Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2022 Volume 23 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B

  • Authors:
    • Heng Tang
    • Junhao Zhao
    • Rui Feng
    • Peng Pu
    • Li Wen
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, P.R. China, The First Clinical College, Jinyun Mountain Campus of Chongqing Medical University, Chongqing 401331, P.R. China
    Copyright: © Tang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 68
    |
    Published online on: November 23, 2021
       https://doi.org/10.3892/etm.2021.10991
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The cardiotoxicity of pirarubicin (THP) seriously affects its clinical application, which cannot be ignored. The antioxidant effect of schisandrin B (SchB) has been extensively reported in the context of dietotherapy. However, whether this antioxidant effect can protect the heart from THP damage remains unknown. The aim of the present study was to investigate whether the antioxidant effect of SchB can antagonize the cardiotoxicity of THP. Changes in electrocardiogram (ECG), echocardiography and serum lactate dehydrogenase, brain natriuretic peptide, creatine kinase MB and cardiac troponin T levels were used to detect the degree of cardiac damage. The levels of superoxide dismutase (SOD), malondialdehyde, catalase and total antioxidant capacity in the serum and heart were measured to observe the oxidative stress state of rats. Primary cardiomyocytes were cultured, and cell viability and reactive oxygen species (ROS) production were detected. Western blotting was used to detect the expression levels of SOD2, NOX2, pro/cleaved‑caspase3 and Bcl‑2/Bax in heart tissue and primary cardiomyocytes to verify the related signaling pathways. THP‑treated rats showed a range of cardiac damage, including an abnormal ECG, echocardiography and myocardial enzymes. In the cellular experiments, cell viability decreased and ROS increased. However, this damage was alleviated after SchB treatment. Further studies demonstrated that SchB antagonized THP cardiotoxicity via its antioxidant effect. In conclusion, SchB protects the heart from THP damage in rats, and the mechanism may be closely associated with its antioxidant effect.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Minotti G, Recalcati S, Menna P, Salvatorelli E, Corna G and Cairo G: Doxorubicin cardiotoxicity and the control of iron metabolism: Quinone-dependent and independent mechanisms. Methods Enzymol. 378:340–361. 2004.PubMed/NCBI View Article : Google Scholar

2 

Weiss RB: The anthracyclines: Will we ever find a better doxorubicin? Semin Oncol. 19:670–686. 1992.PubMed/NCBI

3 

Maayah ZH, Abdelhamid G, Elshenawy OH, El-Sherbeni AA, Althurwi HN, McGinn E, Dawood D, Alammari AH and El-Kadi AOS: The role of soluble epoxide hydrolase enzyme on daunorubicin-mediated cardiotoxicity. Cardiovasc Toxicol. 18:268–283. 2018.PubMed/NCBI View Article : Google Scholar

4 

Skrypnyk I, Maslova G, Lymanets T and Gusachenko I: L-arginine is an effective medication for prevention of endothelial dysfunction, a predictor of anthracycline cardiotoxicity in patients with acute leukemia. Exp Oncol. 39:308–311. 2017.PubMed/NCBI

5 

Nicolazzi MA, Carnicelli A, Fuorlo M, Scaldaferri A, Masetti R, Landolfi R and Favuzzi AMR: Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur Rev Med Pharmacol Sci. 22:2175–2185. 2018.PubMed/NCBI View Article : Google Scholar

6 

Bartlett JJ, Trivedi PC and Pulinilkunnil T: Autophagic dysregulation in doxorubicin cardiomyopathy. J Mol Cell Cardiol. 104:1–8. 2017.PubMed/NCBI View Article : Google Scholar

7 

Afsar T, Razak S, Batoo KM and Khan MR: Acacia hydaspica R. Parker prevents doxorubicin-induced cardiac injury by attenuation of oxidative stress and structural Cardiomyocyte alterations in rats. BMC Complement Altern Med. 17(554)2017.PubMed/NCBI View Article : Google Scholar

8 

Songbo M, Lang H, Xinyong C, Bin X, Ping Z and Liang S: Oxidative stress injury in doxorubicin-induced cardiotoxicity. Toxicol Lett. 307:41–48. 2019.PubMed/NCBI View Article : Google Scholar

9 

Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L and Peng J: MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 15:284–296. 2018.PubMed/NCBI View Article : Google Scholar

10 

Lu TL, Wu XY, Song Y, Chen H, Xu B, Zhou Y, Huang ZJ, Sun Y and Mao CQ: Effect of acupuncture on target tissue distribution of Schisandra lignans. Acupunct Med. 31:207–213. 2013.PubMed/NCBI View Article : Google Scholar

11 

Wu Y, Li ZC, Yao LQ, Li M and Tang M: Schisandrin B alleviates acute oxidative stress via modulation of the Nrf2/Keap1-mediated antioxidant pathway. Appl Physiol Nutr Metab. 44:1–6. 2019.PubMed/NCBI View Article : Google Scholar

12 

Lam PY and Ko KM: Schisandrin B as a hormetic agent for preventing age-related neurodegenerative diseases. Oxid Med Cell Longev. 2012(250825)2012.PubMed/NCBI View Article : Google Scholar

13 

Lam PY, Yan CW, Chiu PY, Leung HY and Ko KM: Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue. Fitoterapia. 82:393–400. 2011.PubMed/NCBI View Article : Google Scholar

14 

Nasser MI, Zhu S, Chen C, Zhao M, Huang H and Zhu P: A comprehensive review on schisandrin B and its biological properties. Oxid Med Cell Longev. 2020(2172740)2020.PubMed/NCBI View Article : Google Scholar

15 

Zhu H, Zhang X, Guan J, Cui B, Zhao L and Zhao X: Pharmacokinetics and tissue distribution study of schisandrin B in rats by ultra-fast liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal. 78-79:136–140. 2013.PubMed/NCBI View Article : Google Scholar

16 

Jiang EP, Li H, Yu CR, Yu CY, Jing S, Sun HX, Wang CM, Fan XT, Chen JG and Wang S: Schisandrin B protects PC12 cells against oxidative stress of neurodegenerative diseases. Neuroreport. 26:360–366. 2015.PubMed/NCBI View Article : Google Scholar

17 

Zhao X, Xiang Y, Cai C, Zhou A, Zhu N and Zeng C: Schisandrin B protects against myocardial ischemia/reperfusion injury via the PI3K/Akt pathway in rats. Mol Med Rep. 17:556–561. 2018.PubMed/NCBI View Article : Google Scholar

18 

Shi H, Zeng Q, Wei Y, Yang H, Tang H, Wang D, Pu P and Feng R: Canagliflozin is a potential cardioprotective drug but exerts no significant effects on pirarubicin-induced cardiotoxicity in rats. Mol Med Rep. 24(703)2021.PubMed/NCBI View Article : Google Scholar

19 

Chen N and Ko M: Schisandrin B-induced glutathione antioxidant response and cardioprotection are mediated by reactive oxidant species production in rat hearts. Biol Pharm Bull. 33:825–829. 2010.PubMed/NCBI View Article : Google Scholar

20 

Miller AA and Salewski E: Prospects for pirarubicin. Med Pediatr Oncol. 22:261–688. 1994.PubMed/NCBI View Article : Google Scholar

21 

Tang H, Zeng Q, Tang T, Wei Y and Pu P: Kaempferide improves glycolipid metabolism disorder by activating PPARγ in high-fat-diet-fed mice. Life Sci. 270(119133)2021.PubMed/NCBI View Article : Google Scholar

22 

Tang H, Zeng Q, Ren N, Wei Y, He Q, Chen M and Pu P: Kaempferide improves oxidative stress and inflammation by inhibiting the TLR4/IκBα/NF-κB pathway in obese mice. Iran J Basic Med Sci. 24:493–498. 2021.PubMed/NCBI View Article : Google Scholar

23 

Xu J, Liu D, Niu H, Zhu G, Xu Y, Ye D, Li J and Zhang Q: Resveratrol reverses Doxorubicin resistance by inhibiting epithelial-mesenchymal transition (EMT) through modulating PTEN/Akt signaling pathway in gastric cancer. J Exp Clin Cancer Res. 36(19)2017.PubMed/NCBI View Article : Google Scholar

24 

Li L, Pan Q, Han W, Liu Z, Li L and Hu X: Schisandrin B prevents doxorubicin-induced cardiotoxicity via enhancing glutathione redox cycling. Clin Cancer Res. 13:6753–6760. 2007.PubMed/NCBI View Article : Google Scholar

25 

Xu Y, Liu Z, Sun J, Pan Q, Sun F, Yan Z and Hu X: Schisandrin B prevents doxorubicin-induced chronic cardiotoxicity and enhances its anticancer activity in vivo. PLoS One. 6(e28335)2011.PubMed/NCBI View Article : Google Scholar

26 

Anqi Y, Yu Z, Mingjun X, Xiaoli K, Mengmeng L, Fangfang L and Mei Z: Use of echocardiography to monitor myocardial damage during anthracycline chemotherapy. Echocardiography. 36:495–502. 2019.PubMed/NCBI View Article : Google Scholar

27 

Saidi A and Alharethi R: Management of chemotherapy induced cardiomyopathy. Curr Cardiol Rev. 7:245–249. 2011.PubMed/NCBI View Article : Google Scholar

28 

Simões R, Silva LM, Cruz A, Fraga VG, de Paula Sabino A and Gomes KB: Troponin as a cardiotoxicity marker in breast cancer patients receiving anthracycline-based chemotherapy: A narrative review. Biomed Pharmacother. 107:989–996. 2018.PubMed/NCBI View Article : Google Scholar

29 

Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C and Cipolla CM: Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 109:2749–2754. 2004.PubMed/NCBI View Article : Google Scholar

30 

Cappetta D, De Angelis A, Sapio L, Prezioso L, Illiano M, Quaini F, Rossi F, Berrino L, Naviglio S and Urbanek K: Oxidative stress and cellular response to doxorubicin: A common factor in the complex milieu of anthracycline cardiotoxicity. Oxid Med Cell Longev. 2017(1521020)2017.PubMed/NCBI View Article : Google Scholar

31 

Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P and Castillo RL: Antioxidant therapeutic strategies for cardiovascular conditions associated with oxidative stress. Nutrients. 9(966)2017.PubMed/NCBI View Article : Google Scholar

32 

Yu Y and Zheng G: Troxerutin protects against diabetic cardiomyopathy through NF-κB/AKT/IRS1 in a rat model of type 2 diabetes. Mol Med Rep. 15:3473–3478. 2017.PubMed/NCBI View Article : Google Scholar

33 

Huang ZW, Liu N, Li D, Zhang HY, Wang Y, Liu Y, Zhang LL and Ju XL: Angiopoietin-1 modified human umbilical cord mesenchymal stem cell therapy for endotoxin-induced acute lung injury in rats. Yonsei Med J. 58:206–216. 2017.PubMed/NCBI View Article : Google Scholar

34 

Sun HL, Peng ML, Lee SS, Chen CJ, Chen WY, Yang ML and Kuan YH: Endotoxin-induced acute lung injury in mice is protected by 5,7-dihydroxy-8-methoxyflavone via inhibition of oxidative stress and HIF-1α. Environ Toxicol. 31:1700–1709. 2016.PubMed/NCBI View Article : Google Scholar

35 

Gray SP and Jandeleit-Dahm KA: The role of NADPH oxidase in vascular disease - hypertension, atherosclerosis and stroke. Curr Pharm Des. 21:5933–5944. 2015.PubMed/NCBI View Article : Google Scholar

36 

Parajuli N, Patel VB, Wang W, Basu R and Oudit GY: Loss of NOX2 (gp91phox) prevents oxidative stress and progression to advanced heart failure. Clin Sci (Lond). 127:331–340. 2014.PubMed/NCBI View Article : Google Scholar

37 

Manuneedhi Cholan P, Cartland SP and Kavurma MM: NADPH oxidases, angiogenesis, and peripheral artery disease. Antioxidants (Basel). 6(56)2017.PubMed/NCBI View Article : Google Scholar

38 

Xin DQ, Hu ZM, Huo HJ, Yang XJ, Han D, Xing WH, Zhao Y and Qiu QH: Schisandrin B attenuates the inflammatory response, oxidative stress and apoptosis induced by traumatic spinal cord injury via inhibition of p53 signaling in adult rats. Mol Med Rep. 16:533–538. 2017.PubMed/NCBI View Article : Google Scholar

39 

Kim SR, Lee MK, Koo KA, Kim SH, Sung SH, Lee NG, Markelonis GJ, Oh TH, Yang JH and Kim YC: Dibenzocyclooctadiene lignans from Schisandra chinensis protect primary cultures of rat cortical cells from glutamate-induced toxicity. J Neurosci Res. 76:397–405. 2004.PubMed/NCBI View Article : Google Scholar

40 

Zhang X, Hu C, Kong CY, Song P, Wu HM, Xu SC, Yuan YP, Deng W, Ma ZG and Tang QZ: FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 27:540–55. 2020.PubMed/NCBI View Article : Google Scholar

41 

Wu Y, Wang B, Xu H, Tang L, Li Y, Gong L, Wang Y and Li W: Probiotic Bacillus attenuates oxidative stress-induced intestinal injury via p38-mediated autophagy. Front Microbiol. 10(2185)2019.PubMed/NCBI View Article : Google Scholar

42 

Wang M, Meng XB, Yu YL, Sun GB, Xu XD, Zhang XP, Dong X, Ye JX, Xu HB, Sun YF and Sun XB: Elatoside C protects against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes through the reduction of endoplasmic reticulum stress partially depending on STAT3 activation. Apoptosis. 19:1727–1735. 2014.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Tang H, Zhao J, Feng R, Pu P and Wen L: Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B. Exp Ther Med 23: 68, 2022.
APA
Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 68. https://doi.org/10.3892/etm.2021.10991
MLA
Tang, H., Zhao, J., Feng, R., Pu, P., Wen, L."Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B". Experimental and Therapeutic Medicine 23.1 (2022): 68.
Chicago
Tang, H., Zhao, J., Feng, R., Pu, P., Wen, L."Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B". Experimental and Therapeutic Medicine 23, no. 1 (2022): 68. https://doi.org/10.3892/etm.2021.10991
Copy and paste a formatted citation
x
Spandidos Publications style
Tang H, Zhao J, Feng R, Pu P and Wen L: Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B. Exp Ther Med 23: 68, 2022.
APA
Tang, H., Zhao, J., Feng, R., Pu, P., & Wen, L. (2022). Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B. Experimental and Therapeutic Medicine, 23, 68. https://doi.org/10.3892/etm.2021.10991
MLA
Tang, H., Zhao, J., Feng, R., Pu, P., Wen, L."Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B". Experimental and Therapeutic Medicine 23.1 (2022): 68.
Chicago
Tang, H., Zhao, J., Feng, R., Pu, P., Wen, L."Reducing oxidative stress may be important for treating pirarubicin‑induced cardiotoxicity with schisandrin B". Experimental and Therapeutic Medicine 23, no. 1 (2022): 68. https://doi.org/10.3892/etm.2021.10991
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team