan SK, Bonini
S, Gabison EE, Jain S, Knop E, Markoulli M, Ogawa Y, Perez V, et
al: TFOS DEWS II pathophysiology report. Ocul Surf. 15:438–510.
2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Dursun D, Wang M, Monroy D, Li DQ,
Lokeshwar BL, Stern ME and Pflugfelder SC: A mouse model of
keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci. 43:632–638.
2002.PubMed/NCBI
|
|
27
|
Sano K, Kawashima M, Imada T, Suzuki T,
Nakamura S, Mimura M, Tanaka KF and Tsubota K: Enriched environment
alleviates stress-induced dry-eye through the BDNF axis. Sci Rep.
9(3422)2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Stewart P, Chen Z, Farley W, Olmos L and
Pflugfelder SC: Effect of experimental dry eye on tear sodium
concentration in the mouse. Eye Contact Lens. 31:175–178.
2005.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Yeh S, Song XJ, Farley W, Li DQ, Stern ME
and Pflugfelder SC: Apoptosis of ocular surface cells in
experimentally induced dry eye. Invest Ophthalmol Vis Sci.
44:124–129. 2003.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Niederkorn JY, Stern ME, Pflugfelder SC,
De Paiva CS, Corrales RM, Gao J and Siemasko K: Desiccating stress
induces T cell-mediated Sjögren's syndrome-like lacrimal
keratoconjunctivitis. J Immunol. 176:3950–3957. 2006.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Barabino S, Shen L, Chen L, Rashid S,
Rolando M and Dana MR: The controlled-environment chamber: A new
mouse model of dry eye. Invest Ophthalmol Vis Sci. 46:2766–2771.
2005.PubMed/NCBI View Article : Google Scholar
|
|
32
|
De Paiva CS, Corrales RM, Villarreal AL,
Farley WJ, Li DQ, Stern ME and Pflugfelder SC: Corticosteroid and
doxycycline suppress MMP-9 and inflammatory cytokine expression,
MAPK activation in the corneal epithelium in experimental dry eye.
Exp Eye Res. 83:526–535. 2006.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Corrales RM, de Paiva CS, Li DQ, Farley
WJ, Henriksson JT, Bergmanson JP and Pflugfelder SC: Entrapment of
conjunctival goblet cells by desiccation-induced cornification.
Invest Ophthalmol Vis Sci. 52:3492–3499. 2011.PubMed/NCBI View Article : Google Scholar
|
|
34
|
De Paiva CS, Yoon KC, Pangelinan SB, Pham
S, Puthenparambil LM, Chuang EY, Farley WJ, Stern ME, Li DQ and
Pflugfelder SC: Cleavage of functional IL-2 receptor alpha chain
(CD25) from murine corneal and conjunctival epithelia by MMP-9. J
Inflamm (Lond). 6(31)2009.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Coursey TG, Tukler Henriksson J, Barbosa
FL, de Paiva CS and Pflugfelder SC: Interferon-γ-induced unfolded
protein response in conjunctival goblet cells as a cause of mucin
deficiency in Sjögren syndrome. Am J Pathol. 186:1547–1558.
2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Chen Y, Zhang X, Yang L, Li M, Li B, Wang
W and Sheng M: Decreased PPAR-γ expression in the conjunctiva and
increased expression of TNF-α and IL-1β in the conjunctiva and tear
fluid of dry eye mice. Mol Med Rep. 9:2015–2023. 2014.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Chen Y, Chauhan SK, Lee HS, Stevenson W,
Schaumburg CS, Sadrai Z, Saban DR, Kodati S, Stern ME and Dana R:
Effect of desiccating environmental stress versus systemic
muscarinic AChR blockade on dry eye immunopathogenesis. Invest
Ophthalmol Vis Sci. 54:2457–2464. 2013.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Schein OD, Muñoz B, Tielsch JM,
Bandeen-Roche K and West S: Prevalence of dry eye among the
elderly. Am J Ophthalmol. 124:723–728. 1997.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Moss SE, Klein R and Klein BE: Incidence
of dry eye in an older population. Arch Ophthalmol. 122:369–373.
2004.PubMed/NCBI View Article : Google Scholar
|
|
40
|
McClellan AJ, Volpe EA, Zhang X,
Darlington GJ, Li DQ, Pflugfelder SC and de Paiva CS: Ocular
surface disease and dacryoadenitis in aging C57BL/6 mice. Am J
Pathol. 184:631–643. 2014.PubMed/NCBI View Article : Google Scholar
|
|
41
|
de Paiva CS: Effects of aging in dry eye.
Int Ophthalmol Clin. 57:47–64. 2017.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ding J and Sullivan DA: Aging and dry eye
disease. Exp Gerontol. 47:483–490. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Jester BE, Nien CJ, Winkler M, Brown DJ
and Jester JV: Volumetric reconstruction of the mouse meibomian
gland using high-resolution nonlinear optical imaging. Anat Rec
(Hoboken). 294:185–192. 2011.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Nien CJ, Paugh JR, Massei S, Wahlert AJ,
Kao WW and Jester JV: Age-related changes in the meibomian gland.
Exp Eye Res. 89:1021–1027. 2009.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Parfitt GJ, Xie Y, Geyfman M, Brown DJ and
Jester JV: Absence of ductal hyper-keratinization in mouse
age-related meibomian gland dysfunction (ARMGD). Aging (Albany NY).
5:825–834. 2013.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ru Y, Huang Y, Liu H, Du J, Meng Z, Dou Z,
Liu X, Wei RH, Zhang Y and Zhao S: α-Melanocyte-stimulating hormone
ameliorates ocular surface dysfunctions and lesions in a
scopolamine-induced dry eye model via PKA-CREB and MEK-Erk
pathways. Sci Rep. 5(18619)2015.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Chen W, Zhao K, Li X and Yoshitomi T:
Keratoconjunctivitis sicca modifies epithelial stem cell
proliferation kinetics in conjunctiva. Cornea. 26:1101–1106.
2007.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Viau S, Maire MA, Pasquis B, Grégoire S,
Fourgeux C, Acar N, Bretillon L, Creuzot-Garcher CP and Joffre C:
Time course of ocular surface and lacrimal gland changes in a new
scopolamine-induced dry eye model. Graefes Arch Clin Exp
Ophthalmol. 246:857–867. 2008.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Viau S, Maire MA, Pasquis B, Grégoire S,
Acar N, Bron AM, Bretillon L, Creuzot-Garcher CP and Joffre C:
Efficacy of a 2-month dietary supplementation with polyunsaturated
fatty acids in dry eye induced by scopolamine in a rat model.
Graefes Arch Clin Exp Ophthalmol. 247:1039–1050. 2009.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Nakaishi H and Yamada Y: Abnormal tear
dynamics and symptoms of eyestrain in operators of visual display
terminals. Occup Environ Med. 56:6–9. 1999.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Uchino M, Kawashima M, Uchino Y, Tsubota K
and Yokoi N: Association between tear film break up time and blink
interval in visual display terminal users. Int J Ophthalmol.
11:1691–1697. 2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Nakamura S, Kinoshita S, Yokoi N, Ogawa Y,
Shibuya M, Nakashima H, Hisamura R, Imada T, Imagawa T, Uehara M,
et al: Lacrimal hypofunction as a new mechanism of dry eye in
visual display terminal users. PLoS One. 5(e11119)2010.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Nakamura S, Shibuya M, Nakashima H,
Imagawa T, Uehara M and Tsubota K: D-beta-hydroxybutyrate protects
against corneal epithelial disorders in a rat dry eye model with
jogging board. Invest Ophthalmol Vis Sci. 46:2379–2387.
2005.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Imada T, Nakamura S, Kitamura N, Shibuya I
and Tsubota K: Oral administration of royal jelly restores tear
secretion capacity in rat blink-suppressed dry eye model by
modulating lacrimal gland function. PLoS One.
9(e106338)2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Xiao F, Cui H and Zhong X: Beneficial
effect of daidzin in dry eye rat model through the suppression of
inflammation and oxidative stress in the cornea. Saudi J Biol Sci.
25:832–837. 2018.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Meng ID, Barton ST, Mecum NE and Kurose M:
Corneal sensitivity following lacrimal gland excision in the rat.
Invest Ophthalmol Vis Sci. 56:3347–3354. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Park B, Jo K, Lee TG, Lee IS, Kim JS and
Kim CS: Polygonum cuspidatum stem extract (PSE) ameliorates dry eye
disease by inhibiting inflammation and apoptosis. J Exerc Nutrition
Biochem. 23:14–22. 2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Peng QH, Yao XL, Wu QL, Tan HY and Zhang
JR: Effects of extract of Buddleja officinalis eye drops on
androgen receptors of lacrimal gland cells of castrated rats with
dry eye. Int J Ophthalmol. 3:43–48. 2010.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Li L, Jin D, Gao J, Wang L, Liu X, Wang J
and Xu Z: Activities of autonomic neurotransmitters in meibomian
gland tissues are associated with menopausal dry eye. Neural Regen
Res. 7:2761–2769. 2012.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Liu SH, Sakai F, Prendergast RA and
Silverstein AM: Experimental autoimmune dacryoadenitis. II.
Harderian gland disease in the rat. Invest Ophthalmol Vis Sci.
28:276–280. 1987.PubMed/NCBI
|
|
61
|
Hou A, Bose T, Chandy KG and Tong L: A
chronic autoimmune dry eye rat model with increase in effector
memory T cells in eyeball tissue. J Vis Exp. (55592)2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Zhang FD, Hao ZQ, Gao W and Xing YQ:
Effect of topical 0.05% cyclosporine A on the tear protein lacritin
in a rat model of dry eye. Int J Ophthalmol. 12:189–193.
2019.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Higuchi A, Inoue H, Kaneko Y, Oonishi E
and Tsubota K: Selenium-binding lactoferrin is taken into corneal
epithelial cells by a receptor and prevents corneal damage in dry
eye model animals. Sci Rep. 6(36903)2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Lee TG, Hyun SW, Jo K, Park B, Lee IS,
Song SJ and Kim CS: Achyranthis radix extract improves urban
particulate matter-induced dry eye disease. Int J Environ Res
Public Health. 16(3229)2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Schechter JE, Warren DW and Mircheff AK: A
lacrimal gland is a lacrimal gland, but rodent's and rabbit's are
not human. Ocul Surf. 8:111–134. 2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Chen ZY, Liang QF and Yu GY: Establishment
of a rabbit model for keratoconjunctivitis sicca. Cornea.
30:1024–1029. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Gilbard JP, Rossi SR and Gray KL: A new
rabbit model for keratoconjunctivitis sicca. Invest Ophthalmol Vis
Sci. 28:225–228. 1987.PubMed/NCBI
|
|
68
|
Beutel J, Schroder C, von Hof K, Rades D,
Kosmehl H, Wedel T, Sieg P, Geerling G and Hakim SG:
Pharmacological prevention of radiation-induced dry eye-an
experimental study in a rabbit model. Graefes Arch Clin Exp
Ophthalmol. 245:1347–1355. 2007.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Guo Z, Song D, Azzarolo AM, Schechter JE,
Warren DW, Wood RL, Mircheff AK and Kaslow HR: Autologous
lacrimal-lymphoid mixed-cell reactions induce dacryoadenitis in
rabbits. Exp Eye Res. 71:23–31. 2000.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Nagelhout TJ, Gamache DA, Roberts L, Brady
MT and Yanni JM: Preservation of tear film integrity and inhibition
of corneal injury by dexamethasone in a rabbit model of lacrimal
gland inflammation-induced dry eye. J Ocul Pharmacol Ther.
21:139–148. 2005.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Honkanen RA, Huang L, Xie G and Rigas B:
Phosphosulindac is efficacious in an improved concanavalin A-based
rabbit model of chronic dry eye disease. Transl Res. 198:58–72.
2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Demetriades AM, Leyngold IM, D'Anna S,
Eghrari AO, Emmert DG, Grant MP and Merbs SL: Intraglandular
injection of botulinum toxin a reduces tear production in rabbits.
Ophthalmic Plast Reconstr Surg. 29:21–24. 2013.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Toshida H, Nguyen DH, Beuerman RW and
Murakami A: Evaluation of novel dry eye model: Preganglionic
parasympathetic denervation in rabbit. Invest Ophthalmol Vis Sci.
48:4468–4475. 2007.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Burgalassi S, Panichi L, Chetoni P,
Saettone MF and Boldrini E: Development of a simple dry eye model
in the albino rabbit and evaluation of some tear substitutes.
Ophthalmic Res. 31:229–235. 1999.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Xiong C, Chen D, Liu J, Liu B, Li N, Zhou
Y, Liang X, Ma P, Ye C, Ge J and Wang Z: A rabbit dry eye model
induced by topical medication of a preservative benzalkonium
chloride. Invest Ophthalmol Vis Sci. 49:1850–1856. 2008.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Gilbard JP, Rossi SR and Heyda KG: Tear
film and ocular surface changes after closure of the meibomian
gland orifices in the rabbit. Ophthalmology. 96:1180–1186.
1989.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Fujihara T, Nagano T, Nakamura M and
Shirasawa E: Establishment of a rabbit short-term dry eye model. J
Ocul Pharmacol Ther. 11:503–508. 1995.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Yao XL, Peng QH, Peng J, Tan HY, Wu QL, Wu
DL, Chen M, Li CK, Li D and Zhu HA: Effects of extract of Buddleja
officinalis on partial inflammation of lacrimal gland in castrated
rabbits with dry eye. Int J Ophthalmol. 3:114–119. 2010.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Karn PR, Kim HD, Kang H, Sun BK, Jin SE
and Hwang SJ: Supercritical fluid-mediated liposomes containing
cyclosporin A for the treatment of dry eye syndrome in a rabbit
model: Comparative study with the conventional cyclosporin A
emulsion. Int J Nanomedicine. 9:3791–3800. 2014.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Bucolo C, Fidilio A, Fresta CG, Lazzara F,
Platania CBM, Cantarella G, Di Benedetto G, Burgaletto C,
Bernardini R, Piazza C, et al: Ocular pharmacological profile of
hydrocortisone in dry eye disease. Front Pharmacol.
10(1240)2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Tampucci S, Monti D, Burgalassi S, Terreni
E, Zucchetti E, Baldacci F and Chetoni P: Effect of
5-Oxo-2-pyrrolidinecarboxylic Acid (PCA) as a new topically applied
agent for dry eye syndrome treatment. Pharmaceutics.
10(137)2018.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Chen HC, Chen ZY, Wang TJ, Drew VJ, Tseng
CL, Fang HW and Lin FH: Herbal supplement in a buffer for dry eye
syndrome treatment. Int J Mol Sci. 18(1697)2017.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Huang HY, Wang MC, Chen ZY, Chiu WY, Chen
KH, Lin IC, Yang WV, Wu CC and Tseng CL: Gelatin-epigallocatechin
gallate nanoparticles with hyaluronic acid decoration as eye drops
can treat rabbit dry-eye syndrome effectively via inflammatory
relief. Int J Nanomedicine. 13:7251–7273. 2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Zhou L, Wei R, Zhao P, Koh SK, Beuerman RW
and Ding C: Proteomic analysis revealed the altered tear protein
profile in a rabbit model of Sjögren's syndrome-associated dry eye.
Proteomics. 13:2469–2481. 2013.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Bhattacharya D, Ning Y, Zhao F, Stevenson
W, Chen R, Zhang J and Wang M: Tear production after bilateral main
lacrimal gland resection in rabbits. Invest Ophthalmol Vis Sci.
56:7774–7783. 2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Ning Y, Bhattacharya D, Jones RE, Zhao F,
Chen R, Zhang J and Wang M: Evaluating the functionality of
conjunctiva using a rabbit dry eye model. J Ophthalmol.
2016(3964642)2016.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Li N, Deng X, Gao Y, Zhang S, He M and
Zhao D: Establishment of the mild, moderate and severe dry eye
models using three methods in rabbits. BMC Ophthalmol.
13(50)2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Gilbard JP, Rossi SR, Gray KL, Hanninen LA
and Kenyon KR: Tear film osmolarity and ocular surface disease in
two rabbit models for keratoconjunctivitis sicca. Invest Ophthalmol
Vis Sci. 29:374–378. 1988.PubMed/NCBI
|
|
89
|
Odaka A, Toshida H, Ohta T, Tabuchi N,
Koike D, Suto C and Murakami A: Efficacy of retinol palmitate eye
drops for dry eye in rabbits with lacrimal gland resection. Clin
Ophthalmol. 6:1585–1593. 2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Honkanen RA, Huang W, Huang L, Kaplowitz
K, Weissbart S and Rigas B: A new rabbit model of chronic dry eye
disease induced by complete surgical dacryoadenectomy. Curr Eye
Res. 44:863–872. 2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Honkanen RA, Huang L and Rigas B: A rabbit
model of aqueous-deficient dry eye disease induced by concanavalin
A injection into the lacrimal glands: Application to drug efficacy
studies. J Vis Exp, 2020.
|
|
92
|
Miyake H, Oda T, Katsuta O, Seno M and
Nakamura M: A novel model of meibomian gland dysfunction induced
with complete freund's adjuvant in rabbits. Vision (Basel).
1(10)2017.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Niamprem P, Teapavarapruk P, Srinivas SP
and Tiyaboonchai W: Impact of nanostructured lipid carriers as an
artificial tear film in a rabbit evaporative dry eye model. Cornea.
38:485–491. 2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sher I, Tzameret A, Szalapak AM, Carmeli
T, Derazne E, Avni-Zauberman N, Marcovich AL, Simon GB and
Rotenstreich Y: Multimodal assessment of corneal erosions using
optical coherence tomography and automated grading of fluorescein
staining in a rabbit dry eye model. Transl Vis Sci Technol.
8(27)2019.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Eom Y, Han JY, Kang B, Hwang HS, Lee HK,
Kim HM and Song JS: Meibomian glands and ocular surface changes
after closure of meibomian gland orifices in rabbits. Cornea.
37:218–226. 2018.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Lambert RW and Smith RE: Pathogenesis of
blepharoconjunctivitis complicating 13-cis-retinoic acid
(isotretinoin) therapy in a laboratory model. Invest Ophthalmol Vis
Sci. 29:1559–1564. 1988.PubMed/NCBI
|
|
97
|
Jester JV, Nicolaides N, Kiss-Palvolgyi I
and Smith RE: Meibomian gland dysfunction. II. The role of
keratinization in a rabbit model of MGD. Invest Ophthalmol Vis Sci.
30:936–945. 1989.PubMed/NCBI
|
|
98
|
Jester JV, Rife L, Nii D, Luttrull JK,
Wilson L and Smith RE: In vivo biomicroscopy and photography of
meibomian glands in a rabbit model of meibomian gland dysfunction.
Invest Ophthalmol Vis Sci. 22:660–667. 1982.PubMed/NCBI
|
|
99
|
Lambert R and Smith RE:
Hyperkeratinization in a rabbit model of meibomian gland
dysfunction. Am J Ophthalmol. 105:703–705. 1988.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Knop E, Knop N, Millar T, Obata H and
Sullivan DA: The international workshop on meibomian gland
dysfunction: Report of the subcommittee on anatomy, physiology, and
pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci.
52:1938–1978. 2011.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Qin G, Zhou Y, Peng J, Zhang Y, Peng X,
Peng Q and Yang Y: The effect of Buddleja officinalis maxim eye
drops on morphology and apoptosis in lacrimal gland of experimental
dry eye rabbit model. J Ophthalmol. 2019(5916243)2019.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Ma M, Yuan Q, Ye L, Liu K, Ye L, Min YL,
Jiang N, Li Q, Shi W, Xu X, et al: An experimental study of
amniotic lacrimal duct stents in the treatment of perimenopausal
female rabbits with dry eye. Mol Med Rep. 19:1056–1064.
2019.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Barabino S and Dana MR: Animal models of
dry eye: A critical assessment of opportunities and limitations.
Invest Ophthalmol Vis Sci. 45:1641–1646. 2004.PubMed/NCBI View Article : Google Scholar
|
|
104
|
McLaughlin SA, Brightman AH II, Helper LC,
Primm ND, Brown MG and Greeley S: Effect of removal of lacrimal and
third eyelid glands on Schirmer tear test results in cats. J Am Vet
Med Assoc. 193:820–822. 1988.PubMed/NCBI
|
|
105
|
Dota A, Takaoka-Shichijo Y and Nakamura M:
Gefarnate stimulates mucin-like glycoprotein secretion in
conjunctival tissue and ameliorates corneal epithelial damage in
animal dry-eye models. Clin Ophthalmol. 7:211–217. 2013.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Quimby FW, Schwartz RS, Poskitt T and
Lewis RM: A disorder of dogs resembling Sjögren's syndrome. Clin
Immunol Immunopathol. 12:471–476. 1979.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Kaswan RL, Martin CL and Chapman WL Jr:
Keratoconjunctivitis sicca: Histopathologic study of nictitating
membrane and lacrimal glands from 28 dogs. Am J Vet Res.
45:112–118. 1984.PubMed/NCBI
|
|
108
|
Kaswan RL, Martin CL and Dawe DL:
Keratoconjunctivitis sicca: Immunological evaluation of 62 canine
cases. Am J Vet Res. 46:376–383. 1985.PubMed/NCBI
|
|
109
|
Kaswan R, Pappas C Jr, Wall K and Hirsh
SG: Survey of canine tear deficiency in veterinary practice. Adv
Exp Med Biol. 438:931–939. 1998.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Gao J, Schwalb TA, Addeo JV, Ghosn CR and
Stern ME: The role of apoptosis in the pathogenesis of canine
keratoconjunctivitis sicca: The effect of topical cyclosporin A
therapy. Cornea. 17:654–663. 1998.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Helper LC, Magrane WG, Koehm J and Johnson
R: Surgical induction of keratoconjunctivitis sicca in the dog. J
Am Vet Med Assoc. 165:172–174. 1974.PubMed/NCBI
|
|
112
|
Moore CP, McHugh JB, Thorne JG and
Phillips TE: Effect of cyclosporine on conjunctival mucin in a
canine keratoconjunctivitis sicca model. Invest Ophthalmol Vis Sci.
42:653–659. 2001.PubMed/NCBI
|
|
113
|
Maitchouk DY, Beuerman RW, Ohta T, Stern M
and Varnell RJ: Tear production after unilateral removal of the
main lacrimal gland in squirrel monkeys. Arch Ophthalmol.
118:246–252. 2000.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Qin Y, Tan X, Zhang Y, Jie Y, Labbe A and
Pan Z: A new nonhuman primate model of severe dry eye. Cornea.
33:510–517. 2014.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Wong CC, Cheng KW, Xie G, Zhou D, Zhu CH,
Constantinides PP and Rigas B: Carboxylesterases 1 and 2 hydrolyze
phospho-nonsteroidal anti-inflammatory drugs: Relevance to their
pharmacological activity. J Pharmacol Exp Ther. 340:422–432.
2012.PubMed/NCBI View Article : Google Scholar
|