Open Access

Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes

  • Authors:
    • Dengke Ou
    • Dan Ni
    • Rong Li
    • Xiaobo Jiang
    • Xiaoxiao Chen
    • Hongfei Li
  • View Affiliations

  • Published online on: December 15, 2021     https://doi.org/10.3892/etm.2021.11066
  • Article Number: 143
  • Copyright: © Ou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Myocardial ischemia‑reperfusion injury (MIRI) is one of the leading causes of morbidity and mortality worldwide, for which there is no effective treatment. The present study aimed to assess novel methods of clinical MIRI treatment by studying the effects of galectin‑1(Gal‑1) on MIRI. Male 2‑month‑old Sprague Dawley rats and the rat cardiomyocyte cell line H9c2 were utilized in the present study. A rat model of MIRI was constructed by ligating the left anterior descending coronary artery, which was subsequently treated with Gal‑1. Differences in myocardial injury were then assessed by hematoxylin and eosin (H&E) staining. In addition, the levels of inflammation and apoptosis in rat myocardial tissue were determined by immunohistochemistry staining. Hypoxia‑reoxygenation was used to construct a model of MIRI in H9c2 cells. The effect of Gal‑1 on the apoptosis and viability of H9c2 cells was also verified by flow cytometry and a Cell Counting Kit‑8 assay. The results of H&E staining revealed that Gal‑1 alleviated MIRI. Echocardiography demonstrated that Gal‑1 improved cardiac function in rats following MIRI. In addition, MIRI increased levels of inflammation and apoptosis in rat myocardial tissues, with Gal‑1 treatment reversing this effect. In cellular experiments, Gal‑1 served anti‑inflammatory and anti‑apoptotic effects in hypoxic/reoxygenated cardiomyocytes. In conclusion, Gal‑1 served a significant protective effect on the myocardial tissue after ischemia‑reperfusion by reducing the level of inflammation and apoptosis in cardiomyocytes.
View Figures
View References

Related Articles

Journal Cover

February-2022
Volume 23 Issue 2

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Ou D, Ni D, Li R, Jiang X, Chen X and Li H: Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes. Exp Ther Med 23: 143, 2022
APA
Ou, D., Ni, D., Li, R., Jiang, X., Chen, X., & Li, H. (2022). Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes. Experimental and Therapeutic Medicine, 23, 143. https://doi.org/10.3892/etm.2021.11066
MLA
Ou, D., Ni, D., Li, R., Jiang, X., Chen, X., Li, H."Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes". Experimental and Therapeutic Medicine 23.2 (2022): 143.
Chicago
Ou, D., Ni, D., Li, R., Jiang, X., Chen, X., Li, H."Galectin‑1 alleviates myocardial ischemia‑reperfusion injury by reducing the inflammation and apoptosis of cardiomyocytes". Experimental and Therapeutic Medicine 23, no. 2 (2022): 143. https://doi.org/10.3892/etm.2021.11066