|
1
|
Neogi T: The epidemiology and impact of
pain in osteoarthritis. Osteoarthritis Cartilage. 21:1145–1153.
2013.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Barbour KE, Helmick CG, Boring M and Brady
TJ: Vital Signs: Prevalence of Doctor-Diagnosed Arthritis and
Arthritis-Attributable Activity Limitation - United States,
2013-2015. MMWR Morb Mortal Wkly Rep. 66:246–253. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Glyn-Jones S, Palmer AJR, Agricola R,
Price AJ, Vincent TL, Weinans H and Carr AJ: Osteoarthritis.
Lancet. 386:376–387. 2015.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Taruc-Uy RL and Lynch SA: Diagnosis and
treatment of osteoarthritis. Prim Care. 40:821–836, vii.
2013.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Hochberg MC, Altman RD, April KT,
Benkhalti M, Guyatt G, McGowan J, Towheed T, Welch V, Wells G and
Tugwell P: American College of Rheumatology. American College of
Rheumatology 2012 recommendations for the use of nonpharmacologic
and pharmacologic therapies in osteoarthritis of the hand, hip, and
knee. Arthritis Care Res (Hoboken). 64:465–474. 2012.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Rausch Osthoff AK, Niedermann K, Braun J,
Adams J, Brodin N, Dagfinrud H, Duruoz T, Esbensen BA, Günther KP,
Hurkmans E, et al: 2018 EULAR recommendations for physical activity
in people with inflammatory arthritis and osteoarthritis. Ann Rheum
Dis. 77:1251–1260. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK,
Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are
abundant, conserved, and associated with ALU repeats. RNA.
19:141–157. 2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Salzman J, Gawad C, Wang PL, Lacayo N and
Brown PO: Circular RNAs are the predominant transcript isoform from
hundreds of human genes in diverse cell types. PLoS One.
7(e30733)2012.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Suzuki H and Tsukahara T: A view of
pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci.
15:9331–9342. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ivanov A, Memczak S, Wyler E, Torti F,
Porath HT, Orejuela MR, Piechotta M, Levanon EY, Landthaler M,
Dieterich C, et al: Analysis of intron sequences reveals hallmarks
of circular RNA biogenesis in animals. Cell Rep. 10:170–177.
2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Du WW, Yang W, Chen Y, Wu ZK, Foster FS,
Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac
senescence by modulating multiple factors associated with stress
and senescence responses. Eur Heart J. 38:1402–1412.
2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Guo JU, Agarwal V, Guo H and Bartel DP:
Expanded identification and characterization of mammalian circular
RNAs. Genome Biol. 15(409)2014.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Zhang Y, Zhang XO, Chen T, Xiang JF, Yin
QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long
noncoding RNAs. Mol Cell. 51:792–806. 2013.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang
X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs
regulate transcription in the nucleus. Nat Struct Mol Biol.
22:256–264. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Thomas LF and Sætrom P: Circular RNAs are
depleted of polymorphisms at microRNA binding sites.
Bioinformatics. 30:2243–2246. 2014.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Krol J, Loedige I and Filipowicz W: The
widespread regulation of microRNA biogenesis, function and decay.
Nat Rev Genet. 11:597–610. 2010.PubMed/NCBI View
Article : Google Scholar
|
|
17
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Memczak S, Jens M, Elefsinioti A, Torti F,
Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer
M, et al: Circular RNAs are a large class of animal RNAs with
regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Hansen TB, Wiklund ED, Bramsen JB,
Villadsen SB, Statham AL, Clark SJ and Kjems J: miRNA-dependent
gene silencing involving Ago2-mediated cleavage of a circular
antisense RNA. EMBO J. 30:4414–4422. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Hansen TB, Jensen TI, Clausen BH, Bramsen
JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function
as efficient microRNA sponges. Nature. 495:384–388. 2013.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zheng Q, Bao C, Guo W, Li S, Chen J, Chen
B, Luo Y, Lyu D, Li Y, Shi G, et al: Circular RNA profiling reveals
an abundant circHIPK3 that regulates cell growth by sponging
multiple miRNAs. Nat Commun. 7(11215)2016.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chen B, Yu J, Guo L, Byers MS, Wang Z,
Chen X, Xu H and Nie Q: Circular RNA circHIPK3 promotes the
proliferation and differentiation of chicken myoblast cells by
sponging miR-30a-3p. Cells. 8(E177)2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Li Y, Zheng F, Xiao X, Xie F, Tao D, Huang
C, Liu D, Wang M, Wang L, Zeng F, et al: CircHIPK3 sponges miR-558
to suppress heparanase expression in bladder cancer cells. EMBO
Rep. 18:1646–1659. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zhou ZB, Huang GX, Fu Q, Han B, Lu JJ,
Chen AM and Zhu L: circRNA.33186 Contributes to the pathogenesis of
osteoarthritis by sponging miR-127-5p. Mol Ther. 27:531–541.
2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Zhou Z, Du D, Chen A and Zhu L: Circular
RNA expression profile of articular chondrocytes in an
IL-1β-induced mouse model of osteoarthritis. Gene. 644:20–26.
2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Shi L, Yan P, Liang Y, Sun Y, Shen J, Zhou
S, Lin H, Liang X and Cai X: Circular RNA expression is suppressed
by androgen receptor (AR)-regulated adenosine deaminase that acts
on RNA (ADAR1) in human hepatocellular carcinoma. Cell Death Dis.
8(e3171)2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Legnini I, Di Timoteo G, Rossi F, Morlando
M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade
M, et al: Circ-ZNF609 is a circular RNA that can be translated and
functions in myogenesis. Mol Cell. 66:22–37.e9. 2017.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Pamudurti NR, Bartok O, Jens M,
Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E,
Perez-Hernandez D, Ramberger E, et al: Translation of CircRNAs. Mol
Cell. 66:9–21.e7. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Kerr JF, Wyllie AH and Currie AR:
Apoptosis: A basic biological phenomenon with wide-ranging
implications in tissue kinetics. Br J Cancer. 26:239–257.
1972.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fu Q, Li L, Wang B, Wu J, Li H, Han Y,
Xiang D, Chen Y and Zhu J: CircADAMTS6/miR-431-5p axis regulate
interleukin-1β induced chondrocyte apoptosis. J Gene Med.
23(e3304)2021.PubMed/NCBI View
Article : Google Scholar
|
|
31
|
Wu Q, Yuan ZH, Ma XB and Tang XH: Low
expression of CircRNA HIPK3 promotes osteoarthritis chondrocyte
apoptosis by serving as a sponge of miR-124 to regulate SOX8. Eur
Rev Med Pharmacol Sci. 24:7937–7945. 2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhou JL, Deng S, Fang HS, Du XJ, Peng H
and Hu QJ: Circular RNA circANKRD36 regulates Casz1 by targeting
miR-599 to prevent osteoarthritis chondrocyte apoptosis and
inflammation. J Cell Mol Med. 25:120–131. 2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Huang Z, Ma W, Xiao J, Dai X and Ling W:
CircRNA_0092516 regulates chondrocyte proliferation and apoptosis
in osteoarthritis through the miR-337-3p/PTEN axis. J Biochem.
169:467–475. 2021.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang Q, Luo S, Yang J, Li J, Huan S, She G
and Zha Z: Circ_0114876 promoted IL-1β-induced chondrocyte injury
by targeting miR-671/TRAF2 axis. Biotechnol Lett. 43:791–802.
2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhang J, Cheng F, Rong G, Tang Z and Gui
B: Hsa_circ_0005567 activates autophagy and suppresses
IL-1β-Induced shondrocyte apoptosis by regulating miR-495. Front
Mol Biosci. 7(216)2020.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Loeser RF, Goldring SR, Scanzello CR and
Goldring MB: Osteoarthritis: A disease of the joint as an organ.
Arthritis Rheum. 64:1697–1707. 2012.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Loeser RF: Molecular mechanisms of
cartilage destruction in osteoarthritis. J Musculoskelet Neuronal
Interact. 8:303–306. 2008.PubMed/NCBI
|
|
38
|
Goldring MB: The role of the chondrocyte
in osteoarthritis. Arthritis Rheum. 43:1916–1926. 2000.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Di Liu D, Liang YH, Yang YT, He M, Cai ZJ,
Xiao WF and Li YS: Circular RNA in osteoarthritis: an updated
insight into the pathophysiology and therapeutics. Am J Transl Res.
13:11–23. 2021.PubMed/NCBI
|
|
40
|
Wu Y, Hong Z, Xu W, Chen J, Wang Q, Chen
J, Ni W, Mei Z, Xie Z, Ma Y, et al: Circular RNA circPDE4D protects
against osteoarthritis by binding to miR-103a-3p and regulating
FGF18. Mol Ther. 29:308–323. 2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Shen P, Yang Y, Liu G, Chen W, Chen J,
Wang Q, Gao H, Fan S, Shen S and Zhao X: CircCDK14 protects against
osteoarthritis by sponging miR-125a-5p and promoting the expression
of Smad2. Theranostics. 10:9113–9131. 2020.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Jiang R, Gao H, Cong F, Zhang W, Song T
and Yu Z: Circ_DHRS3 positively regulates GREM1 expression by
competitively targeting miR-183-5p to modulate IL-1β-administered
chondrocyte proliferation, apoptosis and ECM degradation. Int
Immunopharmacol. 91(107293)2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Xiao J, Wang R, Zhou W, Cai X and Ye Z:
Circular RNA CSNK1G1 promotes the progression of osteoarthritis by
targeting the miR 4428/FUT2 axis. Int J Mol Med. 47:232–242.
2021.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Bai ZM, Kang MM, Zhou XF and Wang D:
CircTMBIM6 promotes osteoarthritis-induced chondrocyte
extracellular matrix degradation via miR-27a/MMP13 axis. Eur Rev
Med Pharmacol Sci. 24:7927–7936. 2020.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Yang Y, Shen P, Yao T, Ma J, Chen Z, Zhu
J, Gong Z, Shen S and Fang X: Novel role of circRSU1 in the
progression of osteoarthritis by adjusting oxidative stress.
Theranostics. 11:1877–1900. 2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Zhang Y, Zhang Y, Li X, Zhang M and Lv K:
Microarray analysis of circular RNA expression patterns in
polarized macrophages. Int J Mol Med. 39:373–379. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Liu CX, Li X, Nan F, Jiang S, Gao X, Guo
SK, Xue W, Cui Y, Dong K, Ding H, et al: Structure and degradation
of circular RNAs regulate PKR activation in innate immunity. Cell.
177:865–880.e21. 2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Kalaitzoglou E, Griffin TM and Humphrey
MB: Innate immune responses and osteoarthritis. Curr Rheumatol Rep.
19(45)2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Klein-Wieringa IR, de Lange-Brokaar BJ,
Yusuf E, Andersen SN, Kwekkeboom JC, Kroon HM, van Osch GJ,
Zuurmond AM, Stojanovic-Susulic V, Nelissen RG, et al: Inflammatory
cells in patients with endstage knee osteoarthritis: A comparison
between the synovium and the infrapatellar fat pad. J Rheumatol.
43:771–778. 2016.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zhang W, Qi L, Chen R, He J, Liu Z, Wang
W, Tu C and Li Z: Circular RNAs in osteoarthritis: indispensable
regulators and novel strategies in clinical implications. Arthritis
Res Ther. 23(23)2021.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Chen C: Serum hsa_circ_101178 as a
Potential Biomarker for Early Prediction of Osteoarthritis. Clin
Lab: Aug 1, 2020 (Epub ahead of print). doi:
10.7754/Clin.Lab.2020.191251.
|
|
52
|
Yao T, Yang Y, Xie Z, Xu Y, Huang Y, Gao
J, Shen S, Ye H, Iranmanesh Y, Fan S, et al: Circ0083429 regulates
osteoarthritis progression via the Mir-346/SMAD3 axis. Front Cell
Dev Biol. 8(579945)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Zhou Z, Ma J, Lu J, Chen A and Zhu L:
Circular RNA CircCDH13 contributes to the pathogenesis of
osteoarthritis via CircCDH13/miR-296-3p/PTEN axis. J Cell Physiol.
236:3521–3535. 2021.PubMed/NCBI View Article : Google Scholar
|
|
54
|
De Bari C and Roelofs AJ: Stem cell-based
therapeutic strategies for cartilage defects and osteoarthritis.
Curr Opin Pharmacol. 40:74–80. 2018.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Pittenger MF, Mackay AM, Beck SC, Jaiswal
RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and
Marshak DR: Multilineage potential of adult human mesenchymal stem
cells. Science. 284:143–147. 1999.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Demoor M, Ollitrault D, Gomez-Leduc T,
Bouyoucef M, Hervieu M, Fabre H, Lafont J, Denoix JM, Audigié F,
Mallein-Gerin F, et al: Cartilage tissue engineering: Molecular
control of chondrocyte differentiation for proper cartilage matrix
reconstruction. Biochim Biophys Acta. 1840:2414–2440.
2014.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yang L, Bin Z, Hui S, Rong L, You B, Wu P,
Han X, Qian H and Xu W: The role of CDR1as in proliferation and
differentiation of human umbilical cord-derived mesenchymal stem
cells. Stem Cells Int. 2019(2316834)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Tu C, He J, Chen R and Li Z: The Emerging
role of exosomal non-coding RNAs in musculoskeletal diseases. Curr
Pharm Des. 25:4523–4535. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Pegtel DM and Gould SJ: Exosomes. Annu Rev
Biochem. 88:487–514. 2019.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Staubach S, Bauer FN, Tertel T, Börger V,
Stambouli O, Salzig D and Giebel B: Scaled preparation of
extracellular vesicles from conditioned media. Adv Drug Deliv Rev.
177(113940)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Zoulikha M, Xiao Q, Boafo GF, Sallam MA,
Chen Z and He W: Pulmonary delivery of siRNA against acute lung
injury/acute respiratory distress syndrome. Acta Pharm Sin B: Aug
12, 202 (Epub ahead of print). doi: 10.1016/j.apsb.2021.08.009.
|
|
62
|
Chang X, Ma Z, Zhu G, Lu Y and Yang J: New
perspective into mesenchymal stem cells: Molecular mechanisms
regulating osteosarcoma. J Bone Oncol. 29(100372)2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
van der Pol E, Böing AN, Harrison P, Sturk
A and Nieuwland R: Classification, functions, and clinical
relevance of extracellular vesicles. Pharmacol Rev. 64:676–705.
2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Yang L, Han B, Zhang Z, Wang S, Bai Y,
Zhang Y, Tang Y, Du L, Xu L, Wu F, et al: Extracellular
vesicle-mediated delivery of circular RNA SCMH1 promotes functional
recovery in rodent and nonhuman primate ischemic stroke models.
Circulation. 142:556–574. 2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Liu D, Liang YH, Yang YT, He M, Cai ZJ,
Xiao WF and Li YS: Circular RNA in osteoarthritis: An updated
insight into the pathophysiology and therapeutics. Am J Transl Res.
13:11–23. 2021.PubMed/NCBI
|