Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)

  • Authors:
    • Jiejie Li
    • Yuanyuan Zhao
    • Wei Zhu
  • View Affiliations / Copyright

    Affiliations: Jiangsu Key Laboratory of Medical Science and Laboratory of Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
  • Article Number: 64
    |
    Published online on: November 22, 2021
       https://doi.org/10.3892/etm.2021.10986
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute myocardial infarction (AMI) remains the main cause of mortality worldwide. Despite surgery and medical treatment, the non‑regeneration of dead cardiomyocytes and the limited contractile ability of scar tissue can lead to heart failure. Therefore, restoring blood flow in the infarcted area is important for the repair of myocardial injury. The objective of the present review was to summarize the factors influencing angiogenesis after AMI, and to describe the application of angiogenesis for cardiac repair. Collectively, this review may be helpful for relevant studies and to provide insight into future therapeutic applications in clinical practice.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Mehta LS, Beckie TM, DeVon HA, Grines CL, Krumholz HM, Johnson MN, Lindley KJ, Vaccarino V, Wang TY, Watson KE, et al: American Heart Association Cardiovascular Disease in Women and Special Populations Committee of the Council on Clinical Cardiology, Council on Epidemiology and Prevention, Council on Cardiovascular and Stroke Nursing, and Council on Quality of Care and Outcomes Research: Acute Myocardial Infarction in Women: A Scientific Statement From the American Heart Association. Circulation. 133:916–947. 2016.PubMed/NCBI View Article : Google Scholar

2 

Reed GW, Rossi JE and Cannon CP: Acute myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar

3 

Frangogiannis NG: Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med. 65:70–99. 2019.PubMed/NCBI View Article : Google Scholar

4 

Mitsos S, Katsanos K, Koletsis E, Kagadis GC, Anastasiou N, Diamantopoulos A, Karnabatidis D and Dougenis D: Therapeutic angiogenesis for myocardial ischemia revisited: Basic biological concepts and focus on latest clinical trials. Angiogenesis. 15:1–22. 2012.PubMed/NCBI View Article : Google Scholar

5 

Lorier G, Touriño C and Kalil RA: Coronary angiogenesis as an endogenous response to myocardial ischemia in adults. Arq Bras Cardiol. 97:e140–e148. 2011.PubMed/NCBI View Article : Google Scholar

6 

Vandekeere S, Dewerchin M and Carmeliet P: Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting. Microcirculation. 22:509–517. 2015.PubMed/NCBI View Article : Google Scholar

7 

Weinstein N, Mendoza L, Gitler I and Klapp J: A network model to explore the effect of the micro-environment on endothelial cell behavior during angiogenesis. Front Physiol. 8(960)2017.PubMed/NCBI View Article : Google Scholar

8 

Frangogiannis NG: The extracellular matrix in myocardial injury, repair, and remodeling. J Clin Invest. 127:1600–1612. 2017.PubMed/NCBI View Article : Google Scholar

9 

Frangogiannis NG: Pathophysiology of myocardial infarction. Compr Physiol. 5:1841–1875. 2015.PubMed/NCBI View Article : Google Scholar

10 

Ferraro B, Leoni G, Hinkel R, Ormanns S, Paulin N, Ortega-Gomez A, Viola JR, de Jong R, Bongiovanni D, Bozoglu T, et al: Pro-angiogenic macrophage phenotype to promote myocardial repair. J Am Coll Cardiol. 73:2990–3002. 2019.PubMed/NCBI View Article : Google Scholar

11 

Wang N, Liu C, Wang X, He T, Li L, Liang X, Wang L, Song L, Wei Y, Wu Q, et al: Hyaluronic acid oligosaccharides improve myocardial function reconstruction and angiogenesis against myocardial infarction by regulation of macrophages. Theranostics. 9:1980–1992. 2019.PubMed/NCBI View Article : Google Scholar

12 

Saraswati S, Marrow SMW, Watch LA and Young PP: Identification of a pro-angiogenic functional role for FSP1-positive fibroblast subtype in wound healing. Nat Commun. 10(3027)2019.PubMed/NCBI View Article : Google Scholar

13 

Mouton AJ, Ma Y, Rivera Gonzalez OJ, Daseke MJ II, Flynn ER, Freeman TC, Garrett MR, DeLeon-Pennell KY and Lindsey ML: Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res Cardiol. 114(6)2019.PubMed/NCBI View Article : Google Scholar

14 

Befani C and Liakos P: Hypoxia upregulates integrin gene expression in microvascular endothelial cells and promotes their migration and capillary-like tube formation. Cell Biol Int. 41:769–778. 2017.PubMed/NCBI View Article : Google Scholar

15 

Bartoszewski R, Moszyńska A, Serocki M, Cabaj A, Polten A, Ochocka R, Dell'Italia L, Bartoszewska S, Króliczewski J, Dąbrowski M, et al: Primary endothelial cell-specific regulation of hypoxia-inducible factor (HIF)-1 and HIF-2 and their target gene expression profiles during hypoxia. FASEB J. 33:7929–7941. 2019.PubMed/NCBI View Article : Google Scholar

16 

Zhang B, Niu W, Dong HY, Liu ML, Luo Y and Li ZC: Hypoxia induces endothelial mesenchymal transition in pulmonary vascular remodeling. Int J Mol Med. 42:270–278. 2018.PubMed/NCBI View Article : Google Scholar

17 

Ribatti D, Tamma R and Vacca A: Mast cells and angiogenesis in human plasma cell malignancies. Int J Mol Sci. 20(20)2019.PubMed/NCBI View Article : Google Scholar

18 

Fetz AE, Radic MZ and Bowlin GL: Neutrophils in biomaterial-guided tissue regeneration: Matrix reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106. 2021.PubMed/NCBI View Article : Google Scholar

19 

Aldabbous L, Abdul-Salam V, McKinnon T, Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C, Wilkins MR, Toshner M, et al: Neutrophil extracellular traps promote angiogenesis: Evidence from vascular pathology in pulmonary hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087. 2016.PubMed/NCBI View Article : Google Scholar

20 

Mukai K, Tsai M, Saito H and Galli SJ: Mast cells as sources of cytokines, chemokines, and growth factors. Immunol Rev. 282:121–150. 2018.PubMed/NCBI View Article : Google Scholar

21 

Nishida Y, Yamada Y, Kanemaru H, Ohazama A, Maeda T and Seo K: Vascularization via activation of VEGF-VEGFR signaling is essential for peripheral nerve regeneration. Biomed Res. 39:287–294. 2018.PubMed/NCBI View Article : Google Scholar

22 

Chen Y, Zhao B, Zhu Y, Zhao H and Ma C: HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint osteoarthritis. Am J Transl Res. 11:2969–2982. 2019.PubMed/NCBI

23 

Pitulescu ME, Schmidt I, Giaimo BD, Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D, Rocha SF, et al: Dll4 and Notch signalling couples sprouting angiogenesis and artery formation. Nat Cell Biol. 19:915–927. 2017.PubMed/NCBI View Article : Google Scholar

24 

Kume T: Ligand-dependent Notch signaling in vascular formation. Adv Exp Med Biol. 727:210–222. 2012.PubMed/NCBI View Article : Google Scholar

25 

Gallo S, Sala V, Gatti S and Crepaldi T: Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin Sci (Lond). 129:1173–1193. 2015.PubMed/NCBI View Article : Google Scholar

26 

Thavapalachandran S, Grieve SM, Hume RD, Le TY, Raguram K, Hudson JE, Pouliopoulos J, Figtree GA, Dye RP, Barry AM, et al: Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Sci Transl Med. 12(12)2020.PubMed/NCBI View Article : Google Scholar

27 

Liu S, Chen J, Shi J, Zhou W, Wang L, Fang W, Zhong Y, Chen X, Chen Y, Sabri A, et al: M1-like macrophage-derived exosomes suppress angiogenesis and exacerbate cardiac dysfunction in a myocardial infarction microenvironment. Basic Res Cardiol. 115(22)2020.PubMed/NCBI View Article : Google Scholar

28 

Zhang Z, Coutinho AE, Man TY, Kipari TM, Hadoke PW, Salter DM, Seckl JR and Chapman KE: Macrophage 11β-HSD-1 deficiency promotes inflammatory angiogenesis. J Endocrinol. 234:291–299. 2017.PubMed/NCBI View Article : Google Scholar

29 

Hueso L, Rios-Navarro C, Ruiz-Sauri A, Chorro FJ, Nunez J, Sanz MJ, Bodi V and Piqueras L: Dynamics and implications of circulating anti-angiogenic VEGF-A165b isoform in patients with ST-elevation myocardial infarction. Sci Rep. 7(9962)2017.PubMed/NCBI View Article : Google Scholar

30 

Rychli K, Kaun C, Hohensinner PJ, Dorfner AJ, Pfaffenberger S, Niessner A, Bauer M, Dietl W, Podesser BK, Maurer G, et al: The anti-angiogenic factor PEDF is present in the human heart and is regulated by anoxia in cardiac myocytes and fibroblasts. J Cell Mol Med. 14:198–205. 2010.PubMed/NCBI View Article : Google Scholar

31 

Sakamoto S, Matsuura K, Masuda S, Hagiwara N and Shimizu T: Heart-derived fibroblasts express LYPD-1 and negatively regulate angiogenesis in rat. Regen Ther. 15:27–33. 2020.PubMed/NCBI View Article : Google Scholar

32 

Jiang L, Jia M, Wei X, Guo J, Hao S, Mei A, Zhi X, Wang X, Li Q, Jin J, et al: Bach1-induced suppression of angiogenesis is dependent on the BTB domain. EBioMedicine. 51(102617)2020.PubMed/NCBI View Article : Google Scholar

33 

Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen X and Yang J: Recombinant human IL-24 suppresses lung carcinoma cell growth via induction of cell apoptosis and inhibition of tumor angiogenesis. Cancer Biother Radiopharm. 23:310–320. 2008.PubMed/NCBI View Article : Google Scholar

34 

Wang Z, Lv J and Zhang T: Combination of IL-24 and cisplatin inhibits angiogenesis and lymphangiogenesis of cervical cancer xenografts in a nude mouse model by inhibiting VEGF, VEGF-C and PDGF-B. Oncol Rep. 33:2468–2476. 2015.PubMed/NCBI View Article : Google Scholar

35 

Nisari M, Ulger H, Unur E, Karaca O and Ertekin T: Effect of interleukin 12 (IL-12) on embryonic development and yolk sac vascularisation. Bratisl Lek Listy. 115:532–537. 2014.PubMed/NCBI View Article : Google Scholar

36 

Ding DC, Shyu WC and Lin SZ: Mesenchymal stem cells. Cell Transplant. 20:5–14. 2011.PubMed/NCBI View Article : Google Scholar

37 

Uccelli A, Moretta L and Pistoia V: Mesenchymal stem cells in health and disease. Nat Rev Immunol. 8:726–736. 2008.PubMed/NCBI View Article : Google Scholar

38 

Konoplyannikov M, Kotova S, Baklaushev V, Konoplyannikov A, Kalsin V, Timashev P and Troitskiy A: Mesenchymal stem cell therapy for ischemic heart disease: Advances and challenges. Curr Pharm Des. 24:3132–3142. 2018.PubMed/NCBI View Article : Google Scholar

39 

Mathew SA, Naik C, Cahill PA and Bhonde RR: Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci. 77:253–265. 2020.PubMed/NCBI View Article : Google Scholar

40 

Kachgal S and Putnam AJ: Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms. Angiogenesis. 14:47–59. 2011.PubMed/NCBI View Article : Google Scholar

41 

Assis-Ribas T, Forni MF, Winnischofer SM, Sogayar MC and Trombetta-Lima M: Extracellular matrix dynamics during mesenchymal stem cells differentiation. Dev Biol. 437:63–74. 2018.PubMed/NCBI View Article : Google Scholar

42 

Huang W, Wang T, Zhang D, Zhao T, Dai B, Ashraf A, Wang X, Xu M, Millard RW, Fan GC, et al: Mesenchymal stem cells overexpressing CX7CR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9. Stem Cells Dev. 21:778–789. 2012.PubMed/NCBI View Article : Google Scholar

43 

Gnecchi M, Danieli P, Malpasso G and Ciuffreda MC: Paracrine mechanisms of mesenchymal stem cells in tissue repair. Methods Mol Biol. 1416:123–146. 2016.PubMed/NCBI View Article : Google Scholar

44 

Gunawardena TNA, Rahman MT, Abdullah BJJ and Abu Kasim NH: Conditioned media derived from mesenchymal stem cell cultures: The next generation for regenerative medicine. J Tissue Eng Regen Med. 13:569–586. 2019.PubMed/NCBI View Article : Google Scholar

45 

Wang Z, Zheng L, Lian C, Qi Y, Li W and Wang S: Human umbilical cord-derived mesenchymal stem cells relieve hind limb ischemia by promoting angiogenesis in mice. Stem Cells Dev. 28:1384–1397. 2019.PubMed/NCBI View Article : Google Scholar

46 

Ryu S, Lee SH, Kim SU and Yoon BW: Human neural stem cells promote proliferation of endogenous neural stem cells and enhance angiogenesis in ischemic rat brain. Neural Regen Res. 11:298–304. 2016.PubMed/NCBI View Article : Google Scholar

47 

Davidson SM and Yellon DM: Exosomes and cardioprotection - A critical analysis. Mol Aspects Med. 60:104–114. 2018.PubMed/NCBI View Article : Google Scholar

48 

Zhang Y, Bi J, Huang J, Tang Y, Du S and Li P: Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted Therapy applications. Int J Nanomedicine. 15:6917–6934. 2020.PubMed/NCBI View Article : Google Scholar

49 

Koritzinsky EH, Street JM, Star RA and Yuen PS: Quantification of exosomes. J Cell Physiol. 232:1587–1590. 2017.PubMed/NCBI View Article : Google Scholar

50 

Witwer KW, Soekmadji C, Hill AF, Wauben MH, Buzás EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F, Kurochkin IV, et al: Updating the MISEV minimal requirements for extracellular vesicle studies: Building bridges to reproducibility. J Extracell Vesicles. 6(1396823)2017.PubMed/NCBI View Article : Google Scholar

51 

Kawamoto A and Losordo DW: Endothelial progenitor cells for cardiovascular regeneration. Trends Cardiovasc Med. 18:33–37. 2008.PubMed/NCBI View Article : Google Scholar

52 

Zeng CY, Xu J, Liu X and Lu YQ: Cardioprotective roles of endothelial progenitor cell-derived exosomes. Front Cardiovasc Med. 8(717536)2021.PubMed/NCBI View Article : Google Scholar

53 

Pan MC, Lin XY, Wang H, Chen YF and Leng M: Research advances on the roles of exosomes derived from vascular endothelial progenitor cells in wound repair. Zhonghua Shao Shang Za Zhi Zhonghua Shao Shang Za Zhi. 36:883–886. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).

54 

Xing Z, Zhao C, Liu H and Fan Y: Endothelial progenitor cell-derived extracellular vesicles: A novel candidate for regenerative medicine and disease treatment. Adv Healthc Mater. 9(e2000255)2020.PubMed/NCBI View Article : Google Scholar

55 

Ke X, Yang D, Liang J, Wang X, Wu S, Wang X and Hu C: Human endothelial progenitor cell-derived exosomes increase proliferation and angiogenesis in cardiac fibroblasts by promoting the mesenchymal-endothelial transition and reducing high mobility group box 1 protein B1 expression. DNA Cell Biol. 36:1018–1028. 2017.PubMed/NCBI View Article : Google Scholar

56 

Wang J, Liu H, Chen S, Zhang W, Chen Y and Yang Y: Moderate exercise has beneficial effects on mouse ischemic stroke by enhancing the functions of circulating endothelial progenitor cell-derived exosomes. Exp Neurol. 330(113325)2020.PubMed/NCBI View Article : Google Scholar

57 

Wang Y, Zhao R, Shen C, Liu W, Yuan J, Li C, Deng W, Wang Z, Zhang W, Ge J, et al: Exosomal CircHIPK3 released from hypoxia-induced cardiomyocytes regulates cardiac angiogenesis after myocardial infarction. Oxid Med Cell Longev. 2020(8418407)2020.PubMed/NCBI View Article : Google Scholar

58 

Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, Liu Z, Ge J and Shi B: Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev. 2019(7954657)2019.PubMed/NCBI View Article : Google Scholar

59 

Yan B, Zhang Y, Liang C, Liu B, Ding F, Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway. Theranostics. 10:6728–6742. 2020.PubMed/NCBI View Article : Google Scholar

60 

Li H, Liao Y, Gao L, Zhuang T, Huang Z, Zhu H and Ge J: Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics. 8:2079–2093. 2018.PubMed/NCBI View Article : Google Scholar

61 

Xu J, Bai S, Cao Y, Liu L, Fang Y, Du J, Luo L, Chen M, Shen B and Zhang Q: miRNA-221-3p in endothelial progenitor cell-derived exosomes accelerates skin wound healing in diabetic mice. Diabetes Metab Syndr Obes. 13:1259–1270. 2020.PubMed/NCBI View Article : Google Scholar

62 

Chen K, Yu T and Wang X: Inhibition of circulating exosomal miRNA-20b-5p accelerates diabetic wound repair. Int J Nanomedicine. 16:371–381. 2021.PubMed/NCBI View Article : Google Scholar

63 

Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, Xiong H, Zhan P, Wang Y, Wang C, et al: Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 10(47)2019.PubMed/NCBI View Article : Google Scholar

64 

Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, Hu L, Hu Y, Mi B and Liu G: Circulating Exosomal miR-20b-5p inhibition restores Wnt9b signaling and reverses diabetes-associated impaired wound healing. Small. 16(e1904044)2020.PubMed/NCBI View Article : Google Scholar

65 

Ni J, Liu X, Yin Y, Zhang P, Xu YW and Liu Z: Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway. Oxid Med Cell Longev. 2019(1958941)2019.PubMed/NCBI View Article : Google Scholar

66 

Sun J, Shen H, Shao L, Teng X, Chen Y, Liu X, Yang Z and Shen Z: HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Res Ther. 11(373)2020.PubMed/NCBI View Article : Google Scholar

67 

Gong XH, Liu H, Wang SJ, Liang SW and Wang GG: Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol. 234:13878–13893. 2019.PubMed/NCBI View Article : Google Scholar

68 

Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun J, Yang Z, Chen Y, Li J, Ma T, et al: Engineered exosomes with ischemic myocardium-targeting peptide for targeted therapy in myocardial infarction. J Am Heart Assoc. 7(e008737)2018.PubMed/NCBI View Article : Google Scholar

69 

Youn SW, Li Y, Kim YM, Sudhahar V, Abdelsaid K, Kim HW, Liu Y, Fulton DJ, Ashraf M, Tang Y, et al: Modification of cardiac progenitor cell-derived exosomes by miR-322 provides protection against myocardial infarction through Nox2-dependent angiogenesis. Antioxidants (Basel). 8(18)2019.PubMed/NCBI View Article : Google Scholar

70 

Pan J, Alimujiang M, Chen Q, Shi H and Luo X: Exosomes derived from miR-146a-modified adipose-derived stem cells attenuate acute myocardial infarction-induced myocardial damage via downregulation of early growth response factor 1. J Cell Biochem. 120:4433–4443. 2019.PubMed/NCBI View Article : Google Scholar

71 

Fan C, Joshi J, Li F, Xu B, Khan M, Yang J and Zhu W: Nanoparticle-mediated drug delivery for treatment of ischemic heart disease. Front Bioeng Biotechnol. 8(687)2020.PubMed/NCBI View Article : Google Scholar

72 

Zhang N, Song Y, Huang Z, Chen J, Tan H, Yang H, Fan M, Li Q, Wang Q, Gao J, et al: Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model. Biomaterials. 255(120168)2020.PubMed/NCBI View Article : Google Scholar

73 

Ho YT, Poinard B and Kah JC: Nanoparticle drug delivery systems and their use in cardiac tissue therapy. Nanomedicine (Lond). 11:693–714. 2016.PubMed/NCBI View Article : Google Scholar

74 

Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R, Sun W, Duan Y, Yang G and Yuan L: In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 19:19–28. 2019.PubMed/NCBI View Article : Google Scholar

75 

Kojima R, Bojar D, Rizzi G, Hamri GC, El-Baba MD, Saxena P, Ausländer S, Tan KR and Fussenegger M: Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson's disease treatment. Nat Commun. 9(1305)2018.PubMed/NCBI View Article : Google Scholar

76 

Xiang Gu G, Su I, Sharma S, Voros JL, Qin Z and Buehler MJ: Three-dimensional-printing of bio-inspired composites. J Biomech Eng. 138(021006)2016.PubMed/NCBI View Article : Google Scholar

77 

Chattopadhyay S and Raines RT: Review collagen-based biomaterials for wound healing. Biopolymers. 101:821–833. 2014.PubMed/NCBI View Article : Google Scholar

78 

Smagul S, Kim Y, Smagulova A, Raziyeva K, Nurkesh A and Saparov A: Biomaterials loaded with growth factors/cytokines and stem cells for cardiac tissue regeneration. Int J Mol Sci. 21(21)2020.PubMed/NCBI View Article : Google Scholar

79 

Oduk Y, Zhu W, Kannappan R, Zhao M, Borovjagin AV, Oparil S and Zhang JJ: VEGF nanoparticles repair the heart after myocardial infarction. Am J Physiol Heart Circ Physiol. 314:H278–H284. 2018.PubMed/NCBI View Article : Google Scholar

80 

Liu Y, Li P, Qiao C, Wu T, Sun X, Wen M and Zhang W: Chitosan hydrogel enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction by alleviating vascular endothelial cell pyroptosis. J Cardiovasc Pharmacol. 75:75–83. 2020.PubMed/NCBI View Article : Google Scholar

81 

Yuan Z, Tsou YH, Zhang XQ, Huang S, Yang Y, Gao M, Ho W, Zhao Q, Ye X and Xu X: Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces. 11:38429–38439. 2019.PubMed/NCBI View Article : Google Scholar

82 

Song C, Zhang X, Wang L, Wen F, Xu K, Xiong W, Li C, Li B, Wang Q, Xing MM, et al: An injectable conductive three-dimensional elastic network by tangled surgical-suture spring for heart repair. ACS Nano. 13:14122–14137. 2019.PubMed/NCBI View Article : Google Scholar

83 

Chachques JC, Lila N, Soler-Botija C, Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N, Monleon-Pradas M, Bayes-Genis A, et al: Elastomeric cardiopatch scaffold for myocardial repair and ventricular support. Eur J Cardiothorac Surg. 57:545–555. 2020.PubMed/NCBI View Article : Google Scholar

84 

Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X and Chang J: Chitosan/calcium silicate cardiac patch stimulates cardiomyocyte activity and myocardial performance after infarction by synergistic effect of bioactive ions and aligned nanostructure. ACS Appl Mater Interfaces. 11:1449–1468. 2019.PubMed/NCBI View Article : Google Scholar

85 

Sondermeijer HP, Witkowski P, Seki T, van der Laarse A, Itescu S and Hardy MA: RGDfK-peptide modified alginate scaffold for cell transplantation and cardiac neovascularization. Tissue Eng Part A. 24:740–751. 2018.PubMed/NCBI View Article : Google Scholar

86 

Nasser M, Wu Y, Danaoui Y and Ghosh G: Engineering microenvironments towards harnessing pro-angiogenic potential of mesenchymal stem cells. Mater Sci Eng C. 102:75–84. 2019.PubMed/NCBI View Article : Google Scholar

87 

Dastagir K, Dastagir N, Limbourg A, Reimers K, Strauss S and Vogt PM: In vitro construction of artificial blood vessels using spider silk as a supporting matrix. J Mech Behav Biomed Mater. 101(103436)2020.PubMed/NCBI View Article : Google Scholar

88 

Guo HF, Dai WW, Qian DH, Qin ZX, Lei Y, Hou XY and Wen C: A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomater. 54:107–116. 2017.PubMed/NCBI View Article : Google Scholar

89 

Yifa O, Weisinger K, Bassat E, Li H, Kain D, Barr H, Kozer N, Genzelinakh A, Rajchman D, Eigler T, et al: The small molecule Chicago Sky Blue promotes heart repair following myocardial infarction in mice. JCI Insight. 4(4)2019.PubMed/NCBI View Article : Google Scholar

90 

Huang FY, Xia TL, Li JL, Li CM, Zhao ZG, Lei WH, Chen L, Liao YB, Xiao D, Peng Y, et al: The bifunctional SDF-1-AnxA5 fusion protein protects cardiac function after myocardial infarction. J Cell Mol Med. 23:7673–7684. 2019.PubMed/NCBI View Article : Google Scholar

91 

Yuan Z, Kang L, Wang Z, Chen A, Zhao Q and Li H: 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking. Acta Biochim Biophys Sin (Shanghai). 50:1247–1256. 2018.PubMed/NCBI View Article : Google Scholar

92 

Popa MA, Mihai MC, Constantin A, Şuică V, Ţucureanu C, Costache R, Antohe F, Dubey RK and Simionescu M: Dihydrotestosterone induces pro-angiogenic factors and assists homing of MSC into the cardiac tissue. J Mol Endocrinol. 60:1–15. 2018.PubMed/NCBI View Article : Google Scholar

93 

Liao Q, Qu S, Tang LX, Li LP, He DF, Zeng CY and Wang WE: Irisin exerts a therapeutic effect against myocardial infarction via promoting angiogenesis. Acta Pharmacol Sin. 40:1314–1321. 2019.PubMed/NCBI View Article : Google Scholar

94 

Lindsey ML, Iyer RP, Zamilpa R, Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA, Bratton D, Flynn ER, et al: A novel collagen matricryptin reduces left ventricular dilation post-myocardial infarction by promoting scar formation and angiogenesis. J Am Coll Cardiol. 66:1364–1374. 2015.PubMed/NCBI View Article : Google Scholar

95 

Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J, Klintschar M, et al: Heparan sulfate-editing extracellular sulfatases enhance vegf bioavailability for ischemic heart repair. Circ Res. 125:787–801. 2019.PubMed/NCBI View Article : Google Scholar

96 

Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10(4317)2019.PubMed/NCBI View Article : Google Scholar

97 

Ju X, Xue D, Wang T, Ge B, Zhang Y and Li Z: Catalpol promotes the survival and VEGF secretion of bone marrow-derived stem cells and their role in myocardial repair after myocardial infarction in rats. Cardiovasc Toxicol. 18:471–481. 2018.PubMed/NCBI View Article : Google Scholar

98 

Zhai S, Zhang XF, Lu F, Chen WG, He X, Zhang CF, Wang CZ and Yuan CS: Chinese medicine GeGen-DanShen extract protects from myocardial ischemic injury through promoting angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. J Ethnopharmacol. 267(113475)2021.PubMed/NCBI View Article : Google Scholar

99 

Li Y, Zhang Y, Wen M, Zhang J, Zhao X, Zhao Y and Deng J: Ginkgo biloba extract prevents acute myocardial infarction and suppresses the inflammation and apoptosis regulating p38 mitogen activated protein kinases, nuclear factor-κB and B cell lymphoma 2 signaling pathways. Mol Med Rep. 16:3657–3663. 2017.PubMed/NCBI View Article : Google Scholar

100 

Ho L, van Dijk M, Chye STJ, Messerschmidt DM, Chng SC, Ong S, Yi LK, Boussata S, Goh GH, Afink GB, et al: ELABELA deficiency promotes preeclampsia and cardiovascular malformations in mice. Science. 357:707–713. 2017.PubMed/NCBI View Article : Google Scholar

101 

Jin L, Pan Y, Li Q, Li J and Wang Z: Elabela gene therapy promotes angiogenesis after myocardial infarction. J Cell Mol Med. 25:8537–8545. 2021.PubMed/NCBI View Article : Google Scholar

102 

Chen HK, Hung HF, Shyu KG, Wang BW, Sheu JR, Liang YJ, Chang CC and Kuan P: Combined cord blood stem cells and gene therapy enhances angiogenesis and improves cardiac performance in mouse after acute myocardial infarction. Eur J Clin Invest. 35:677–686. 2005.PubMed/NCBI View Article : Google Scholar

103 

Czymai T, Viemann D, Sticht C, Molema G, Goebeler M and Schmidt M: FOXO3 modulates endothelial gene expression and function by classical and alternative mechanisms. J Biol Chem. 285:10163–10178. 2010.PubMed/NCBI View Article : Google Scholar

104 

Yan P, Li Q, Wang L, Lu P, Suzuki K, Liu Z, Lei J, Li W, He X, Wang S, et al: FOXO3-engineered human ESC-derived vascular cells promote vascular protection and regeneration. Cell Stem Cell. 24:447–461.e8. 2019.PubMed/NCBI View Article : Google Scholar

105 

Wu D, Liu Y, Liu X, Liu W, Shi H, Zhang Y, Zou L and Zhao Y: Heme oxygenase-1 gene modified human placental mesenchymal stem cells promote placental angiogenesis and spiral artery remodeling by improving the balance of angiogenic factors in vitro. Placenta. 99:70–77. 2020.PubMed/NCBI View Article : Google Scholar

106 

Shevchenko EK, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA and Parfyonova YV: Transplantation of modified human adipose derived stromal cells expressing VEGF165 results in more efficient angiogenic response in ischemic skeletal muscle. J Transl Med. 11(138)2013.PubMed/NCBI View Article : Google Scholar

107 

Mushimiyimana I, Tomas Bosch V, Niskanen H, Downes NL, Moreau PR, Hartigan K, Ylä-Herttuala S, Laham-Karam N and Kaikkonen MU: Genomic landscapes of noncoding RNAs regulating VEGFA and VEGFC expression in endothelial cells. Mol Cell Biol. 41(e0059420)2021.PubMed/NCBI View Article : Google Scholar

108 

Zhen S, Qiang R, Lu J, Tuo X, Yang X and Li X: TGF-β1-based CRISPR/Cas9 gene therapy attenuate radiation-induced lung injury. Curr Gene Ther: Dec 29, 2020 (Epub ahead of print). doi: 10.2174/1566523220666201230100523.

109 

van der Laan AM, Piek JJ and van Royen N: Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol. 6:515–523. 2009.PubMed/NCBI View Article : Google Scholar

110 

Tarantini G, Ramondo A, Napodano M, Favaretto E, Gardin A, Bilato C, Nesseris G, Tarzia V, Cademartiri F, Gerosa G, et al: PCI versus CABG for multivessel coronary disease in diabetics. Catheter Cardiovasc Interv. 73:50–58. 2009.PubMed/NCBI View Article : Google Scholar

111 

Montrief T, Koyfman A and Long B: Coronary artery bypass graft surgery complications: A review for emergency clinicians. Am J Emerg Med. 36:2289–2297. 2018.PubMed/NCBI View Article : Google Scholar

112 

Wang L, Huang S, Li S, Li M, Shi J, Bai W, Wang Q, Zheng L and Liu Y: Efficacy and safety of umbilical cord mesenchymal stem cell therapy for rheumatoid arthritis patients: A prospective phase I/II study. Drug Des Devel Ther. 13:4331–4340. 2019.PubMed/NCBI View Article : Google Scholar

113 

Watanabe Y, Tsuchiya A and Terai S: The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol. 27:70–80. 2021.PubMed/NCBI View Article : Google Scholar

114 

Yu B, Zhang X and Li X: Exosomes derived from mesenchymal stem cells. Int J Mol Sci. 15:4142–4157. 2014.PubMed/NCBI View Article : Google Scholar

115 

Yamashita T, Takahashi Y and Takakura Y: Possibility of exosome-based therapeutics and challenges in production of exosomes eligible for therapeutic application. Biol Pharm Bull. 41:835–842. 2018.PubMed/NCBI View Article : Google Scholar

116 

He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan J, Li J, Yu H, Wang L, Dai J, et al: Effect of intramyocardial grafting collagen scaffold with mesenchymal stromal cells in patients with chronic ischemic heart disease: A randomized clinical trial. JAMA Netw Open. 3(e2016236)2020.PubMed/NCBI View Article : Google Scholar

117 

Topaloğlu Demir F, Özkök Akbulut T, Kıvanç Altunay İ, Aytekin S, Oğuz Topal İ, Kara Polat A, Özkur E and Karadağ AS: Evaluation of the adverse effects of biological agents used in the treatment of psoriasis: A multicenter retrospective cohort study. Dermatol Ther. 33(e14216)2020.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li J, Zhao Y and Zhu W: Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Exp Ther Med 23: 64, 2022.
APA
Li, J., Zhao, Y., & Zhu, W. (2022). Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Experimental and Therapeutic Medicine, 23, 64. https://doi.org/10.3892/etm.2021.10986
MLA
Li, J., Zhao, Y., Zhu, W."Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)". Experimental and Therapeutic Medicine 23.1 (2022): 64.
Chicago
Li, J., Zhao, Y., Zhu, W."Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)". Experimental and Therapeutic Medicine 23, no. 1 (2022): 64. https://doi.org/10.3892/etm.2021.10986
Copy and paste a formatted citation
x
Spandidos Publications style
Li J, Zhao Y and Zhu W: Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Exp Ther Med 23: 64, 2022.
APA
Li, J., Zhao, Y., & Zhu, W. (2022). Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review). Experimental and Therapeutic Medicine, 23, 64. https://doi.org/10.3892/etm.2021.10986
MLA
Li, J., Zhao, Y., Zhu, W."Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)". Experimental and Therapeutic Medicine 23.1 (2022): 64.
Chicago
Li, J., Zhao, Y., Zhu, W."Targeting angiogenesis in myocardial infarction: Novel therapeutics (Review)". Experimental and Therapeutic Medicine 23, no. 1 (2022): 64. https://doi.org/10.3892/etm.2021.10986
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team