Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Article Open Access

Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury

  • Authors:
    • Yun Hu
    • Xiaoyan Feng
    • Junhui Chen
    • Yan Wu
    • Liuyan Shen
  • View Affiliations / Copyright

    Affiliations: Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University, 904th Hospital of Joint Logistic Support Force of PLA, Wuxi, Jiangsu 214044, P.R. China
    Copyright: © Hu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 126
    |
    Published online on: December 9, 2021
       https://doi.org/10.3892/etm.2021.11049
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Traumatic brain injury (TBI) has been recognized as a serious public health issue and a key contributor to disability and death, with a huge economic burden worldwide. Hydrogen, which is a slight and specific cytotoxic oxygen radical scavenger, has been demonstrated to ameliorate early brain injury (EBI) through reactive oxygen species (ROS), oxidative stress injury, apoptosis and necroptosis. Necroptosis refers to a type of programmed cell death process that has a vital function in neuronal cell death following TBI. The specific function of necroptosis in hydrogen‑mediated neuroprotection after TBI, however, has yet to be determined. The present study aimed to examine the neuroprotective effects and possible molecular basis that underly hydrogen‑rich saline in TBI‑stimulated EBI by examining neural necroptosis in the C57BL/6 mouse model. The brain water content, neurological score, neuroinflammatory cytokines (NF‑κΒ, TNF‑α, IL‑6 and IL‑1β) and ROS were evaluated using flow cytometry. Malondialdehyde, superoxide dismutase (SOD) and glutathione (GSH) levels were evaluated using a biochemical kit. Receptor‑interacting protein kinase (RIP)1, RIP3, Nrf2 and Heme oxygenase‑1 (HO‑1) were evaluated using western blotting. mRNA of Nrf2 and HO‑1 were evaluated using quantitative PCR. Neuronal death was evaluated by TUNEL staining. The outcomes illustrated that hydrogen‑rich saline treatment considerably enhanced the neurological score, increased neuronal survival, decreased the levels of serum MDA and brain ROS, increased the levels of serum GSH and SOD. In addition the protein expression levels of RIP1 and RIP3 and the cytokines NF‑κB, TNF‑α, IL‑1β and IL‑6 were downregulated compared with the TBI group, which demonstrated that hydrogen‑rich saline‑induced inhibition of necroptosis and neuroinflammation ameliorated neuronal death following TBI. The neuroprotective capacity of hydrogen‑rich saline was demonstrated to be partly dependent on the ROS/heme oxygenase‑1 signaling pathway. Taken together, the findings of the present study indicated that hydrogen‑rich saline enhanced neurological outcomes in mice and minimized neuronal death by inducing protective effects against neural necroptosis as well as neuroinflammation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Jiang JY, Gao GY, Feng JF, Mao Q, Chen LG, Yang XF, Liu JF, Wang YH, Qiu BH and Huang XJ: Traumatic brain injury in China. Lancet Neurol. 18:286–295. 2019.PubMed/NCBI View Article : Google Scholar

2 

Chen J, Li M, Chen L, Chen W, Zhang C, Feng Y, Wang Y and Chen Q: The effect of controlled decompression for severe traumatic brain injury: A randomized, controlled trial. Front Neurol. 11(107)2020.PubMed/NCBI View Article : Google Scholar

3 

Chen JH, Li PP, Yang LK, Chen L, Zhu J, Hu X and Wang YH: Value of ventricular intracranial pressure monitoring for traumatic bifrontal contusions. World Neurosurg. 113:e690–e701. 2018.PubMed/NCBI View Article : Google Scholar

4 

Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, Bailey M, Cooper DJ, Duranteau J, Huet O, et al: Erythropoietin in traumatic brain injury (EPO-TBI): A double-blind randomised controlled trial. Lancet. 386:2499–2506. 2015.PubMed/NCBI View Article : Google Scholar

5 

Hutchinson PJ, Kolias AG, Timofeev IS, Corteen EA, Czosnyka M, Timothy J, Anderson I, Bulters DO, Belli A, Eynon CA, et al: Trial of decompressive craniectomy for traumatic intracranial hypertension. N Engl J Med. 375:1119–1130. 2016.PubMed/NCBI View Article : Google Scholar

6 

Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, Forbes A, Gantner D, Higgins AM, Huet O, et al: Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: The POLAR randomized clinical trial. JAMA. 320:2211–2220. 2018.PubMed/NCBI View Article : Google Scholar

7 

Wright DW, Yeatts SD, Silbergleit R, Palesch YY, Hertzberg VS, Frankel M, Goldstein FC, Caveney AF, Howlett-Smith H, Bengelink EM, et al: Very early administration of progesterone for acute traumatic brain injury. N Engl J Med. 371:2457–2466. 2014.PubMed/NCBI View Article : Google Scholar

8 

Robertson CS, Hannay HJ, Yamal JM, Gopinath S, Goodman JC and Tilley BC: Epo Severe TBI Trial Investigators. Baldwin A, Rivera Lara L, Saucedo-Crespo H, et al: Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: A randomized clinical trial. JAMA. 312:36–47. 2014.PubMed/NCBI View Article : Google Scholar

9 

Wang Y, Wang L, Hu T, Wang F, Han Z, Yin Z, Ge X, Xie K and Lei P: Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a microvascular endothelial cell model of traumatic brain injury. Neurol Res. 42:487–496. 2020.PubMed/NCBI View Article : Google Scholar

10 

Li H, Lu C, Yao W, Xu L, Zhou J and Zheng B: Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury. Aging (Albany NY). 12:21687–21705. 2020.PubMed/NCBI View Article : Google Scholar

11 

Wang Y, Zhao M, Shang L, Zhang Y, Huang C, He Z, Luo M, Wu B, Song P, Wang M and Duan F: Homer1a protects against neuronal injury via PI3K/AKT/mTOR signaling pathway. Int J Neurosci. 130:621–630. 2020.PubMed/NCBI View Article : Google Scholar

12 

Vandenabeele P, Galluzzi L, Vanden Berghe T and Kroemer G: Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol. 11:700–714. 2010.PubMed/NCBI View Article : Google Scholar

13 

Chen T, Yang LK, Zhu J, Hang CH and Wang YH: The AMPAR antagonist perampanel regulates neuronal necroptosis via Akt/GSK3β signaling after acute traumatic injury in cortical neurons. CNS Neurol Disord Drug Targets. 20:266–272. 2021.PubMed/NCBI View Article : Google Scholar

14 

Chen T, Zhu J, Wang YH and Hang CH: Arc silence aggravates traumatic neuronal injury via mGluR1-mediated ER stress and necroptosis. Cell Death Dis. 11(4)2020.PubMed/NCBI View Article : Google Scholar

15 

Bao Z, Fan L, Zhao L, Xu X, Liu Y, Chao H, Liu N, You Y, Liu Y, Wang X and Ji J: Silencing of A20 aggravates neuronal death and inflammation after traumatic brain injury: A potential trigger of necroptosis. Front Mol Neurosci. 12(222)2019.PubMed/NCBI View Article : Google Scholar

16 

Laird MD, Wakade C, Alleyne CH Jr and Dhandapani KM: Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med. 45:1103–1114. 2008.PubMed/NCBI View Article : Google Scholar

17 

Shen H, Liu C, Zhang D, Yao X, Zhang K, Li H and Chen G: Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis. 8(e2641)2017.PubMed/NCBI View Article : Google Scholar

18 

Zhang Y, Li M, Li X, Zhang H, Wang L, Wu X, Zhang H and Luo Y: Catalytically inactive RIP1 and RIP3 deficiency protect against acute ischemic stroke by inhibiting necroptosis and neuroinflammation. Cell Death Dis. 11(565)2020.PubMed/NCBI View Article : Google Scholar

19 

Yuan J, Amin P and Ofengeim D: Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 20:19–33. 2019.PubMed/NCBI View Article : Google Scholar

20 

Liu C, Chen Y, Cui W, Cao Y, Zhao L, Wang H, Liu X, Fan S, Huang K, Tong A and Zhou L: Inhibition of neuronal necroptosis mediated by RIP1/RIP3/MLKL provides neuroprotective effects on kaolin-induced hydrocephalus in mice. Cell Prolif. 54(e13108)2021.PubMed/NCBI View Article : Google Scholar

21 

Wu Y, Zheng Z, Cao X, Yang Q, Norton V, Adini A, Maiti AK, Adini I and Wu H: RIP1/RIP3/MLKL mediates myocardial function through necroptosis in experimental autoimmune myocarditis. Front Cardiovasc Med. 8(696362)2021.PubMed/NCBI View Article : Google Scholar

22 

Linkermann A and Green DR: Necroptosis. N Engl J Med. 370:455–465. 2014.PubMed/NCBI View Article : Google Scholar

23 

Zou R, Wang MH, Chen Y, Fan X, Yang B, Du J, Wang XB, Liu KX and Zhou J: Hydrogen-rich saline attenuates acute lung injury induced by limb ischemia/reperfusion via down-regulating chemerin and NLRP3 in rats. Shock. 52:134–141. 2019.PubMed/NCBI View Article : Google Scholar

24 

Ning K, Liu WW, Huang JL, Lu HT and Sun XJ: Effects of hydrogen on polarization of macrophages and microglia in a stroke model. Med Gas Res. 8:154–159. 2019.PubMed/NCBI View Article : Google Scholar

25 

Kumagai K, Toyooka T, Takeuchi S, Otani N, Wada K, Tomiyama A and Mori K: Hydrogen gas inhalation improves delayed brain injury by alleviating early brain injury after experimental subarachnoid hemorrhage. Sci Rep. 10(12319)2020.PubMed/NCBI View Article : Google Scholar

26 

Ohno K and Ito M, Ichihara M and Ito M: Molecular hydrogen as an emerging therapeutic medical gas for neurodegenerative and other diseases. Oxid Med Cell Longev. 2012(353152)2012.PubMed/NCBI View Article : Google Scholar

27 

Takeuchi S, Mori K, Arimoto H, Fujii K, Nagatani K, Tomura S, Otani N, Osada H and Wada K: Effects of intravenous infusion of hydrogen-rich fluid combined with intra-cisternal infusion of magnesium sulfate in severe aneurysmal subarachnoid hemorrhage: Study protocol for a randomized controlled trial. BMC Neurol. 14(176)2014.PubMed/NCBI View Article : Google Scholar

28 

Schallner N, Pandit R, LeBlanc R III, Thomas AJ, Ogilvy CS, Zuckerbraun BS, Gallo D, Otterbein LE and Hanafy KA: Microglia regulate blood clearance in subarachnoid hemorrhage by heme oxygenase-1. J Clin Invest. 125:2609–2625. 2015.PubMed/NCBI View Article : Google Scholar

29 

Kaiser S, Frase S, Selzner L, Lieberum JL, Wollborn J, Niesen WD, Foit NA, Heiland DH and Schallner N: Neuroprotection after hemorrhagic stroke depends on cerebral heme oxygenase-1. Antioxidants (Basel). 8(496)2019.PubMed/NCBI View Article : Google Scholar

30 

Afonso MB, Rodrigues PM, Simão AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J and Rodrigues CM: Activation of necroptosis in human and experimental cholestasis. Cell Death Dis. 7(e2390)2016.PubMed/NCBI View Article : Google Scholar

31 

Chen J, Wang Y, Wu J, Yang J, Li M and Chen Q: The potential value of targeting ferroptosis in early brain injury after acute CNS disease. Front Mol Neurosci. 13(110)2020.PubMed/NCBI View Article : Google Scholar

32 

National Research Council (US). Committee for the Update of the Guide for the Care and Use of Laboratory Animals: The National Academies Collection: Reports funded by National Institutes of Health. In: Guide for the Care and Use of Laboratory Animals. 8th edition. National Academies Press, Washington, DC, 2011.

33 

Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR and Shohami E: Mouse closed head injury model induced by a weight-drop device. Nat Protoc. 4:1328–1337. 2009.PubMed/NCBI View Article : Google Scholar

34 

Tian J, Yang L, Wang P, Yang L and Fan Z: Exogenous CGRP regulates apoptosis and autophagy to alleviate traumatic brain injury through Akt/mTOR signalling pathway. Neurochem Res. 45:2926–2938. 2020.PubMed/NCBI View Article : Google Scholar

35 

Zhuang Z, Zhou ML, You WC, Zhu L, Ma CY, Sun XJ and Shi JX: Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neurosci. 13(47)2012.PubMed/NCBI View Article : Google Scholar

36 

Feng Y, Wang R, Xu J, Sun J, Xu T, Gu Q and Wu X: Hydrogen-rich saline prevents early neurovascular dysfunction resulting from inhibition of oxidative stress in STZ-diabetic rats. Curr Eye Res. 38:396–404. 2013.PubMed/NCBI View Article : Google Scholar

37 

Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S and Ohta S: Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 13:688–694. 2007.PubMed/NCBI View Article : Google Scholar

38 

Tang C, Shan Y, Hu Y, Fang Z, Tong Y, Chen M, Wei X, Fu X and Xu X: FGF2 attenuates neural cell death via suppressing autophagy after rat mild traumatic brain injury. Stem Cells Int. 2017(2923182)2017.PubMed/NCBI View Article : Google Scholar

39 

Chen J, Zhang C, Yan T, Yang L, Wang Y, Shi Z, Li M and Chen Q: Atorvastatin ameliorates early brain injury after subarachnoid hemorrhage via inhibition of pyroptosis and neuroinflammation. J Cell Physiol. 236:6920–6931. 2021.PubMed/NCBI View Article : Google Scholar

40 

Chen JH, Wu T, Xia WY, Shi ZH, Zhang CL, Chen L, Chen QX and Wang YH: An early neuroprotective effect of atorvastatin against subarachnoid hemorrhage. Neural Regen Res. 15:1947–1954. 2020.PubMed/NCBI View Article : Google Scholar

41 

Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, Yang S, He J, Shi D and Wang Y: Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARγ/NF-KB signalling pathway. J Cell Mol Med. 23:2256–2262. 2019.PubMed/NCBI View Article : Google Scholar

42 

Hollingshead JR and Phillips RK: Haemorrhoids: Modern diagnosis and treatment. Postgrad Med J. 92:4–8. 2016.PubMed/NCBI View Article : Google Scholar

43 

Das S, Chattopadhyay D, Chatterjee SK, Mondal SA, Majumdar SS, Mukhopadhyay S, Saha N, Velayutham R, Bhattacharya S and Mukherjee S: Increase in PPARγ inhibitory phosphorylation by Fetuin-A through the activation of Ras-MEK-ERK pathway causes insulin resistance. Biochim Biophys Acta Mol Basis Dis. 1867(166050)2021.PubMed/NCBI View Article : Google Scholar

44 

Li Y, Liu Y, Wu P, Tian Y, Liu B, Wang J, Bihl J and Shi H: Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol. 41:263–278. 2021.PubMed/NCBI View Article : Google Scholar

45 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.PubMed/NCBI View Article : Google Scholar

46 

Wehn AC, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, Plesnila N and Terpolilli NA: RIPK1 or RIPK3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun. 9(138)2021.PubMed/NCBI View Article : Google Scholar

47 

Huang GR and Hao FG: Dexmedetomidine inhibits inflammation to alleviate early neuronal injury via TLR4/NF-κB pathway in rats with traumatic brain injury. Crit Rev Eukaryot Gene Expr. 31:41–47. 2021.PubMed/NCBI View Article : Google Scholar

48 

Li F, Wang X, Zhang Z, Zhang X and Gao P: Dexmedetomidine attenuates neuroinflammatory-induced apoptosis after traumatic brain injury via Nrf2 signaling pathway. Ann Clin Transl Neurol. 6:1825–1835. 2019.PubMed/NCBI View Article : Google Scholar

49 

Yang T, Feng X, Zhao Y, Zhang H, Cui H, Wei M, Yang H and Fan H: Dexmedetomidine enhances autophagy via α2-AR/AMPK/mTOR pathway to inhibit the activation of NLRP3 inflammasome and subsequently alleviates lipopolysaccharide-induced acute kidney injury. Front Pharmacol. 11(790)2020.PubMed/NCBI View Article : Google Scholar

50 

Fei W, Jiao W, Feng X, Chen X and Wang Y: Intermittent hypoxia mimicking obstructive sleep apnea aggravates early brain injury following ICH via neuroinflammation and apoptosis. Mol Med Rep. 24(824)2021.PubMed/NCBI View Article : Google Scholar

51 

Feng X, Ma W, Zhu J, Jiao W and Wang Y: Dexmedetomidine alleviates early brain injury following traumatic brain injury by inhibiting autophagy and neuroinflammation through the ROS/Nrf2 signaling pathway. Mol Med Rep. 24(661)2021.PubMed/NCBI View Article : Google Scholar

52 

Liu L, Xie K, Chen H, Dong X, Li Y and Yu Y, Wang G and Yu Y: Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 1589:78–92. 2014.PubMed/NCBI View Article : Google Scholar

53 

Choi KS, Kim HJ, Do SH, Hwang SJ and Yi HJ: Neuroprotective effects of hydrogen inhalation in an experimental rat intracerebral hemorrhage model. Brain Res Bull. 142:122–128. 2018.PubMed/NCBI View Article : Google Scholar

54 

Wang P, Zhao M, Chen Z, Wu G, Fujino M, Zhang C, Zhou W, Zhao M, Hirano SI, Li XK and Zhao L: Hydrogen gas attenuates hypoxic-ischemic brain injury via regulation of the MAPK/HO-1/PGC-1a pathway in neonatal rats. Oxid Med Cell Longev. 2020(6978784)2020.PubMed/NCBI View Article : Google Scholar

55 

Dohi K, Kraemer BC, Erickson MA, McMillan PJ, Kovac A, Flachbartova Z, Hansen KM, Shah GN, Sheibani N, Salameh T and Banks WA: Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One. 9(e108034)2014.PubMed/NCBI View Article : Google Scholar

56 

Tian R, Hou Z, Hao S, Wu W, Mao X, Tao X, Lu T and Liu B: Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats. Brain Res. 1637:1–13. 2016.PubMed/NCBI View Article : Google Scholar

57 

Yuan J, Wang D, Liu Y, Chen X, Zhang H, Shen F, Liu X and Fu J: Hydrogen-rich water attenuates oxidative stress in rats with traumatic brain injury via Nrf2 pathway. J Surg Res. 228:238–246. 2018.PubMed/NCBI View Article : Google Scholar

58 

Jia R, Jia N, Yang F, Liu Z, Li R, Jiang Y, Zhao J, Wang L, Zhang S, Zhang Z, et al: Hydrogen alleviates necroptosis and cognitive deficits in lithium-pilocarpine model of status epilepticus. Cell Mol Neurobiol. 39:857–869. 2019.PubMed/NCBI View Article : Google Scholar

59 

Dong XH, Liu H, Zhang MZ, Zhao PX, Liu S, Hao Y and Wang YB: Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway. Am J Transl Res. 11:499–508. 2019.PubMed/NCBI

60 

Wang M, Ke Y, Li Y, Shan Z, Mi W, Cao Y, Feng W and Zheng X: The nephroprotective effects and mechanisms of rehmapicrogenin include ROS inhibition via an oestrogen-like pathway both in vivo and in vitro. Biomed Pharmacother. 138(111305)2021.PubMed/NCBI View Article : Google Scholar

61 

Yu Y, Yang Y, Yang M, Wang C, Xie K and Yu Y: Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway. Int Immunopharmacol. 69:11–18. 2019.PubMed/NCBI View Article : Google Scholar

62 

Chen H, Xie K, Han H, Li Y, Liu L, Yang T and Yu Y: Molecular hydrogen protects mice against polymicrobial sepsis by ameliorating endothelial dysfunction via an Nrf2/HO-1 signaling pathway. Int Immunopharmacol. 28:643–654. 2015.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Hu Y, Feng X, Chen J, Wu Y and Shen L: Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury. Exp Ther Med 23: 126, 2022.
APA
Hu, Y., Feng, X., Chen, J., Wu, Y., & Shen, L. (2022). Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury. Experimental and Therapeutic Medicine, 23, 126. https://doi.org/10.3892/etm.2021.11049
MLA
Hu, Y., Feng, X., Chen, J., Wu, Y., Shen, L."Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury". Experimental and Therapeutic Medicine 23.2 (2022): 126.
Chicago
Hu, Y., Feng, X., Chen, J., Wu, Y., Shen, L."Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury". Experimental and Therapeutic Medicine 23, no. 2 (2022): 126. https://doi.org/10.3892/etm.2021.11049
Copy and paste a formatted citation
x
Spandidos Publications style
Hu Y, Feng X, Chen J, Wu Y and Shen L: Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury. Exp Ther Med 23: 126, 2022.
APA
Hu, Y., Feng, X., Chen, J., Wu, Y., & Shen, L. (2022). Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury. Experimental and Therapeutic Medicine, 23, 126. https://doi.org/10.3892/etm.2021.11049
MLA
Hu, Y., Feng, X., Chen, J., Wu, Y., Shen, L."Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury". Experimental and Therapeutic Medicine 23.2 (2022): 126.
Chicago
Hu, Y., Feng, X., Chen, J., Wu, Y., Shen, L."Hydrogen‑rich saline alleviates early brain injury through inhibition of necroptosis and neuroinflammation via the ROS/HO‑1 signaling pathway after traumatic brain injury". Experimental and Therapeutic Medicine 23, no. 2 (2022): 126. https://doi.org/10.3892/etm.2021.11049
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team