|
1
|
Nawab K, Bhere D, Bommarito A, Mufti M and
Naeem A: Stem cell therapies: A way to promising cures. Cureus.
11(e5712)2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Zakrzewski W, Dobrzynski M, Szymonowicz M
and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res
Ther. 10(68)2019.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Wang D, Bu F and Zhang W: The role of
Ubiquitination in regulating embryonic stem cell maintenance and
cancer development. Int J Mol Sci. 20(2667)2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang X: Stem cells in tissues, organoids,
and cancers. Cell Mol Life Sci. 76:4043–4070. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Aponte PM and Caicedo A: Stemness in
cancer: Stem cells, cancer stem cells, and their microenvironment.
Stem Cells Int. 2017(5619472)2017.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Ruan Y, Kim HN, Ogana H and Kim YM: Wnt
signaling in leukemia and its bone marrow microenvironment. Int J
Mol Sci. 21(6247)2020.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Roo JJD and Staal FJT: Cell signaling
pathway reporters in adult hematopoietic stem cells. Cells.
9(2264)2020.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Althoff MJ, Nayak RC, Hegde S, Wellendorf
AM, Bohan B, Filippi MD, Xin M, Lu QR, Geiger H, Zheng Y, et al:
Yap1-Scribble polarization is required for hematopoietic stem cell
division and fate. Blood. 136:1824–1836. 2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Pajcini KV, Speck NA and Pear WS: Notch
signaling in mammalian hematopoietic stem cells. Leukemia.
25:1525–1532. 2011.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Palomero T and Ferrando A: Oncogenic
NOTCH1 control of MYC and PI3K: Challenges and opportunities for
anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and
lymphomas. Clin Cancer Res. 14:5314–5317. 2008.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Pettersson S, Sczaniecka M, McLaren L,
Russell F, Gladstone K, Hupp T and Wallace M: Non-degradative
ubiquitination of the Notch1 receptor by the E3 ligase MDM2
activates the Notch signalling pathway. Biochem J. 450:523–536.
2013.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Kar R, Jha SK, Ojha S, Sharma A, Dholpuria
S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, et
al: The FBXW7-NOTCH interactome: A ubiquitin proteasomal
system-induced crosstalk modulating oncogenic transformation in
human tissues. Cancer Rep (Hoboken). 4(e1369)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Hori K, Sen A, Kirchhausen T and
Artavanis-Tsakonas S: Synergy between the ESCRT-III complex and
Deltex defines a ligand-independent Notch signal. J Cell Biol.
195:1005–1015. 2011.PubMed/NCBI View Article : Google Scholar
|
|
14
|
King B, Trimarchi T, Reavie L, Xu L,
Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A,
Shi J, Vakoc C, et al: The ubiquitin ligase FBXW7 modulates
leukemia-initiating cell activity by regulating MYC stability.
Cell. 153:1552–1566. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Thompson BJ, Buonamici S, Sulis ML,
Palomero T, Vilimas T, Basso G, Ferrando A and Aifantis I: The
SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell
leukemia. J Exp Med. 204:1825–1835. 2007.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Zhu W, Zhu Y, Xu H, Wang T, Wang J, Meng
M, Liu Y, Yan H, Yang Q and Liu P: Flavone inhibited proliferation
of T-ALL by promoting c-Cbl-induced ubiquitinylation and
degradation of Notch1. Biochem Biophys Res Commun. 522:684–689.
2020.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zieba JT, Chen YT, Lee BH and Bae Y: Notch
signaling in skeletal development, homeostasis and pathogenesis.
Biomolecules. 10(332)2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Chikara S and Reindl KM: Notch signaling:
A hero or villain in the war against cancer? Transl Lung Cancer
Res. 2:449–451. 2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Jundt F, Anagnostopoulos I, Forster R,
Mathas S, Stein H and Dorken B: Activated Notch1 signaling promotes
tumor cell proliferation and survival in Hodgkin and anaplastic
large cell lymphoma. Blood. 99:3398–3403. 2002.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Li L, Tang P, Li S, Qin X, Yang H, Wu C
and Liu Y: Notch signaling pathway networks in cancer metastasis: A
new target for cancer therapy. Med Oncol. 34(180)2017.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Espinoza I, Pochampally R, Xing F, Watabe
K and Miele L: Notch signaling: Targeting cancer stem cells and
epithelial-to-mesenchymal transition. Onco Targets Ther.
6:1249–1259. 2013.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wu J and Bresnick EH: Bare rudiments of
notch signaling: How receptor levels are regulated. Trends Biochem
Sci. 32:477–485. 2007.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Meloty-Kapella L, Shergill B, Kuon J,
Botvinick E and Weinmaster G: Notch ligand endocytosis generates
mechanical pulling force dependent on dynamin, epsins, and actin.
Dev Cell. 22:1299–1312. 2012.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Fischer A and Gessler M: Delta-Notch-and
then? Protein interactions and proposed modes of repression by Hes
and Hey bHLH factors. Nucleic Acids Res. 35:4583–4596.
2007.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Bessho Y, Sakata R, Komatsu S, Shiota K,
Yamada S and Kageyama R: Dynamic expression and essential functions
of Hes7 in somite segmentation. Genes Dev. 15:2642–2647.
2001.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Fischer A, Schumacher N, Maier M, Sendtner
M and Gessler M: The Notch target genes Hey1 and Hey2 are required
for embryonic vascular development. Genes Dev. 18:901–911.
2004.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Dohda T, Maljukova A, Liu L, Heyman M,
Grandér D, Brodin D, Sangfelt O and Lendahl U: Notch signaling
induces SKP2 expression and promotes reduction of p27Kip1 in T-cell
acute lymphoblastic leukemia cell lines. Exp Cell Res.
313:3141–3152. 2007.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ronchini C and Capobianco AJ: Induction of
cyclin D1 transcription and CDK2 activity by Notch(ic): Implication
for cell cycle disruption in transformation by Notch(ic). Mol Cell
Biol. 21:5925–5934. 2001.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Demarest RM, Dahmane N and Capobianco AJ:
Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia.
Blood. 117:2901–2909. 2011.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Zhang P, Yang Y, Nolo R, Zweidler-McKay PA
and Hughes DPM: Regulation of NOTCH signaling by reciprocal
inhibition of HES1 and Deltex 1 and its role in osteosarcoma
invasiveness. Oncogene. 29:2916–2926. 2010.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Dutta D, Sharma V, Mutsuddi M and
Mukherjee A: Regulation of Notch signaling by E3 ubiquitin ligases.
FEBS J: Feb 28, 2021 (Epubs ahead of print). doi:
10.1111/febs.15792.
|
|
32
|
Seita J and Weissman IL: Hematopoietic
stem cell: Self-renewal versus differentiation. Wiley Interdiscip
Rev Syst Biol Med. 2:640–653. 2010.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Sinka L, Biasch K, Khazaal I, Peault B and
Tavian M: Angiotensin-converting enzyme (CD143) specifies emerging
lympho-hematopoietic progenitors in the human embryo. Blood.
119:3712–3723. 2012.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Suzuki T and Chiba S: Notch signaling in
hematopoietic stem cells. Int J Hematol. 82:285–294.
2005.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Saito K, Nobuhisa I, Harada K, Takahashi
S, Anani M, Lickert H, Kanai-Azuma M, Kanai Y and Taga T:
Maintenance of hematopoietic stem and progenitor cells in fetal
intra-aortic hematopoietic clusters by the Sox17-Notch1-Hes1 axis.
Exp Cell Res. 365:145–155. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Zhang P, He Q, Chen D, Liu W, Wang L,
Zhang C, Ma D, Li W, Liu B and Liu F: G protein-coupled receptor
183 facilitates endothelial-to-hematopoietic transition via Notch1
inhibition. Cell Res. 25:1093–1107. 2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Kumano K, Chiba S, Kunisato A, Sata M,
Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K,
Takahashi T, et al: Notch1 but Not Notch2 is essential for
generating hematopoietic stem cells from endothelial cells.
Immunity. 18:699–711. 2003.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gama-Norton L, Ferrando E, Ruiz-Herguido
C, Liu Z, Guiu J, Islam AB, Lee SU, Yan M, Guidos CJ, López-Bigas
N, et al: Notch signal strength controls cell fate in the
haemogenic endothelium. Nat Commun. 6(8510)2015.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jang IH, Lu YF, Zhao L, Wenzel PL, Kume T,
Datta SM, Arora N, Guiu J, Lagha M, Kim PG, et al: Notch1 acts via
Foxc2 to promote definitive hematopoiesis via effects on hemogenic
endothelium. Blood. 125:1418–1426. 2015.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Stier S, Cheng T, Dombkowski D, Carlesso N
and Scadden DT: Notch1 activation increases hematopoietic stem cell
self-renewal in vivo and favors lymphoid over myeloid lineage
outcome. Blood. 99:2369–2378. 2002.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Shao L, Paik NY and Pajcini KV:
Hematopoietic jagged1 is required for the transition of
hematopoietic stem cells from the fetal liver to the adult bone
marrow niche. Blood. 136:10–11. 2020.
|
|
42
|
Ishiko E, Matsumura I, Ezoe S, Gale K,
Ishiko J, Satoh Y, Tanaka H, Shibayama H, Mizuki M, Era T, et al:
Notch signals inhibit the development of erythroid/megakaryocytic
cells by suppressing GATA-1 activity through the induction of HES1.
J Biol Chem. 280:4929–4939. 2005.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Henning K, Heering J, Schwanbeck R,
Schroeder T, Helmbold H, Schäfer H, Deppert W, Kim E and Just U:
Notch1 activation reduces proliferation in the multipotent
hematopoietic progenitor cell line FDCP-mix through a p53-dependent
pathway but Notch1 effects on myeloid and erythroid differentiation
are independent of p53. Cell Death Differ. 15:398–407.
2008.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yashiro-Ohtani Y, Ohtani T and Pear WS:
Notch regulation of early thymocyte development. Semin Immunol.
22:261–269. 2010.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Allman D, Karnell FG, Punt JA, Bakkour S,
Xu L, Myung P, Koretzky GA, Pui JC, Aster JC and Pear WS:
Separation of Notch1 promoted lineage commitment and
expansion/transformation in developing T cells. J Exp Med.
194:99–106. 2001.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Gerhardt DM, Pajcini KV, D'Altri T, Tu L,
Jain R, Xu L, Chen MJ, Rentschler S, Shestova O, Wertheim GB, et
al: The Notch1 transcriptional activation domain is required for
development and reveals a novel role for Notch1 signaling in fetal
hematopoietic stem cells. Genes Dev. 28:576–593. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Deftos ML and Bevan MJ: Notch signaling in
T cell development. Curr Opin Immunol. 12:166–172. 2000.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Tomita K, Hattori M, Nakamura E, Nakanishi
S, Minato N and Kageyama R: The bHLH gene Hes1 is essential for
expansion of early T cell precursors. Genes Dev. 13:1203–1210.
1999.PubMed/NCBI View Article : Google Scholar
|
|
49
|
De Decker M, Lavaert M, Roels J, Tilleman
L, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Van
Vlierberghe P and Taghon T: HES1 and HES4 have non-redundant roles
downstream of Notch during early human T-cell development.
Haematologica. 106:130–141. 2021.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Haque R and Song J, Haque M, Lei F, Sandhu
P, Ni B, Zheng S, Fang D, Yang JM and Song J: c-Myc-Induced
survivin is essential for promoting the Notch-dependent T cell
differentiation from hematopoietic stem cells. Genes (Basel).
8(97)2017.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Van de Walle I, De Smet G, Gärtner M, De
Smedt M, Waegemans E, Vandekerckhove B, Leclercq G, Plum J, Aster
JC, Bernstein ID, et al: Jagged2 acts as a Delta-like Notch ligand
during early hematopoietic cell fate decisions. Blood.
117:4449–4459. 2011.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Wendorff AA and Ferrando AA: Modeling
NOTCH1 driven T-cell acute lymphoblastic leukemia in mice. Bio
Protoc. 10(e3620)2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Ma W, Gutierrez A, Goff DJ, Geron I,
Sadarangani A, Jamieson CA, Court AC, Shih AY, Jiang Q, Wu CC, et
al: NOTCH1 signaling promotes human T-cell acute lymphoblastic
leukemia initiating cell regeneration in supportive niches. PLoS
One. 7(e39725)2012.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Bhanushali AA, Babu S, Thangapandi VR,
Pillai R, Chheda P and Das BR: Mutations in the HD and PEST domain
of Notch-1 receptor in T-cell acute lymphoblastic leukemia: Report
of novel mutations from Indian population. Oncol Res. 19:99–104.
2010.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ding J, Cardoso AA, Yoshimoto M and
Kobayashi M: The Earliest T-Precursors in the mouse embryo are
susceptible to leukemic transformation. Front Cell Dev Biol.
9(634151)2021.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Di Ianni M, Baldoni S, Del Papa B, Aureli
P, Dorillo E, De Falco F, Albi E, Varasano E, Di Tommaso A,
Giancola R, et al: NOTCH1 is aberrantly activated in chronic
lymphocytic leukemia hematopoietic stem cells. Front Oncol.
8(105)2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Spit M, Rieser E and Walczak H: Linear
ubiquitination at a glance. J Cell Sci.
132(jcs208512)2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Mansour MA: Ubiquitination: Friend and foe
in cancer. Int J Biochem Cell Biol. 101:80–93. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Martins S, Dohmann EMN, Cayrel A, Johnson
A, Fischer W, Pojer F, Satiat-Jeunemaître B, Jaillais Y, Chory J,
Geldner N and Vert G: Author Correction: Internalization and
vacuolar targeting of the brassinosteroid hormone receptor BRI1 are
regulated by ubiquitination. Nat Commun. 12(2982)2021.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Barbosa P, Zhaunova L, Debilio S,
Steccanella V, Kelly V, Ly T and Ohkura H: SCF-Fbxo42 promotes
synaptonemal complex assembly by downregulating PP2A-B56. J Cell
Biol. 220(e202009167)2021.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Li ZQ, Chen X and Wang Y: Small molecules
targeting ubiquitination to control inflammatory diseases. Drug
Discov Today. 26:2414–2422. 2021.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Dybas JM, Herrmann C and Weitzman MD:
Ubiquitination at the interface of tumor viruses and DNA damage
responses. Curr Opin Virol. 32:40–47. 2018.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Seo J, Kim MW, Bae KH, Lee SC, Song J and
Lee EW: The roles of ubiquitination in extrinsic cell death
pathways and its implications for therapeutics. Biochem Pharmacol.
162:21–40. 2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Sun T, Liu Z and Yang Q: The role of
ubiquitination and deubiquitination in cancer metabolism. Mol
Cancer. 19(146)2020.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu
J, Xu Y, Chen X, Zhang H, Guo T, et al: Regulation of the linear
ubiquitination of STAT1 controls antiviral interferon signaling.
Nat Commun. 11(1146)2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Liu Y and Deng J:
Ubiquitinationdeubiquitination in the Hippo signaling pathway
(Review). Oncol Rep. 41:1455–1475. 2019.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Soysouvanh F, Giuliano S, Habel N,
El-Hachem N, Pisibon C, Bertolotto C and Ballotti R: An Update on
the role of ubiquitination in melanoma development and therapies. J
Clin Med. 10(113)2021.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Jeusset LM and McManus KJ: Developing
targeted therapies that exploit aberrant histone ubiquitination in
cancer. Cells. 8(165)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Celebi G, Kesim H, Ozer E and Kutlu O: The
effect of dysfunctional ubiquitin enzymes in the pathogenesis of
most common diseases. Int J Mol Sci. 21(6335)2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Liu BQ, Jin J and Li YY: Ubiquitination
modification: Critical regulation of IRF family stability and
activity. Sci China Life Sci. 64:957–965. 2021.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Chen RH, Chen YH and Huang TY:
Ubiquitin-mediated regulation of autophagy. J Biomed Sci.
26(80)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Song YQ, Wu C, Wu KJ, Han QB, Miao XM, Ma
DL and Leung CH: Ubiquitination regulators discovered by virtual
screening for the treatment of cancer. Front Cell Dev Biol.
9(665646)2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Gupta-Rossi N, Le Bail O, Gonen H, Brou C,
Logeat F, Six E, Ciechanover A and Israël A: Functional interaction
between SEL-10, an F-box protein, and the nuclear form of activated
Notch1 receptor. J Biol Chem. 276:34371–34378. 2001.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Fostier M, Evans DA, Artavanis-Tsakonas S
and Baron M: Genetic characterization of the Drosophila
melanogaster Suppressor of deltex gene: A regulator of notch
signaling. Genetics. 150:1477–1485. 1998.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Cornell M, Evans DA, Mann R, Fostier M,
Flasza M, Monthatong M, Artavanis-Tsakonas S and Baron M: The
Drosophila melanogaster Suppressor of deltex gene, a regulator of
the Notch receptor signaling pathway, is an E3 class ubiquitin
ligase. Genetics. 152:567–576. 1999.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Qiu L, Joazeiro C, Fang N, Wang HY, Elly
C, Altman Y, Fang D, Hunter T and Liu YC: Recognition and
ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J
Biol Chem. 275:35734–35737. 2000.PubMed/NCBI View Article : Google Scholar
|
|
77
|
McGill MA and McGlade CJ: Mammalian numb
proteins promote Notch1 receptor ubiquitination and degradation of
the Notch1 intracellular domain. J Biol Chem. 278:23196–23203.
2003.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Che F, Chen J, Wan C and Huang X:
MicroRNA-27 inhibits autophagy and promotes proliferation of
multiple myeloma cells by targeting the NEDD4/Notch1 Axis. Front
Oncol. 10(571914)2020.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Baron M: Endocytic routes to Notch
activation. Semin Cell Dev Biol. 23:437–442. 2012.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Wilkin M, Tongngok P, Gensch N, Clemence
S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E,
Matsuno K and Baron M: Drosophila HOPS and AP-3 complex genes are
required for a Deltex-regulated activation of notch in the
endosomal trafficking pathway. Dev Cell. 15:762–772.
2008.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Jehn BM, Dittert I, Beyer S, von der Mark
K and Bielke W: c-Cbl binding and ubiquitin-dependent lysosomal
degradation of membrane-associated Notch1. J Biol Chem.
277:8033–8040. 2002.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Wu G, Lyapina S, Das I, Li J, Gurney M,
Pauley A, Chui I, Deshaies RJ and Kitajewski J: SEL-10 is an
inhibitor of notch signaling that targets notch for
ubiquitin-mediated protein degradation. Mol Cell Biol.
21:7403–7415. 2001.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Li L, Guturi KKN, Gautreau B, Patel PS,
Saad A, Morii M, Mateo F, Palomero L, Barbour H, Gomez A, et al:
Ubiquitin ligase RNF8 suppresses Notch signaling to regulate
mammary development and tumorigenesis. J Clin Invest.
128:4525–4542. 2018.PubMed/NCBI View Article : Google Scholar
|
|
84
|
McGill MA, Dho SE, Weinmaster G and
McGlade CJ: Numb regulates post-endocytic trafficking and
degradation of Notch1. J Biol Chem. 284:26427–26438.
2009.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Chastagner P, Israel A and Brou C:
AIP4/Itch regulates Notch receptor degradation in the absence of
ligand. PLoS One. 3(e2735)2008.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Sakata T, Sakaguchi H, Tsuda L,
Higashitani A, Aigaki T, Matsuno K and Hayashi S: Drosophila Nedd4
regulates endocytosis of notch and suppresses its
ligand-independent activation. Curr Biol. 14:2228–2236.
2004.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Henne WM, Buchkovich NJ and Emr SD: The
ESCRT pathway. Dev Cell. 21:77–91. 2011.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Moretti J and Brou C: Ubiquitinations in
the notch signaling pathway. Int J Mol Sci. 14:6359–6381.
2013.PubMed/NCBI View Article : Google Scholar
|
|
89
|
MacDonald C, Buchkovich NJ, Stringer DK,
Emr SD and Piper RC: Cargo ubiquitination is essential for
multivesicular body intralumenal vesicle formation. EMBO Rep.
13:331–338. 2012.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Perry JM and Li L: Self-renewal versus
transformation: Fbxw7 deletion leads to stem cell activation and
leukemogenesis. Genes Dev. 22:1107–1109. 2008.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Iriuchishima H, Takubo K, Matsuoka S,
Onoyama I, Nakayama KI, Nojima Y and Suda T: Ex vivo maintenance of
hematopoietic stem cells by quiescence induction through Fbxw7α
overexpression. Blood. 117:2373–2377. 2011.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Thompson BJ, Jankovic V, Gao J, Buonamici
S, Vest A, Lee JM, Zavadil J, Nimer SD and Aifantis I: Control of
hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7.
J Exp Med. 205:1395–1408. 2008.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Matsuoka S, Oike Y, Onoyama I, Iwama A,
Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, et al: Fbxw7
acts as a critical fail-safe against premature loss of
hematopoietic stem cells and development of T-ALL. Genes Dev.
22:986–991. 2008.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Rathinam C, Thien CB, Langdon WY, Gu H and
Flavell RA: The E3 ubiquitin ligase c-Cbl restricts development and
functions of hematopoietic stem cells. Genes Dev. 22:992–997.
2008.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Rathinam C, Matesic LE and Flavell RA: The
E3 ligase Itch is a negative regulator of the homeostasis and
function of hematopoietic stem cells. Nat Immunol. 12:399–407.
2011.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Asgarpour K, Shojaei Z, Amiri F, Ai J,
Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR and Mirzaei
H: Exosomal microRNAs derived from mesenchymal stem cells:
Cell-to-cell messages. Cell Commun Signal. 18(149)2020.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Moradian Tehrani R, Verdi J, Noureddini M,
Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR,
Jaafari MR, et al: Mesenchymal stem cells: A new platform for
targeting suicide genes in cancer. J Cell Physiol. 233:3831–3845.
2018.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Mirzaei H, Sahebkar A, Avan A, Jaafari MR,
Salehi R, Salehi H, Baharvand H, Rezaei A, Hadjati J, Pawelek JM
and Mirzaei HR: Application of mesenchymal stem cells in melanoma:
A potential therapeutic strategy for delivery of targeted agents.
Curr Med Chem. 23:455–463. 2016.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Mirzaei H, Salehi H, Oskuee RK,
Mohammadpour A, Mirzaei HR, Sharifi MR, Salarinia R, Darani HY,
Mokhtari M, Masoudifar A, et al: The therapeutic potential of human
adipose-derived mesenchymal stem cells producing CXCL10 in a mouse
melanoma lung metastasis model. Cancer Lett. 419:30–39.
2018.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran
M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H and Hamblin
MR: Mesenchymal stem cell-derived exosomes: A new therapeutic
approach to osteoarthritis? Stem Cell Res Ther.
10(340)2019.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Goradel NH, Hour FG, Negahdari B,
Malekshahi ZV, Hashemzehi M, Masoudifar A and Mirzaei H: Stem cell
therapy: A new therapeutic option for cardiovascular diseases. J
Cell Biochem. 119:95–104. 2018.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Mohammadi M, Jaafari MR, Mirzaei HR and
Mirzaei H: Mesenchymal stem cell: a new horizon in cancer gene
therapy. Cancer Gene Ther. 23:285–286. 2016.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Hatzimichael E and Tuthill M:
Hematopoietic stem cell transplantation. Stem Cells Cloning.
3:105–117. 2010.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Walsh K, Margossian S and Duncan CN:
Pediatric hematopoietic cell transplantation. J Pediatr Intensive
Care. 3:91–101. 2014.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Dessie G, Derbew Molla M, Shibabaw T and
Ayelign B: Role of stem-cell transplantation in leukemia treatment.
Stem Cells Cloning. 13:67–77. 2020.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Vanderwalde AM, Sun CL, Laddaran L,
Francisco L, Armenian S, Berano-Teh J, Wong FL, Popplewell L, Somlo
G, Stein AS, et al: Conditional survival and cause-specific
mortality after autologous hematopoietic cell transplantation for
hematological malignancies. Leukemia. 27:1139–1145. 2013.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Wang Y, Chen H, Chen J, Han M, Hu J, Jiong
Hu, Huang H, Lai Y, Liu D, Liu Q, et al: The consensus on the
monitoring, treatment, and prevention of leukemia relapse after
allogeneic hematopoietic stem cell transplantation in China. Cancer
Lett. 438:63–75. 2018.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Copelan EA: Medical progress:
Hematopoietic stem-cell transplantation. N Engl J Med.
354:1813–1826. 2006.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Doubek M, Folber F, Koristek Z, Brychtova
Y, Krejci M, Tomiska M, Navratil M, Mikulasova P and Mayer J:
Autologous hematopoietic stem cell transplantation in adult acute
lymphoblastic leukemia: Still not out of fashion. Ann Hematol.
88:881–887. 2009.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Atsuta Y, Hirakawa A, Nakasone H, Kurosawa
S, Oshima K, Sakai R, Ohashi K, Takahashi S, Mori T, Ozawa Y, et
al: Late mortality and causes of death among long-term survivors
after allogeneic stem cell transplantation. Biol Blood Marrow
Transplant. 22:1702–1709. 2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Wang X, Xia B and Zhang YZ: Progress of
Auto-HSCT for treatment of DLBCL-review. Zhongguo Shi Yan Xue Ye
Xue Za Zhi. 26:1841–1846. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
112
|
Alimoghaddam K, Ghavamzadeh A, Jahani M,
Jalali A, Jorjani H, Iravani M, Hamidieh AA, Mousavi A, Bahar B,
Behfar M, et al: Hematopoietic stem cell transplantation in acute
promyelocytic leukemia, experience in Iran. Arch Iran Med.
14:332–334. 2011.PubMed/NCBI
|
|
113
|
Zhu J: Thoughts on autologous
hematopoietic stem cell transplantation and mobilization in Chinese
patients with non Hodgkin's lymphoma. Zhonghua Xue Ye Xue Za Zhi.
41:1–4. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
114
|
Liu JR, Li J and Huang XJ: Problems and
progress of autologous hematopoietic stem cell transplantation in
multiple myeloma. Zhonghua Xue Ye Xue Za Zhi. 42:82–86.
2021.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
115
|
Zhao Y, Chen X and Feng S: Autologous
hematopoietic stem cell transplantation in acute Myelogenous
leukemia. Biol Blood Marrow Transplant. 25:e285–e292.
2019.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Passweg JR: Autologous hematopoetic cell
transplantation: Preferred consolidation treatment in low-risk AML?
Leuk Lymphoma. 60:2341–2342. 2019.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Xuan L and Liu Q: Maintenance therapy in
acute myeloid leukemia after allogeneic hematopoietic stem cell
transplantation. J Hematol Oncol. 14(4)2021.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Yong AS, Brissot E, Rubinstein S, Savani
BN and Mohty M: Transplant to treatment-free remission: The
evolving view of ‘cure’ in chronic myeloid leukemia. Expert Rev
Hematol. 8:785–797. 2015.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kook MH, Yhim HY, Lee NR, Song EK, Kim HS,
Yim CY and Kwak JY: Successful treatment of myelodysplastic
syndrome and Behcet colitis after allogeneic hematopoietic stem
cell transplantation. Korean J Intern Med. 29:123–125.
2014.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Chen X and Feng SZ: Advances in allogeneic
hematopoietic stem cell transplantation for severe aplastic anemia.
Zhonghua Xue Ye Xue Za Zhi. 33:963–967. 2012.PubMed/NCBI(In Chinese).
|
|
121
|
Peters C: Allogeneic hematopoietic stem
cell transplantation to cure transfusion-dependent thalassemia:
Timing Matters! Biol Blood Marrow Transplant. 24:1107–1108.
2018.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Del Galy AS, Marouf A, Raffoux E, Robin M,
Michonneau D, Sébert M, Sicre de Fontebrune F, Xhaard A, Lengline
E, Itzykson R, et al: Correction to: Allogeneic hematopoietic stem
cell transplantation in elderly patients with acute myeloid
leukemia or myelodysplastic syndromes: Myth and reality. Leukemia.
35(934)2021.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Chen XP, Cao ZR and Hu J: Advances in
allogeneic hematopoietic stem cell transplantation for chronic
Myelogenous leukemia-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
27:1334–1338. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
124
|
Iioka F, Tanabe H, Honjo G, Misaki T and
Ohno H: Resolution of bone, cutaneous, and muscular involvement
after haploidentical hematopoietic stem cell transplantation
followed by post-transplant cyclophosphamide in adult T-cell
leukemia/lymphoma. Clin Case Rep. 8:1553–1559. 2020.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Natarajan V, Bandapalli OR, Rajkumar T,
Sagar TG and Karunakaran N: NOTCH1 and FBXW7 mutations favor better
outcome in pediatric South Indian T-cell acute lymphoblastic
leukemia. J Pediat Hematol Oncol. 37:E23–E30. 2015.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Valliyammai N, Nancy NK, Sagar TG and
Rajkumar T: Study of NOTCH1 and FBXW7 mutations and its prognostic
significance in South Indian T-cell acute lymphoblastic leukemia. J
Pediatr Hematol Oncol. 40:e1–e8. 2018.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Jenkinson S, Koo K, Mansour MR, Goulden N,
Vora A, Mitchell C, Wade R, Richards S, Hancock J, Moorman AV, et
al: Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell
acute lymphoblastic leukemia patients treated on the MRC UKALL 2003
trial. Leukemia. 27:41–47. 2013.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Asnafi V, Buzyn A, Le Noir S, Baleydier F,
Simon A, Beldjord K, Reman O, Witz F, Fagot T, Tavernier E, et al:
NOTCH1/FBXW7 mutation identifies a large subgroup with favorable
outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): A
Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)
study. Blood. 113:3918–3924. 2009.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Malyukova A, Brown S, Papa R, O'Brien R,
Giles J, Trahair TN, Dalla Pozza L, Sutton R, Liu T, Haber M, et
al: FBXW7 regulates glucocorticoid response in T-cell acute
lymphoblastic leukaemia by targeting the glucocorticoid receptor
for degradation. Leukemia. 27:1053–1062. 2013.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Saito Y, Aoki Y, Muramatsu H, Makishima H,
Maciejewski JP, Imaizumi M, Rikiishi T, Sasahara Y, Kure S, Niihori
T, et al: Casitas B-cell lymphoma mutation in childhood T-cell
acute lymphoblastic leukemia. Leuk Res. 36:1009–1015.
2012.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Huang HL, Weng HY, Wang LQ, Yu CH, Huang
QJ, Zhao PP, Wen JZ, Zhou H and Qu LH: Triggering Fbw7-mediated
proteasomal degradation of c-Myc by oridonin induces cell growth
inhibition and apoptosis. Mol Cancer Ther. 11:1155–1165.
2012.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Zheng R, Li M, Wang S and Liu Y: Advances
of target therapy on NOTCH1 signaling pathway in T-cell acute
lymphoblastic leukemia. Exp Hematol Oncol. 9(31)2020.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Chiba S: Notch signaling in stem cell
systems. Stem Cells. 24:2437–2447. 2006.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Tan SH, Bertulfo FC and Sanda T:
Leukemia-initiating cells in T-cell acute lymphoblastic leukemia.
Front Oncol. 7(218)2017.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Belmonte M, Hoofd C, Weng AP and Giambra
V: Targeting leukemia stem cells: Which pathways drive self-renewal
activity in T-cell acute lymphoblastic leukemia? Curr Oncol.
23:34–41. 2016.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Gordeeva O: TGFβ family signaling pathways
in pluripotent and teratocarcinoma stem Cells' fate decisions:
Balancing between self-renewal, differentiation, and cancer. Cells.
8(1500)2019.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H,
Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is
essential for the maintenance and expansion of human MGE
progenitors. Stem Cell Reports. 12:934–949. 2019.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Rho JY, Bae GY, Chae J, Yu K, Koo DB, Lee
KK and Han YM: Transcriptional Properties of the BMP, TGF-β, RTK,
Wnt, Hh, Notch, and JAK/STAT signaling molecules in mouse embryonic
stem cells. Reproductive Dev Biol. 30:143–156. 2006.
|
|
139
|
Ding D, Lim KS and Eberhart CG: Arsenic
trioxide inhibits Hedgehog, Notch and stem cell properties in
glioblastoma neurospheres. Acta Neuropathologica Communications.
2(31)2014.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Liu H, Zhu L and Liu YH: Effect of FBXW7
and NOTCH1 mutations on prognosis of patients with adult acute T
lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
26:1294–1300. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|