Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Suplementary_Data.pdf
Article Open Access

MicroRNA‑3148 inhibits glioma by decreasing DCUN1D1 and inhibiting the NF‑kB pathway

  • Authors:
    • Qianghua Xu
    • Xiao Chen
    • Bin Chen
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, The First People's Hospital of Jingmen, Jingmen, Hubei 448000, P.R. China, Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, P.R. China
    Copyright: © Xu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 28
    |
    Published online on: November 8, 2021
       https://doi.org/10.3892/etm.2021.10950
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glioma, which originates in the brain, is the most aggressive tumor of the central nervous system. It has been shown that microRNA (miRNA) controls the proliferation, migration and apoptosis of glioma cells. The objective of the present study was to measure microRNA‑3148 (miR‑3148) expression and investigate its impact on the pathogenetic mechanism of glioma. In the present study, reverse transcription‑quantitative real‑time PCR was employed to detect miR‑3148 expression levels in glioma tissues and cell lines. Cell Counting Kit‑8 assay, 5‑ethynyl‑2'‑deoxyuridine assay, and Transwell migration assay were performed to assess the influence of miR‑3148 on the malignant biological behavior of glioma cells. The biological functions of miR‑3148 in glioma were examined via a xenograft tumor growth assay. Furthermore, the association between miR‑3148 and DCUN1D1 was investigated via immunohistochemistry, dual‑luciferase reporter assay and western blotting. It was observed that miR‑3148 was expressed at low levels in glioma cells, and this represented a poor survival rate. In addition, an increased level of miR‑3148 in cells and animal models inhibited glioma cell migration and proliferation. Moreover, miR‑3148 decreased DCUN1D1 and curbed the nuclear factor κ enhancer binding protein (NF‑κB) signaling pathway, thus decreasing the growth of glioma. Thus, miR‑3148 is expressed within glioma tissues at low levels where it suppresses glioma by curbing the NF‑κB pathway and lowering DCUN1D1.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Kaubriene EM, Meskinyte I, Cicenas J and Suziedelis K: Non-coding RNAs in glioma. Cancers (Basel). 11(17)2018.PubMed/NCBI View Article : Google Scholar

2 

Chen Y, Bao C, Zhang X, Lin X, Huang H and Wang Z: Long non-coding RNA HCG11 modulates glioma progression through cooperating with miR-496/CPEB3 axis. Cell Prolif. 52(e12615)2019.PubMed/NCBI View Article : Google Scholar

3 

Zheng Y, Lu S, Xu Y and Zheng J: Long non-coding RNA AGAP2-AS1 promotes the proliferation of glioma cells by sponging miR-15a/b-5p to upregulate the expression of HDGF and activating wnt/beta-catenin signaling pathway. Int J Biol Macromol. 128:521–530. 2019.PubMed/NCBI View Article : Google Scholar

4 

Zhou Z, Huang R, Chai R, Zhou X, Hu Z, Wang W, Chen B, Deng L, Liu Y and Wu F: Identification of an energy metabolism-related signature associated with clinical prognosis in diffuse glioma. Aging (Albany NY). 10:3185–3209. 2018.PubMed/NCBI View Article : Google Scholar

5 

Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E and Zhao B: Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer. 1873(188353)2020.PubMed/NCBI View Article : Google Scholar

6 

Kundu M, Das S, Dhara D and Mandal M: Prospect of natural products in glioma: A novel avenue in glioma management. Phytother Res. 33:2571–2584. 2019.PubMed/NCBI View Article : Google Scholar

7 

Yan C, Wang J, Yang Y, Ma W and Chen X: Molecular biomarker-guided anti-angiogenic targeted therapy for malignant glioma. J Cell Mol Med. 23:4876–4882. 2019.PubMed/NCBI View Article : Google Scholar

8 

Cao H, Li X, Wang F, Zhang Y, Xiong Y and Yang Q: Phytochemical-mediated glioma targeted treatment: Drug resistance and novel delivery systems. Curr Med Chem. 27:599–629. 2020.PubMed/NCBI View Article : Google Scholar

9 

Orellana EA, Li C, Lisevick A and Kasinski AL: Identification and validation of microRNAs that synergize with miR-34a-a basis for combinatorial microRNA therapeutics. Cell Cycle. 18:1798–1811. 2019.PubMed/NCBI View Article : Google Scholar

10 

Pereira TD, Brito JAR, Guimarães ALS, Gomes CC, de Lacerda JC, de Castro WH, Coimbra RS, Diniz MG and Gomez RS: MicroRNA profiling reveals dysregulated microRNAs and their target gene regulatory networks in cemento-ossifying fibroma. J Oral Pathol Med. 47:78–85. 2018.PubMed/NCBI View Article : Google Scholar

11 

Witwer KW and Halushka MK: Toward the promise of microRNAs-enhancing reproducibility and rigor in microRNA research. RNA Biol. 13:1103–1116. 2016.PubMed/NCBI View Article : Google Scholar

12 

Seo HA, Moeng S, Sim S, Kuh HJ, Choi SY and Park JK: MicroRNA-based combinatorial cancer therapy: Effects of microRNAs on the efficacy of anti-cancer therapies. Cells. 9(29)2019.PubMed/NCBI View Article : Google Scholar

13 

Koufaris C: Human and primate-specific microRNAs in cancer: Evolution, and significance in comparison with more distantly-related research models: The great potential of evolutionary young microRNA in cancer research. Bioessays. 38:286–294. 2016.PubMed/NCBI View Article : Google Scholar

14 

Sakaue S, Hirata J, Maeda Y, Kawakami E, Nii T, Kishikawa T, Ishigaki K, Terao C, Suzuki K, Akiyama M, et al: Integration of genetics and miRNA-target gene network identified disease biology implicated in tissue specificity. Nucleic Acids Res. 46:11898–11909. 2018.PubMed/NCBI View Article : Google Scholar

15 

Yan D, Hao C, Xiao-Feng L, Yu-Chen L, Yu-Bin F and Lei Z: Molecular mechanism of notch signaling with special emphasis on microRNAs: Implications for glioma. J Cell Physiol. 234:158–170. 2018.PubMed/NCBI View Article : Google Scholar

16 

Peng Y, Wang X, Guo Y, Peng F, Zheng N, He B, Ge H, Tao L and Wang Q: Pattern of cell-to-cell transfer of microRNA by gap junction and its effect on the proliferation of glioma cells. Cancer Sci. 110:1947–1958. 2019.PubMed/NCBI View Article : Google Scholar

17 

Xu H, Zhao G, Zhang Y, Jiang H, Wang W, Zhao D, Hong J, Yu H and Qi L: Mesenchymal stem cell-derived exosomal microRNA-133b suppresses glioma progression via wnt/β-catenin signaling pathway by targeting EZH2. Stem Cell Res Ther. 10(381)2019.PubMed/NCBI View Article : Google Scholar

18 

Wang H and Xie Y: BRD7-mediated miR-3148 inhibits progression of cervical cancer by targeting wnt3a/β-catenin pathway. Reprod Sci. 27:877–887. 2020.PubMed/NCBI View Article : Google Scholar

19 

Liu S, Yin F, Zhang J, Wicha MS, Chang AE, Fan W, Chen L, Fan M and Li Q: Regulatory roles of miRNA in the human neural stem cell transformation to glioma stem cells. J Cell Biochem. 115:1368–1380. 2014.PubMed/NCBI View Article : Google Scholar

20 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2004.PubMed/NCBI View Article : Google Scholar

21 

Broderick SR, Golas BJ, Pham D, Towe CW, Talbot SG, Kaufman A, Bains S, Huryn LA, Yonekawa Y, Carlson D, et al: SCCRO promotes glioma formation and malignant progression in mice. Neoplasia. 12:476–484. 2010.PubMed/NCBI View Article : Google Scholar

22 

Tan C, Liu L, Liu X, Qi L, Wang W, Zhao G, Wang L and Dai Y: Activation of PTGS2/NF-κB signaling pathway enhances radiation resistance of glioma. Cancer Med. 8:1175–1185. 2019.PubMed/NCBI View Article : Google Scholar

23 

Geeviman K, Babu D and Babu PP: Pantoprazole induces mitochondrial apoptosis and attenuates NF-κB signaling in glioma cells. Cell Mol Neurobiol. 38:1491–1504. 2018.PubMed/NCBI View Article : Google Scholar

24 

Ius T, Ciani Y, Ruaro ME, Isola M, Sorrentino M, Bulfoni M, Candotti V, Correcig C, Bourkoula E, Manini I, et al: An NF-κB signature predicts low-grade glioma prognosis: A precision medicine approach based on patient-derived stem cells. Neuro Oncol. 20:776–787. 2018.PubMed/NCBI View Article : Google Scholar

25 

Hou G, Xu W, Jin Y, Wu J, Pan Y and Zhou F: MiRNA-217 accelerates the proliferation and migration of bladder cancer via inhibiting KMT2D. Biochem Biophys Res Commun. 519:747–753. 2019.PubMed/NCBI View Article : Google Scholar

26 

Wang R, Sun Y, Yu W, Qiao M, Jiang R, Guan W and Wang L: Downregulation of miRNA-214 in cancer-associated fibroblasts contributes to migration and invasion of gastric cancer cells through targeting FGF9 and inducing EMT. J Exp Clin Cancer Res. 38(20)2019.PubMed/NCBI View Article : Google Scholar

27 

Hetta HF, Zahran AM, Shafik EA, El-Mahdy RI, Mohamed NA, Nabil EE, Esmaeel HM, Alkady OA, Elkady A, Mohareb DA, et al: Circulating miRNA-21 and miRNA-23a expression signature as potential biomarkers for early detection of non-small-cell lung cancer. Microrna. 8:206–215. 2019.PubMed/NCBI View Article : Google Scholar

28 

Zhou Q, Liu J, Quan J, Liu W, Tan H and Li W: MicroRNAs as potential biomarkers for the diagnosis of glioma: A systematic review and meta-analysis. Cancer Sci. 109:2651–2659. 2018.PubMed/NCBI View Article : Google Scholar

29 

Cheng W, Ren X, Zhang C, Han S and Wu A: Expression and prognostic value of microRNAs in lower-grade glioma depends on IDH1/2 status. J Neurooncol. 132:207–218. 2017.PubMed/NCBI View Article : Google Scholar

30 

Xiong W, Ran J, Jiang R, Guo P, Shi X, Li H, Lv X, Li J and Chen D: miRNA-320a inhibits glioma cell invasion and migration by directly targeting aquaporin 4. Oncol Rep. 39:1939–1947. 2018.PubMed/NCBI View Article : Google Scholar

31 

Huntzinger E and Izaurralde E: Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011.PubMed/NCBI View Article : Google Scholar

32 

Kim AY, Bommeljé CC, Lee BE, Yonekawa Y, Choi L, Morris LG, Huang G, Kaufman A, Ryan RJ, Hao B, et al: SCCRO (DCUN1D1) is an essential component of the E3 complex for neddylation. J Biol Chem. 283:33211–33220. 2008.PubMed/NCBI View Article : Google Scholar

33 

Huang G, Kaufman AJ, Ramanathan Y and Singh B: SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. J Biol Chem. 286:10297–10304. 2011.PubMed/NCBI View Article : Google Scholar

34 

Sarkaria I, O-charoenrat P, Talbot SG, Reddy PG, Ngai I, Maghami E, Patel KN, Lee B, Yonekawa Y, Dudas M, et al: Squamous cell carcinoma related oncogene/DCUN1D1 is highly conserved and activated by amplification in squamous cell carcinomas. Cancer Res. 66:9437–9444. 2006.PubMed/NCBI View Article : Google Scholar

35 

O-charoenrat P, Sarkaria I, Talbot SG, Reddy P, Dao S, Ngai I, Shaha A, Kraus D, Shah J, Rusch V, et al: SCCRO (DCUN1D1) induces extracellular matrix invasion by activating matrix metalloproteinase 2. Clin Cancer Res. 14:6780–6789. 2008.PubMed/NCBI View Article : Google Scholar

36 

Williams LM and Gilmore TD: Looking down on NF-κB. Mol Cell Biol. 40:e00104–e00120. 2020.PubMed/NCBI View Article : Google Scholar

37 

Zhou L, Deng ZZ, Li HY, Jiang N, Wei ZS, Hong MF, Chen XD, Wang JH, Zhang MX, Sh YH, et al: TRIM31 promotes glioma proliferation and invasion through activating NF-κB pathway. Onco Targets Ther. 12:2289–2297. 2019.PubMed/NCBI View Article : Google Scholar

38 

Zhou Y, Tan Z, Chen K, Wu W, Zhu J, Wu G, Cao L, Zhang X, Zeng X, Li J and Zhang W: Overexpression of SHCBP1 promotes migration and invasion in gliomas by activating the NF-κB signaling pathway. Mol Carcinog. 57:1181–1190. 2018.PubMed/NCBI View Article : Google Scholar

39 

Hai L, Liu P, Yu S, Yi L, Tao Z, Zhang C, Abeysekera IR, Li T, Tong L, Ma H, et al: Jagged1 is clinically prognostic and promotes invasion of glioma-initiating cells by activating NF-κB(p65) signaling. Cell Physiol Biochem. 51:2925–2937. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Xu Q, Chen X and Chen B: MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway. Exp Ther Med 23: 28, 2022.
APA
Xu, Q., Chen, X., & Chen, B. (2022). MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway. Experimental and Therapeutic Medicine, 23, 28. https://doi.org/10.3892/etm.2021.10950
MLA
Xu, Q., Chen, X., Chen, B."MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway". Experimental and Therapeutic Medicine 23.1 (2022): 28.
Chicago
Xu, Q., Chen, X., Chen, B."MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway". Experimental and Therapeutic Medicine 23, no. 1 (2022): 28. https://doi.org/10.3892/etm.2021.10950
Copy and paste a formatted citation
x
Spandidos Publications style
Xu Q, Chen X and Chen B: MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway. Exp Ther Med 23: 28, 2022.
APA
Xu, Q., Chen, X., & Chen, B. (2022). MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway. Experimental and Therapeutic Medicine, 23, 28. https://doi.org/10.3892/etm.2021.10950
MLA
Xu, Q., Chen, X., Chen, B."MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway". Experimental and Therapeutic Medicine 23.1 (2022): 28.
Chicago
Xu, Q., Chen, X., Chen, B."MicroRNA‑3148 inhibits glioma by decreasing <em>DCUN1D1</em> and inhibiting the NF‑kB pathway". Experimental and Therapeutic Medicine 23, no. 1 (2022): 28. https://doi.org/10.3892/etm.2021.10950
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team