|
1
|
Mehta LS, Beckie TM, DeVon HA, Grines CL,
Krumholz HM, Johnson MN, Lindley KJ, Vaccarino V, Wang TY, Watson
KE, et al: American Heart Association Cardiovascular Disease in
Women and Special Populations Committee of the Council on Clinical
Cardiology, Council on Epidemiology and Prevention, Council on
Cardiovascular and Stroke Nursing, and Council on Quality of Care
and Outcomes Research: Acute Myocardial Infarction in Women: A
Scientific Statement From the American Heart Association.
Circulation. 133:916–947. 2016.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Reed GW, Rossi JE and Cannon CP: Acute
myocardial infarction. Lancet. 389:197–210. 2017.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Frangogiannis NG: Cardiac fibrosis: Cell
biological mechanisms, molecular pathways and therapeutic
opportunities. Mol Aspects Med. 65:70–99. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Mitsos S, Katsanos K, Koletsis E, Kagadis
GC, Anastasiou N, Diamantopoulos A, Karnabatidis D and Dougenis D:
Therapeutic angiogenesis for myocardial ischemia revisited: Basic
biological concepts and focus on latest clinical trials.
Angiogenesis. 15:1–22. 2012.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Lorier G, Touriño C and Kalil RA: Coronary
angiogenesis as an endogenous response to myocardial ischemia in
adults. Arq Bras Cardiol. 97:e140–e148. 2011.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Vandekeere S, Dewerchin M and Carmeliet P:
Angiogenesis Revisited: An Overlooked Role of Endothelial Cell
Metabolism in Vessel Sprouting. Microcirculation. 22:509–517.
2015.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Weinstein N, Mendoza L, Gitler I and Klapp
J: A network model to explore the effect of the micro-environment
on endothelial cell behavior during angiogenesis. Front Physiol.
8(960)2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Frangogiannis NG: The extracellular matrix
in myocardial injury, repair, and remodeling. J Clin Invest.
127:1600–1612. 2017.PubMed/NCBI View
Article : Google Scholar
|
|
9
|
Frangogiannis NG: Pathophysiology of
myocardial infarction. Compr Physiol. 5:1841–1875. 2015.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Ferraro B, Leoni G, Hinkel R, Ormanns S,
Paulin N, Ortega-Gomez A, Viola JR, de Jong R, Bongiovanni D,
Bozoglu T, et al: Pro-angiogenic macrophage phenotype to promote
myocardial repair. J Am Coll Cardiol. 73:2990–3002. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Wang N, Liu C, Wang X, He T, Li L, Liang
X, Wang L, Song L, Wei Y, Wu Q, et al: Hyaluronic acid
oligosaccharides improve myocardial function reconstruction and
angiogenesis against myocardial infarction by regulation of
macrophages. Theranostics. 9:1980–1992. 2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Saraswati S, Marrow SMW, Watch LA and
Young PP: Identification of a pro-angiogenic functional role for
FSP1-positive fibroblast subtype in wound healing. Nat Commun.
10(3027)2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Mouton AJ, Ma Y, Rivera Gonzalez OJ,
Daseke MJ II, Flynn ER, Freeman TC, Garrett MR, DeLeon-Pennell KY
and Lindsey ML: Fibroblast polarization over the myocardial
infarction time continuum shifts roles from inflammation to
angiogenesis. Basic Res Cardiol. 114(6)2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Befani C and Liakos P: Hypoxia upregulates
integrin gene expression in microvascular endothelial cells and
promotes their migration and capillary-like tube formation. Cell
Biol Int. 41:769–778. 2017.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Bartoszewski R, Moszyńska A, Serocki M,
Cabaj A, Polten A, Ochocka R, Dell'Italia L, Bartoszewska S,
Króliczewski J, Dąbrowski M, et al: Primary endothelial
cell-specific regulation of hypoxia-inducible factor (HIF)-1 and
HIF-2 and their target gene expression profiles during hypoxia.
FASEB J. 33:7929–7941. 2019.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Zhang B, Niu W, Dong HY, Liu ML, Luo Y and
Li ZC: Hypoxia induces endothelial mesenchymal transition in
pulmonary vascular remodeling. Int J Mol Med. 42:270–278.
2018.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Ribatti D, Tamma R and Vacca A: Mast cells
and angiogenesis in human plasma cell malignancies. Int J Mol Sci.
20(20)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Fetz AE, Radic MZ and Bowlin GL:
Neutrophils in biomaterial-guided tissue regeneration: Matrix
reprogramming for angiogenesis. Tissue Eng Part B Rev. 27:95–106.
2021.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Aldabbous L, Abdul-Salam V, McKinnon T,
Duluc L, Pepke-Zaba J, Southwood M, Ainscough AJ, Hadinnapola C,
Wilkins MR, Toshner M, et al: Neutrophil extracellular traps
promote angiogenesis: Evidence from vascular pathology in pulmonary
hypertension. Arterioscler Thromb Vasc Biol. 36:2078–2087.
2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Mukai K, Tsai M, Saito H and Galli SJ:
Mast cells as sources of cytokines, chemokines, and growth factors.
Immunol Rev. 282:121–150. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Nishida Y, Yamada Y, Kanemaru H, Ohazama
A, Maeda T and Seo K: Vascularization via activation of VEGF-VEGFR
signaling is essential for peripheral nerve regeneration. Biomed
Res. 39:287–294. 2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Chen Y, Zhao B, Zhu Y, Zhao H and Ma C:
HIF-1-VEGF-Notch mediates angiogenesis in temporomandibular joint
osteoarthritis. Am J Transl Res. 11:2969–2982. 2019.PubMed/NCBI
|
|
23
|
Pitulescu ME, Schmidt I, Giaimo BD,
Antoine T, Berkenfeld F, Ferrante F, Park H, Ehling M, Biljes D,
Rocha SF, et al: Dll4 and Notch signalling couples sprouting
angiogenesis and artery formation. Nat Cell Biol. 19:915–927.
2017.PubMed/NCBI View
Article : Google Scholar
|
|
24
|
Kume T: Ligand-dependent Notch signaling
in vascular formation. Adv Exp Med Biol. 727:210–222.
2012.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Gallo S, Sala V, Gatti S and Crepaldi T:
Cellular and molecular mechanisms of HGF/Met in the cardiovascular
system. Clin Sci (Lond). 129:1173–1193. 2015.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Thavapalachandran S, Grieve SM, Hume RD,
Le TY, Raguram K, Hudson JE, Pouliopoulos J, Figtree GA, Dye RP,
Barry AM, et al: Platelet-derived growth factor-AB improves scar
mechanics and vascularity after myocardial infarction. Sci Transl
Med. 12(12)2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Liu S, Chen J, Shi J, Zhou W, Wang L, Fang
W, Zhong Y, Chen X, Chen Y, Sabri A, et al: M1-like
macrophage-derived exosomes suppress angiogenesis and exacerbate
cardiac dysfunction in a myocardial infarction microenvironment.
Basic Res Cardiol. 115(22)2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Zhang Z, Coutinho AE, Man TY, Kipari TM,
Hadoke PW, Salter DM, Seckl JR and Chapman KE: Macrophage 11β-HSD-1
deficiency promotes inflammatory angiogenesis. J Endocrinol.
234:291–299. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hueso L, Rios-Navarro C, Ruiz-Sauri A,
Chorro FJ, Nunez J, Sanz MJ, Bodi V and Piqueras L: Dynamics and
implications of circulating anti-angiogenic VEGF-A165b isoform in
patients with ST-elevation myocardial infarction. Sci Rep.
7(9962)2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Rychli K, Kaun C, Hohensinner PJ, Dorfner
AJ, Pfaffenberger S, Niessner A, Bauer M, Dietl W, Podesser BK,
Maurer G, et al: The anti-angiogenic factor PEDF is present in the
human heart and is regulated by anoxia in cardiac myocytes and
fibroblasts. J Cell Mol Med. 14:198–205. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Sakamoto S, Matsuura K, Masuda S, Hagiwara
N and Shimizu T: Heart-derived fibroblasts express LYPD-1 and
negatively regulate angiogenesis in rat. Regen Ther. 15:27–33.
2020.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Jiang L, Jia M, Wei X, Guo J, Hao S, Mei
A, Zhi X, Wang X, Li Q, Jin J, et al: Bach1-induced suppression of
angiogenesis is dependent on the BTB domain. EBioMedicine.
51(102617)2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Xie Y, Sheng W, Xiang J, Ye Z, Zhu Y, Chen
X and Yang J: Recombinant human IL-24 suppresses lung carcinoma
cell growth via induction of cell apoptosis and inhibition of tumor
angiogenesis. Cancer Biother Radiopharm. 23:310–320.
2008.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Wang Z, Lv J and Zhang T: Combination of
IL-24 and cisplatin inhibits angiogenesis and lymphangiogenesis of
cervical cancer xenografts in a nude mouse model by inhibiting
VEGF, VEGF-C and PDGF-B. Oncol Rep. 33:2468–2476. 2015.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Nisari M, Ulger H, Unur E, Karaca O and
Ertekin T: Effect of interleukin 12 (IL-12) on embryonic
development and yolk sac vascularisation. Bratisl Lek Listy.
115:532–537. 2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Ding DC, Shyu WC and Lin SZ: Mesenchymal
stem cells. Cell Transplant. 20:5–14. 2011.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Uccelli A, Moretta L and Pistoia V:
Mesenchymal stem cells in health and disease. Nat Rev Immunol.
8:726–736. 2008.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Konoplyannikov M, Kotova S, Baklaushev V,
Konoplyannikov A, Kalsin V, Timashev P and Troitskiy A: Mesenchymal
stem cell therapy for ischemic heart disease: Advances and
challenges. Curr Pharm Des. 24:3132–3142. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Mathew SA, Naik C, Cahill PA and Bhonde
RR: Placental mesenchymal stromal cells as an alternative tool for
therapeutic angiogenesis. Cell Mol Life Sci. 77:253–265.
2020.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kachgal S and Putnam AJ: Mesenchymal stem
cells from adipose and bone marrow promote angiogenesis via
distinct cytokine and protease expression mechanisms. Angiogenesis.
14:47–59. 2011.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Assis-Ribas T, Forni MF, Winnischofer SM,
Sogayar MC and Trombetta-Lima M: Extracellular matrix dynamics
during mesenchymal stem cells differentiation. Dev Biol. 437:63–74.
2018.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Huang W, Wang T, Zhang D, Zhao T, Dai B,
Ashraf A, Wang X, Xu M, Millard RW, Fan GC, et al: Mesenchymal stem
cells overexpressing CX7CR4 attenuate remodeling of postmyocardial
infarction by releasing matrix metalloproteinase-9. Stem Cells Dev.
21:778–789. 2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Gnecchi M, Danieli P, Malpasso G and
Ciuffreda MC: Paracrine mechanisms of mesenchymal stem cells in
tissue repair. Methods Mol Biol. 1416:123–146. 2016.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Gunawardena TNA, Rahman MT, Abdullah BJJ
and Abu Kasim NH: Conditioned media derived from mesenchymal stem
cell cultures: The next generation for regenerative medicine. J
Tissue Eng Regen Med. 13:569–586. 2019.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Wang Z, Zheng L, Lian C, Qi Y, Li W and
Wang S: Human umbilical cord-derived mesenchymal stem cells relieve
hind limb ischemia by promoting angiogenesis in mice. Stem Cells
Dev. 28:1384–1397. 2019.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ryu S, Lee SH, Kim SU and Yoon BW: Human
neural stem cells promote proliferation of endogenous neural stem
cells and enhance angiogenesis in ischemic rat brain. Neural Regen
Res. 11:298–304. 2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Davidson SM and Yellon DM: Exosomes and
cardioprotection - A critical analysis. Mol Aspects Med.
60:104–114. 2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhang Y, Bi J, Huang J, Tang Y, Du S and
Li P: Exosome: A review of its classification, isolation
techniques, storage, diagnostic and targeted Therapy applications.
Int J Nanomedicine. 15:6917–6934. 2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Koritzinsky EH, Street JM, Star RA and
Yuen PS: Quantification of exosomes. J Cell Physiol. 232:1587–1590.
2017.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Witwer KW, Soekmadji C, Hill AF, Wauben
MH, Buzás EI, Di Vizio D, Falcon-Perez JM, Gardiner C, Hochberg F,
Kurochkin IV, et al: Updating the MISEV minimal requirements for
extracellular vesicle studies: Building bridges to reproducibility.
J Extracell Vesicles. 6(1396823)2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kawamoto A and Losordo DW: Endothelial
progenitor cells for cardiovascular regeneration. Trends Cardiovasc
Med. 18:33–37. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Zeng CY, Xu J, Liu X and Lu YQ:
Cardioprotective roles of endothelial progenitor cell-derived
exosomes. Front Cardiovasc Med. 8(717536)2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Pan MC, Lin XY, Wang H, Chen YF and Leng
M: Research advances on the roles of exosomes derived from vascular
endothelial progenitor cells in wound repair. Zhonghua Shao Shang
Za Zhi Zhonghua Shao Shang Za Zhi. 36:883–886. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
54
|
Xing Z, Zhao C, Liu H and Fan Y:
Endothelial progenitor cell-derived extracellular vesicles: A novel
candidate for regenerative medicine and disease treatment. Adv
Healthc Mater. 9(e2000255)2020.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ke X, Yang D, Liang J, Wang X, Wu S, Wang
X and Hu C: Human endothelial progenitor cell-derived exosomes
increase proliferation and angiogenesis in cardiac fibroblasts by
promoting the mesenchymal-endothelial transition and reducing high
mobility group box 1 protein B1 expression. DNA Cell Biol.
36:1018–1028. 2017.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Wang J, Liu H, Chen S, Zhang W, Chen Y and
Yang Y: Moderate exercise has beneficial effects on mouse ischemic
stroke by enhancing the functions of circulating endothelial
progenitor cell-derived exosomes. Exp Neurol.
330(113325)2020.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Wang Y, Zhao R, Shen C, Liu W, Yuan J, Li
C, Deng W, Wang Z, Zhang W, Ge J, et al: Exosomal CircHIPK3
released from hypoxia-induced cardiomyocytes regulates cardiac
angiogenesis after myocardial infarction. Oxid Med Cell Longev.
2020(8418407)2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang Y, Zhao R, Liu W, Wang Z, Rong J,
Long X, Liu Z, Ge J and Shi B: Exosomal circHIPK3 released from
hypoxia-pretreated cardiomyocytes regulates oxidative damage in
cardiac microvascular endothelial cells via the miR-29a/IGF-1
pathway. Oxid Med Cell Longev. 2019(7954657)2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Yan B, Zhang Y, Liang C, Liu B, Ding F,
Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes
prevent pyroptosis and repair ischemic muscle injury through a
novel exosome/circHIPK3/ FOXO3a pathway. Theranostics.
10:6728–6742. 2020.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Li H, Liao Y, Gao L, Zhuang T, Huang Z,
Zhu H and Ge J: Coronary serum exosomes derived from patients with
myocardial ischemia regulate angiogenesis through the
miR-939-mediated nitric oxide signaling pathway. Theranostics.
8:2079–2093. 2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Xu J, Bai S, Cao Y, Liu L, Fang Y, Du J,
Luo L, Chen M, Shen B and Zhang Q: miRNA-221-3p in endothelial
progenitor cell-derived exosomes accelerates skin wound healing in
diabetic mice. Diabetes Metab Syndr Obes. 13:1259–1270.
2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chen K, Yu T and Wang X: Inhibition of
circulating exosomal miRNA-20b-5p accelerates diabetic wound
repair. Int J Nanomedicine. 16:371–381. 2021.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Ren S, Chen J, Duscher D, Liu Y, Guo G,
Kang Y, Xiong H, Zhan P, Wang Y, Wang C, et al: Microvesicles from
human adipose stem cells promote wound healing by optimizing
cellular functions via AKT and ERK signaling pathways. Stem Cell
Res Ther. 10(47)2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Xiong Y, Chen L, Yan C, Zhou W, Endo Y,
Liu J, Hu L, Hu Y, Mi B and Liu G: Circulating Exosomal miR-20b-5p
inhibition restores Wnt9b signaling and reverses
diabetes-associated impaired wound healing. Small.
16(e1904044)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Ni J, Liu X, Yin Y, Zhang P, Xu YW and Liu
Z: Exosomes derived from TIMP2-modified human umbilical cord
mesenchymal stem cells enhance the repair effect in rat model with
myocardial infarction possibly by the Akt/Sfrp2 pathway. Oxid Med
Cell Longev. 2019(1958941)2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Sun J, Shen H, Shao L, Teng X, Chen Y, Liu
X, Yang Z and Shen Z: HIF-1α overexpression in mesenchymal stem
cell-derived exosomes mediates cardioprotection in myocardial
infarction by enhanced angiogenesis. Stem Cell Res Ther.
11(373)2020.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Gong XH, Liu H, Wang SJ, Liang SW and Wang
GG: Exosomes derived from SDF1-overexpressing mesenchymal stem
cells inhibit ischemic myocardial cell apoptosis and promote
cardiac endothelial microvascular regeneration in mice with
myocardial infarction. J Cell Physiol. 234:13878–13893.
2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wang X, Chen Y, Zhao Z, Meng Q, Yu Y, Sun
J, Yang Z, Chen Y, Li J, Ma T, et al: Engineered exosomes with
ischemic myocardium-targeting peptide for targeted therapy in
myocardial infarction. J Am Heart Assoc. 7(e008737)2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Youn SW, Li Y, Kim YM, Sudhahar V,
Abdelsaid K, Kim HW, Liu Y, Fulton DJ, Ashraf M, Tang Y, et al:
Modification of cardiac progenitor cell-derived exosomes by miR-322
provides protection against myocardial infarction through
Nox2-dependent angiogenesis. Antioxidants (Basel).
8(18)2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Pan J, Alimujiang M, Chen Q, Shi H and Luo
X: Exosomes derived from miR-146a-modified adipose-derived stem
cells attenuate acute myocardial infarction-induced myocardial
damage via downregulation of early growth response factor 1. J Cell
Biochem. 120:4433–4443. 2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Fan C, Joshi J, Li F, Xu B, Khan M, Yang J
and Zhu W: Nanoparticle-mediated drug delivery for treatment of
ischemic heart disease. Front Bioeng Biotechnol.
8(687)2020.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Zhang N, Song Y, Huang Z, Chen J, Tan H,
Yang H, Fan M, Li Q, Wang Q, Gao J, et al: Monocyte mimics improve
mesenchymal stem cell-derived extracellular vesicle homing in a
mouse MI/RI model. Biomaterials. 255(120168)2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Ho YT, Poinard B and Kah JC: Nanoparticle
drug delivery systems and their use in cardiac tissue therapy.
Nanomedicine (Lond). 11:693–714. 2016.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Li Z, Zhou X, Wei M, Gao X, Zhao L, Shi R,
Sun W, Duan Y, Yang G and Yuan L: In vitro and in vivo RNA
inhibition by CD9-HuR functionalized exosomes encapsulated with
miRNA or CRISPR/dCas9. Nano Lett. 19:19–28. 2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Kojima R, Bojar D, Rizzi G, Hamri GC,
El-Baba MD, Saxena P, Ausländer S, Tan KR and Fussenegger M:
Designer exosomes produced by implanted cells intracerebrally
deliver therapeutic cargo for Parkinson's disease treatment. Nat
Commun. 9(1305)2018.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Xiang Gu G, Su I, Sharma S, Voros JL, Qin
Z and Buehler MJ: Three-dimensional-printing of bio-inspired
composites. J Biomech Eng. 138(021006)2016.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Chattopadhyay S and Raines RT: Review
collagen-based biomaterials for wound healing. Biopolymers.
101:821–833. 2014.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Smagul S, Kim Y, Smagulova A, Raziyeva K,
Nurkesh A and Saparov A: Biomaterials loaded with growth
factors/cytokines and stem cells for cardiac tissue regeneration.
Int J Mol Sci. 21(21)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Oduk Y, Zhu W, Kannappan R, Zhao M,
Borovjagin AV, Oparil S and Zhang JJ: VEGF nanoparticles repair the
heart after myocardial infarction. Am J Physiol Heart Circ Physiol.
314:H278–H284. 2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Liu Y, Li P, Qiao C, Wu T, Sun X, Wen M
and Zhang W: Chitosan hydrogel enhances the therapeutic efficacy of
bone marrow-derived mesenchymal stem cells for myocardial
infarction by alleviating vascular endothelial cell pyroptosis. J
Cardiovasc Pharmacol. 75:75–83. 2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Yuan Z, Tsou YH, Zhang XQ, Huang S, Yang
Y, Gao M, Ho W, Zhao Q, Ye X and Xu X: Injectable citrate-based
hydrogel as an angiogenic biomaterial improves cardiac repair after
myocardial infarction. ACS Appl Mater Interfaces. 11:38429–38439.
2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Song C, Zhang X, Wang L, Wen F, Xu K,
Xiong W, Li C, Li B, Wang Q, Xing MM, et al: An injectable
conductive three-dimensional elastic network by tangled
surgical-suture spring for heart repair. ACS Nano. 13:14122–14137.
2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Chachques JC, Lila N, Soler-Botija C,
Martinez-Ramos C, Valles A, Autret G, Perier MC, Mirochnik N,
Monleon-Pradas M, Bayes-Genis A, et al: Elastomeric cardiopatch
scaffold for myocardial repair and ventricular support. Eur J
Cardiothorac Surg. 57:545–555. 2020.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Wang X, Wang L, Wu Q, Bao F, Yang H, Qiu X
and Chang J: Chitosan/calcium silicate cardiac patch stimulates
cardiomyocyte activity and myocardial performance after infarction
by synergistic effect of bioactive ions and aligned nanostructure.
ACS Appl Mater Interfaces. 11:1449–1468. 2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Sondermeijer HP, Witkowski P, Seki T, van
der Laarse A, Itescu S and Hardy MA: RGDfK-peptide modified
alginate scaffold for cell transplantation and cardiac
neovascularization. Tissue Eng Part A. 24:740–751. 2018.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Nasser M, Wu Y, Danaoui Y and Ghosh G:
Engineering microenvironments towards harnessing pro-angiogenic
potential of mesenchymal stem cells. Mater Sci Eng C. 102:75–84.
2019.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Dastagir K, Dastagir N, Limbourg A,
Reimers K, Strauss S and Vogt PM: In vitro construction of
artificial blood vessels using spider silk as a supporting matrix.
J Mech Behav Biomed Mater. 101(103436)2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Guo HF, Dai WW, Qian DH, Qin ZX, Lei Y,
Hou XY and Wen C: A simply prepared small-diameter artificial blood
vessel that promotes in situ endothelialization. Acta Biomater.
54:107–116. 2017.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Yifa O, Weisinger K, Bassat E, Li H, Kain
D, Barr H, Kozer N, Genzelinakh A, Rajchman D, Eigler T, et al: The
small molecule Chicago Sky Blue promotes heart repair following
myocardial infarction in mice. JCI Insight. 4(4)2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Huang FY, Xia TL, Li JL, Li CM, Zhao ZG,
Lei WH, Chen L, Liao YB, Xiao D, Peng Y, et al: The bifunctional
SDF-1-AnxA5 fusion protein protects cardiac function after
myocardial infarction. J Cell Mol Med. 23:7673–7684.
2019.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Yuan Z, Kang L, Wang Z, Chen A, Zhao Q and
Li H: 17β-estradiol promotes recovery after myocardial infarction
by enhancing homing and angiogenic capacity of bone marrow-derived
endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking.
Acta Biochim Biophys Sin (Shanghai). 50:1247–1256. 2018.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Popa MA, Mihai MC, Constantin A, Şuică V,
Ţucureanu C, Costache R, Antohe F, Dubey RK and Simionescu M:
Dihydrotestosterone induces pro-angiogenic factors and assists
homing of MSC into the cardiac tissue. J Mol Endocrinol. 60:1–15.
2018.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Liao Q, Qu S, Tang LX, Li LP, He DF, Zeng
CY and Wang WE: Irisin exerts a therapeutic effect against
myocardial infarction via promoting angiogenesis. Acta Pharmacol
Sin. 40:1314–1321. 2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Lindsey ML, Iyer RP, Zamilpa R,
Yabluchanskiy A, DeLeon-Pennell KY, Hall ME, Kaplan A, Zouein FA,
Bratton D, Flynn ER, et al: A novel collagen matricryptin reduces
left ventricular dilation post-myocardial infarction by promoting
scar formation and angiogenesis. J Am Coll Cardiol. 66:1364–1374.
2015.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Korf-Klingebiel M, Reboll MR, Grote K,
Schleiner H, Wang Y, Wu X, Klede S, Mikhed Y, Bauersachs J,
Klintschar M, et al: Heparan sulfate-editing extracellular
sulfatases enhance vegf bioavailability for ischemic heart repair.
Circ Res. 125:787–801. 2019.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Garikipati VNS, Verma SK, Cheng Z, Liang
D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et
al: Circular RNA CircFndc3b modulates cardiac repair after
myocardial infarction via FUS/VEGF-A axis. Nat Commun.
10(4317)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Ju X, Xue D, Wang T, Ge B, Zhang Y and Li
Z: Catalpol promotes the survival and VEGF secretion of bone
marrow-derived stem cells and their role in myocardial repair after
myocardial infarction in rats. Cardiovasc Toxicol. 18:471–481.
2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Zhai S, Zhang XF, Lu F, Chen WG, He X,
Zhang CF, Wang CZ and Yuan CS: Chinese medicine GeGen-DanShen
extract protects from myocardial ischemic injury through promoting
angiogenesis via up-regulation of VEGF/VEGFR2 signaling pathway. J
Ethnopharmacol. 267(113475)2021.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Li Y, Zhang Y, Wen M, Zhang J, Zhao X,
Zhao Y and Deng J: Ginkgo biloba extract prevents acute
myocardial infarction and suppresses the inflammation and apoptosis
regulating p38 mitogen activated protein kinases, nuclear factor-κB
and B cell lymphoma 2 signaling pathways. Mol Med Rep.
16:3657–3663. 2017.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Ho L, van Dijk M, Chye STJ, Messerschmidt
DM, Chng SC, Ong S, Yi LK, Boussata S, Goh GH, Afink GB, et al:
ELABELA deficiency promotes preeclampsia and cardiovascular
malformations in mice. Science. 357:707–713. 2017.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Jin L, Pan Y, Li Q, Li J and Wang Z:
Elabela gene therapy promotes angiogenesis after myocardial
infarction. J Cell Mol Med. 25:8537–8545. 2021.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Chen HK, Hung HF, Shyu KG, Wang BW, Sheu
JR, Liang YJ, Chang CC and Kuan P: Combined cord blood stem cells
and gene therapy enhances angiogenesis and improves cardiac
performance in mouse after acute myocardial infarction. Eur J Clin
Invest. 35:677–686. 2005.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Czymai T, Viemann D, Sticht C, Molema G,
Goebeler M and Schmidt M: FOXO3 modulates endothelial gene
expression and function by classical and alternative mechanisms. J
Biol Chem. 285:10163–10178. 2010.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Yan P, Li Q, Wang L, Lu P, Suzuki K, Liu
Z, Lei J, Li W, He X, Wang S, et al: FOXO3-engineered human
ESC-derived vascular cells promote vascular protection and
regeneration. Cell Stem Cell. 24:447–461.e8. 2019.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Wu D, Liu Y, Liu X, Liu W, Shi H, Zhang Y,
Zou L and Zhao Y: Heme oxygenase-1 gene modified human placental
mesenchymal stem cells promote placental angiogenesis and spiral
artery remodeling by improving the balance of angiogenic factors in
vitro. Placenta. 99:70–77. 2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Shevchenko EK, Makarevich PI, Tsokolaeva
ZI, Boldyreva MA, Sysoeva VY, Tkachuk VA and Parfyonova YV:
Transplantation of modified human adipose derived stromal cells
expressing VEGF165 results in more efficient angiogenic response in
ischemic skeletal muscle. J Transl Med. 11(138)2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Mushimiyimana I, Tomas Bosch V, Niskanen
H, Downes NL, Moreau PR, Hartigan K, Ylä-Herttuala S, Laham-Karam N
and Kaikkonen MU: Genomic landscapes of noncoding RNAs regulating
VEGFA and VEGFC expression in endothelial cells. Mol Cell Biol.
41(e0059420)2021.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Zhen S, Qiang R, Lu J, Tuo X, Yang X and
Li X: TGF-β1-based CRISPR/Cas9 gene therapy attenuate
radiation-induced lung injury. Curr Gene Ther: Dec 29, 2020 (Epub
ahead of print). doi: 10.2174/1566523220666201230100523.
|
|
109
|
van der Laan AM, Piek JJ and van Royen N:
Targeting angiogenesis to restore the microcirculation after
reperfused MI. Nat Rev Cardiol. 6:515–523. 2009.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Tarantini G, Ramondo A, Napodano M,
Favaretto E, Gardin A, Bilato C, Nesseris G, Tarzia V, Cademartiri
F, Gerosa G, et al: PCI versus CABG for multivessel coronary
disease in diabetics. Catheter Cardiovasc Interv. 73:50–58.
2009.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Montrief T, Koyfman A and Long B: Coronary
artery bypass graft surgery complications: A review for emergency
clinicians. Am J Emerg Med. 36:2289–2297. 2018.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Wang L, Huang S, Li S, Li M, Shi J, Bai W,
Wang Q, Zheng L and Liu Y: Efficacy and safety of umbilical cord
mesenchymal stem cell therapy for rheumatoid arthritis patients: A
prospective phase I/II study. Drug Des Devel Ther. 13:4331–4340.
2019.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Watanabe Y, Tsuchiya A and Terai S: The
development of mesenchymal stem cell therapy in the present, and
the perspective of cell-free therapy in the future. Clin Mol
Hepatol. 27:70–80. 2021.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Yu B, Zhang X and Li X: Exosomes derived
from mesenchymal stem cells. Int J Mol Sci. 15:4142–4157.
2014.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Yamashita T, Takahashi Y and Takakura Y:
Possibility of exosome-based therapeutics and challenges in
production of exosomes eligible for therapeutic application. Biol
Pharm Bull. 41:835–842. 2018.PubMed/NCBI View Article : Google Scholar
|
|
116
|
He X, Wang Q, Zhao Y, Zhang H, Wang B, Pan
J, Li J, Yu H, Wang L, Dai J, et al: Effect of intramyocardial
grafting collagen scaffold with mesenchymal stromal cells in
patients with chronic ischemic heart disease: A randomized clinical
trial. JAMA Netw Open. 3(e2016236)2020.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Topaloğlu Demir F, Özkök Akbulut T, Kıvanç
Altunay İ, Aytekin S, Oğuz Topal İ, Kara Polat A, Özkur E and
Karadağ AS: Evaluation of the adverse effects of biological agents
used in the treatment of psoriasis: A multicenter retrospective
cohort study. Dermatol Ther. 33(e14216)2020.PubMed/NCBI View Article : Google Scholar
|