|
1
|
Feizi S: Corneal endothelial cell
dysfunction: Etiologies and management. Ther Adv Ophthalmol.
10(2515841418815802)2018.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Price MO, Mehta JS, Jurkunas UV and Price
FW Jr: Corneal endothelial dysfunction: Evolving understanding and
treatment options. Prog Retin Eye Res. 82(100904)2021.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Dua HS, Faraj LA, Said DG, Gray T and Lowe
J: Human corneal anatomy redefined: A novel pre-Descemet's layer
(Dua's layer). Ophthalmology. 120:1778–1785. 2013.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Abdellah MM, Ammar HG, Anbar M, Mostafa
EM, Farouk MM, Sayed K, Alsmman AH and Elghobaier MG: Corneal
endothelial cell density and morphology in healthy egyptian eyes. J
Ophthalmol. 2019(6370241)2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Ewete T, Ani EU and Alabi AS: Normal
corneal endothelial cell density in Nigerians. Clin Ophthalmol.
10:497–501. 2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Khalid M, Ameen SS, Ayub N and Mehboob MA:
Effects of anterior chamber depth and axial length on corneal
endothelial cell density after phacoemulsification. Pak J Med Sci.
35:200–204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Tuft SJ and Coster DJ: The corneal
endothelium. Eye (Lond). 4 (Pt 3):389–424. 1990.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Bourne WM: Biology of the corneal
endothelium in health and disease. Eye (Lond). 17:912–918.
2003.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Palko JR, Qi O and Sheybani A: Corneal
alterations associated with pseudoexfoliation syndrome and
glaucoma: A literature review. J Ophthalmic Vis Res. 12:312–324.
2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Tomaszewski BT, Zalewska R and Mariak Z:
Evaluation of the endothelial cell density and the central corneal
thickness in pseudoexfoliation syndrome and pseudoexfoliation
glaucoma. J Ophthalmol. 2014(123683)2014.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Andrikopoulos GK, Alexopoulos DK and
Gartaganis SP: Pseudoexfoliation syndrome and cardiovascular
diseases. World J Cardiol. 6:847–854. 2014.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Thorleifsson G, Magnusson KP, Sulem P,
Walters GB, Gudbjartsson DF, Stefansson H, Jonsson T, Jonasdottir
A, Jonasdottir A, Stefansdottir G, et al: Common sequence variants
in the LOXL1 gene confer susceptibility to exfoliation glaucoma.
Science. 317:1397–1400. 2007.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Schlötzer-Schrehardt U: Pseudoexfoliation
syndrome: The puzzle continues. J Ophthalmic Vis Res. 7:187–189.
2012.PubMed/NCBI
|
|
14
|
Aoki T, Kitazawa K, Inatomi T, Kusada N,
Horiuchi N, Takeda K, Yokoi N, Kinoshita S and Sotozono C: Risk
factors for corneal endothelial cell loss in patients with
pseudoexfoliation syndrome. Sci Rep. 10(7260)2020.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Han SB, Yang HK and Hyon JY: Influence of
diabetes mellitus on anterior segment of the eye. Clin Interv
Aging. 14:53–63. 2018.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Del Buey MA, Casas P, Caramello C, López
N, de la Rica M, Subirón AB, Lanchares E, Huerva V, Grzybowski A
and Ascaso FJ: An update on Corneal biomechanics and architecture
in diabetes. J Ophthalmol. 2019(7645352)2019.PubMed/NCBI View Article : Google Scholar
|
|
17
|
McKay TB, Priyadarsini S and Karamichos D:
Mechanisms of collagen crosslinking in diabetes and keratoconus.
Cells. 8(1239)2019.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Ljubimov AV: Diabetic complications in the
cornea. Vision Res. 139:138–152. 2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Brownlee M: The pathobiology of diabetic
complications: A unifying mechanism. Diabetes. 54:1615–1625.
2005.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Zhao H, He Y, Ren YR and Chen BH: Corneal
alteration and pathogenesis in diabetes mellitus. Int J Ophthalmol.
12:1939–1950. 2019.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Shih KC, Lam KS and Tong L: A systematic
review on the impact of diabetes mellitus on the ocular surface.
Nutr Diabetes. 7(e251)2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Matsuda M, Ohguro N, Ishimoto I and Fukuda
M: Relationship of corneal endothelial morphology to diabetic
retinopathy, duration of diabetes and glycemic control. Jpn J
Ophthalmol. 34:53–56. 1990.PubMed/NCBI
|
|
23
|
Larsson LI, Bourne WM, Pach JM and
Brubaker RF: Structure and function of the corneal endothelium in
diabetes mellitus type I and II. Arch Ophthalmol. 114:9–14.
1996.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Leelawongtawun W, Suphachearaphan W,
Kampitak K and Leelawongtawun R: A comparative study of corneal
endothelial structure between diabetes and non-diabetes. J Med
Assoc Thai. 98:484–488. 2015.PubMed/NCBI
|
|
25
|
Storr-Paulsen A, Singh A, Jeppesen H,
Norregaard JC and Thulesen J: Corneal endothelial morphology and
central thickness in patients with type II diabetes mellitus. Acta
Ophthalmol. 92:158–160. 2014.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Liaboe CA, Aldrich BT, Carter PC, Skeie
JM, Burckart KA, Schmidt GA, Reed CR, Zimmerman MB and Greiner MA:
Assessing the impact of Diabetes Mellitus on Donor Corneal
Endothelial Cell Density. Cornea. 36:561–566. 2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Zhang K, Zhao L, Zhu C, Nan W, Ding X,
Dong Y and Zhao M: The effect of diabetes on corneal endothelium: A
meta-analysis. BMC Ophthalmol. 21(78)2021.PubMed/NCBI View Article : Google Scholar
|
|
28
|
El-Agamy A and Alsubaie S: Corneal
endothelium and central corneal thickness changes in type 2
diabetes mellitus. Clin Ophthalmol. 11:481–486. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Gad H, Khan A, Akhtar N, Kamran S,
El-Sotouhy A, Dargham SR, Petropoulos IN, Ponirakis G, Shuaib A,
Streletz LJ and Malik RA: Corneal nerve and endothelial cell damage
in patients with transient ischemic attack and minor ischemic
stroke. PLoS One. 14(e0213319)2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Khan A, Kamran S, Akhtar N, Ponirakis G,
Al-Muhannadi H, Petropoulos IN, Al-Fahdawi S, Qahwaji R, Sartaj F,
Babu B, et al: Corneal confocal microscopy detects a reduction in
corneal endothelial cells and nerve fibres in patients with acute
ischemic stroke. Sci Rep. 8(17333)2018.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Scherer WJ: Corneal endothelial cell
density and cardiovascular mortality: A global survey and
correlative meta-analysis. Clin Anat. 31:927–936. 2018.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Bu J, Yu J, Wu Y, Cai X, Li K, Tang L,
Jiang N, Jeyalatha MV, Zhang M, Sun H, et al: Hyperlipidemia
affects tight junctions and pump function in the corneal
endothelium. Am J Pathol. 190:563–576. 2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Frifelt LEW, Subhi Y, Holm LM and Singh A:
Impact of tobacco use on corneal thickness and endothelial health:
A systematic review with meta-analyses. Acta Ophthalmol: May 21,
2021 (Epub ahead of print). doi: 10.1111/aos.14897.
|
|
34
|
Villatoro AJ, Fernández V, Claros S,
Alcoholado C, Cifuentes M, Merayo-Lloves J, Andrades JA and Becerra
J: Regenerative therapies in dry eye disease: From growth factors
to cell therapy. Int J Mol Sci. 18(2264)2017.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Kheirkhah A, Satitpitakul V, Hamrah P and
Dana R: Patients with dry eye disease and low subbasal nerve
density are at high risk for accelerated corneal endothelial cell
loss. Cornea. 36:196–201. 2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kheirkhah A, Saboo US, Abud TB, Dohlman
TH, Arnoldner MA, Hamrah P and Dana R: Reduced corneal endothelial
cell density in patients with dry eye disease. Am J Ophthalmol.
159:1022–1026.e2. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Pflugfelder SC and de Paiva CS: The
pathophysiology of dry eye disease: What we know and future
directions for research. Ophthalmology. 124 (Suppl 11):S4–S13.
2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Baudouin C, Messmer EM, Aragona P,
Geerling G, Akova YA, Benítez-del-Castillo J, Boboridis KG,
Merayo-Lloves J, Rolando M and Labetoulle M: Revisiting the vicious
circle of dry eye disease: A focus on the pathophysiology of
meibomian gland dysfunction. Br J Ophthalmol. 100:300–306.
2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Rosenbaum JT, Bodaghi B, Couto C, Zierhut
M, Acharya N, Pavesio C, Tay-Kearney ML, Neri P, Douglas K, Pathai
S, et al: New observations and emerging ideas in diagnosis and
management of non-infectious uveitis: A review. Semin Arthritis
Rheum. 49:438–445. 2019.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Hsu YR, Huang JC, Tao Y, Kaburaki T, Lee
CS, Lin TC, Hsu CC, Chiou SH and Hwang DK: Noninfectious uveitis in
the Asia-Pacific region. Eye (Lond). 33:66–77. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Guclu H and Gurlu V: Comparison of corneal
endothelial cell analysis in patients with uveitis and healthy
subjects. Int Ophthalmol. 39:287–294. 2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Trinh L, Brignole-Baudouin F, Labbé A,
Raphaël M, Bourges JL and Baudouin C: The corneal endothelium in an
endotoxin-induced uveitis model: Correlation between in vivo
confocal microscopy and immunohistochemistry. Mol Vis.
14:1149–1156. 2008.PubMed/NCBI
|
|
43
|
Setälä K: Corneal endothelial cell density
in iridocyclitis. Acta Ophthalmol (Copenh). 57:277–286.
1979.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Ghiță AC, Ilie L and Ghiță AM: The effects
of inflammation and anti-inflammatory treatment on corneal
endothelium in acute anterior uveitis. Rom J Ophthalmol.
63:161–165. 2019.PubMed/NCBI
|
|
45
|
Alfawaz AM, Holland GN, Yu F, Margolis MS,
Giaconi JA and Aldave AJ: Corneal endothelium in patients with
anterior uveitis. Ophthalmology. 123:1637–1645. 2016.PubMed/NCBI View Article : Google Scholar
|
|
46
|
European Glaucoma Society: Chapter 2:
Classification and Terminology. In: Terminology and Guidelines for
Glaucoma. 4th edition. European Glaucoma Society Terminology and
Guidelines for Glaucoma, pp 79, 2014.
|
|
47
|
McMonnies CW: Glaucoma history and risk
factors. J Optom. 10:71–78. 2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Conlon R, Saheb H and Ahmed II: Glaucoma
treatment trends: A review. Can J Ophthalmol. 52:114–124.
2017.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yu ZY, Wu L and Qu B: Changes in corneal
endothelial cell density in patients with primary open-angle
glaucoma. World J Clin Cases. 7:1978–1985. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Kwon JW, Rand GM, Cho KJ, Gore PK,
McCartney MD and Chuck RS: Association between corneal endothelial
cell density and topical glaucoma medication use in an eye bank
donor population. Cornea. 35:1533–1536. 2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Realini T, Gupta PK, Radcliffe NM, Garg S,
Wiley WF, Yeu E, Berdahl JP and Kahook MY: The effects of glaucoma
and glaucoma therapies on corneal endothelial cell density. J
Glaucoma. 30:209–218. 2021.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Dabrowska-Kloda K, Kloda T, Boudiaf S,
Jakobsson G and Stenevi U: Incidence and risk factors of late
in-the-bag intraocular lens dislocation: Evaluation of 140 eyes
between 1992 and 2012. J Cataract Refract Surg. 41:1376–1382.
2015.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Østern AE, Sandvik GF and Drolsum L: Late
in-the-bag intraocular lens dislocation in eyes with
pseudoexfoliation syndrome. Acta Ophthalmol. 92:184–191.
2014.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Jakobsson G, Zetterberg M, Lundström M,
Stenevi U, Grenmark R and Sundelin K: Late dislocation of
in-the-bag and out-of-the bag intraocular lenses: Ocular and
surgical characteristics and time to lens repositioning. J Cataract
Refract Surg. 36:1637–1644. 2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ascaso FJ, Huerva V and Grzybowski A:
Epidemiology, etiology, and prevention of late IOL-capsular bag
complex dislocation: Review of the literature. J Ophthalmol.
2015(805706)2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Schein OD, Cassard SD, Tielsch JM and
Gower EW: Cataract surgery among Medicare beneficiaries. Ophthalmic
Epidemiol. 19:257–264. 2012.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Behndig A, Montan P, Stenevi U, Kugelberg
M and Lundström M: One million cataract surgeries: Swedish National
Cataract Register 1992-2009. J Cataract Refract Surg. 37:1539–1545.
2011.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Wang W, Yan W, Fotis K, Prasad NM,
Lansingh VC, Taylor HR, Finger RP, Facciolo D and He M: Cataract
surgical rate and socioeconomics: A global study. Invest Ophthalmol
Vis Sci. 57:5872–5881. 2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Sousa DC, Leal I, Faria MY and Pinto LA: A
rare manifestation of uveitis-glaucoma-hyphema syndrome. J Curr
Glaucoma Pract. 10:76–78. 2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Vaiciuliene R and Jasinskas V: Corneal
endothelial status in different grades of late spontaneous
in-the-bag IOL dislocation. Int Ophthalmol. 41:1625–1634.
2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Shingleton BJ, Yang Y and O'Donoghue MW:
Management and outcomes of intraocular lens dislocation in patients
with pseudoexfoliation. J Cataract Refract Surg. 39:984–993.
2013.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kristianslund O, Råen M, Østern AE and
Drolsum L: Late in-the-bag intraocular lens dislocation: A
randomized clinical trial comparing lens repositioning and lens
exchange. Ophthalmology. 124:151–159. 2017.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Eum SJ, Kim MJ and Kim HK: A comparison of
clinical outcomes of dislocated intraocular lens fixation between
in situ refixation and conventional exchange technique combined
with vitrectomy. J Ophthalmol. 2016(5942687)2016.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Bulnes BL, de Rojas Silva MV and Moore RL:
Intraocular pressure changes before and after surgery for
spontaneous in-the-bag intraocular lens dislocation. J Cataract
Refract Surg. 45:305–311. 2019.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Jasinskas V, Vaiciuliene R, Varoniukaite A
and Speckauskas M: Novel microsurgical management of
uveitis-glaucoma-hyphema syndrome. Int Ophthalmol. 39:1607–1612.
2019.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Jin C, Chen X, Law A, Kang Y, Wang X, Xu W
and Yao K: Different-sized incisions for phacoemulsification in
age-related cataract. Cochrane Database Syst Rev.
9(CD010510)2017.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Bamdad S, Bolkheir A, Sedaghat MR and
Motamed M: Changes in corneal thickness and corneal endothelial
cell density after phacoemulsification cataract surgery: A
double-blind randomized trial. Electron Physician. 10:6616–6623.
2018.PubMed/NCBI View
Article : Google Scholar
|
|
68
|
Igarashi T, Ohsawa I, Kobayashi M,
Igarashi T, Suzuki H, Iketani M and Takahashi H: Hydrogen prevents
corneal endothelial damage in phacoemulsification cataract surgery.
Sci Rep. 6(31190)2016.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Choi JY and Han YK: Long-term (≥10 years)
results of corneal endothelial cell loss after cataract surgery.
Can J Ophthalmol. 54:438–444. 2019.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Yildirim TM, Auffarth GU, Son HS,
Khoramnia R, Munro DJ and Merz PR: Dispersive viscosurgical devices
demonstrate greater efficacy in protecting corneal endothelium in
vitro. BMJ Open Ophthalmol. 4(e000227)2019.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Ganekal S and Nagarajappa A: Comparison of
morphological and functional endothelial cell changes after
cataract surgery: Phacoemulsification versus manual small-incision
cataract surgery. Middle East Afr J Ophthalmol. 21:56–60.
2014.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Gogate P, Optom JJ, Deshpande S and Naidoo
K: Meta-analysis to compare the safety and efficacy of manual small
incision cataract surgery and phacoemulsification. Middle East Afr
J Opht halmol. 22:362–369. 2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Kongsap P: Central corneal thickness
changes following manual small incision cataract surgery versus
phacoemulsification for white cataract. Rom J Ophthalmol. 63:61–67.
2019.PubMed/NCBI
|
|
74
|
Rosado-Adames N and Afshari NA: The
changing fate of the corneal endothelium in cataract surgery. Curr
Opin Ophthalmol. 23:3–6. 2012.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Popovic M, Campos-Möller X, Schlenker MB
and Ahmed II: Efficacy and safety of femtosecond laser-assisted
cataract surgery compared with manual cataract surgery: A
meta-analysis of 14 567 eyes. Ophthalmology. 123:2113–2126.
2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Day AC, Burr JM, Bennett K, Bunce C, Doré
CJ, Rubin GS, Nanavaty MA, Balaggan KS and Wilkins MR: FACT group.
Femtosecond laser-assisted cataract surgery versus
phacoemulsification cataract surgery (FACT): A randomized
noninferiority trial. Ophthalmology. 127:1012–1019. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Bascaran L, Alberdi T, Martinez-Soroa I,
Sarasqueta C and Mendicute J: Differences in energy and corneal
endothelium between femtosecond laser-assisted and conventional
cataract surgeries: Prospective, intraindividual, randomized
controlled trial. Int J Ophthalmol. 11:1308–1316. 2018.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Roberts HW, Wagh VK, Sullivan DL, Hidzheva
P, Detesan DI, Heemraz BS, Sparrow JM and O'Brart DPS: A randomized
controlled trial comparing femtosecond laser-assisted cataract
surgery versus conventional phacoemulsification surgery. J Cataract
Refract Surg. 45:11–20. 2019.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Janson BJ, Alward WL, Kwon YH, Bettis DI,
Fingert JH, Provencher LM, Goins KM, Wagoner MD and Greiner MA:
Glaucoma-associated corneal endothelial cell damage: A review. Surv
Ophthalmol. 63:500–506. 2018.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Hirooka K, Nitta E, Ukegawa K, Sato S and
Kiuchi Y: Effect of trabeculectomy on corneal endothelial cell
loss. Br J Ophthalmol. 104:376–380. 2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Demir AG, Olgun A, Guven D, Demir M,
Sendul SY, Akarsu Acar OP and Kacar H: The effect of combined
phacotrabeculectomy, trabeculectomy and phacoemulsification on the
corneal endothelium in the early stage: A preliminary study. Int
Ophthalmol. 39:2121–2128. 2019.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Lee EK, Yun YJ, Lee JE, Yim JH and Kim CS:
Changes in corneal endothelial cells after Ahmed glaucoma valve
implantation: 2-year follow-up. Am J Ophthalmol. 148:361–367.
2009.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Kim MS, Kim KN and Kim CS: Changes in
corneal endothelial cell after ahmed glaucoma valve implantation
and trabeculectomy: 1-year follow-up. Korean J Ophthalmol.
30:416–425. 2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Casini G, Loiudice P, Pellegrini M,
Sframeli AT, Martinelli P, Passani A and Nardi M: Trabeculectomy
versus ex-press shunt versus ahmed valve implant: Short-term
effects on corneal endothelial cells. Am J Ophthalmol.
160:1185–1190.e1. 2015.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Kanagaratnam A and Ong K: Quantitative and
morphological corneal endothelial changes after selective laser
trabeculoplasty and retinal photocoagulation. Asia Pac J Ophthalmol
(Phila). 9:20–24. 2020.PubMed/NCBI View Article : Google Scholar
|