Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Experimental and Therapeutic Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-0981 Online ISSN: 1792-1015
Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 23 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Fate of hematopoietic stem cells determined by Notch1 signaling (Review)

  • Authors:
    • Yidong Ge
    • Jie Wang
    • Hui Zhang
    • Jinyun Li
    • Meng Ye
    • Xiaofeng Jin
  • View Affiliations / Copyright

    Affiliations: The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang 315020, P.R. China
    Copyright: © Ge et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 170
    |
    Published online on: December 27, 2021
       https://doi.org/10.3892/etm.2021.11093
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Regulation of the fate of hematopoietic stem cells (HSCs), including silencing, self‑renewal or differentiation into blood line cells, is crucial to maintain the homeostasis of the human blood system and prevent leukemia. Notch1, a key receptor in the Notch signaling pathway, plays an important regulatory role in these properties of HSCs, particularly in the maintenance of the stemness of HSCs. In recent decades, the ubiquitination modification of Notch1 has been gradually revealed, and also demonstrated to affect the proliferation and differentiation of HSCs. Therefore, a detailed elucidation of Notch1 and its ubiquitination modification may help to improve understanding of the maintenance of HSC properties and the pathogenesis of leukemia. In addition, it may aid in identifying potential therapeutic targets for specific leukemias and provide potential prognostic indicators for HSC transplantation (HSCT). In the present review, the association between Notch1 and HSCs and the link between the ubiquitination modification of Notch1 and HSCs were described. In addition, the association between abnormal HSCs mediated by Notch1 or ubiquitinated Notch1and T‑cell acute lymphoblastic leukemia (T‑ALL) was also examined, which provides a promising direction for clinical application.
View Figures

Figure 1

View References

1 

Nawab K, Bhere D, Bommarito A, Mufti M and Naeem A: Stem cell therapies: A way to promising cures. Cureus. 11(e5712)2019.PubMed/NCBI View Article : Google Scholar

2 

Zakrzewski W, Dobrzynski M, Szymonowicz M and Rybak Z: Stem cells: Past, present, and future. Stem Cell Res Ther. 10(68)2019.PubMed/NCBI View Article : Google Scholar

3 

Wang D, Bu F and Zhang W: The role of Ubiquitination in regulating embryonic stem cell maintenance and cancer development. Int J Mol Sci. 20(2667)2019.PubMed/NCBI View Article : Google Scholar

4 

Wang X: Stem cells in tissues, organoids, and cancers. Cell Mol Life Sci. 76:4043–4070. 2019.PubMed/NCBI View Article : Google Scholar

5 

Aponte PM and Caicedo A: Stemness in cancer: Stem cells, cancer stem cells, and their microenvironment. Stem Cells Int. 2017(5619472)2017.PubMed/NCBI View Article : Google Scholar

6 

Ruan Y, Kim HN, Ogana H and Kim YM: Wnt signaling in leukemia and its bone marrow microenvironment. Int J Mol Sci. 21(6247)2020.PubMed/NCBI View Article : Google Scholar

7 

Roo JJD and Staal FJT: Cell signaling pathway reporters in adult hematopoietic stem cells. Cells. 9(2264)2020.PubMed/NCBI View Article : Google Scholar

8 

Althoff MJ, Nayak RC, Hegde S, Wellendorf AM, Bohan B, Filippi MD, Xin M, Lu QR, Geiger H, Zheng Y, et al: Yap1-Scribble polarization is required for hematopoietic stem cell division and fate. Blood. 136:1824–1836. 2020.PubMed/NCBI View Article : Google Scholar

9 

Pajcini KV, Speck NA and Pear WS: Notch signaling in mammalian hematopoietic stem cells. Leukemia. 25:1525–1532. 2011.PubMed/NCBI View Article : Google Scholar

10 

Palomero T and Ferrando A: Oncogenic NOTCH1 control of MYC and PI3K: Challenges and opportunities for anti-NOTCH1 therapy in T-cell acute lymphoblastic leukemias and lymphomas. Clin Cancer Res. 14:5314–5317. 2008.PubMed/NCBI View Article : Google Scholar

11 

Pettersson S, Sczaniecka M, McLaren L, Russell F, Gladstone K, Hupp T and Wallace M: Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem J. 450:523–536. 2013.PubMed/NCBI View Article : Google Scholar

12 

Kar R, Jha SK, Ojha S, Sharma A, Dholpuria S, Raju VSR, Prasher P, Chellappan DK, Gupta G, Kumar Singh S, et al: The FBXW7-NOTCH interactome: A ubiquitin proteasomal system-induced crosstalk modulating oncogenic transformation in human tissues. Cancer Rep (Hoboken). 4(e1369)2021.PubMed/NCBI View Article : Google Scholar

13 

Hori K, Sen A, Kirchhausen T and Artavanis-Tsakonas S: Synergy between the ESCRT-III complex and Deltex defines a ligand-independent Notch signal. J Cell Biol. 195:1005–1015. 2011.PubMed/NCBI View Article : Google Scholar

14 

King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al: The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 153:1552–1566. 2013.PubMed/NCBI View Article : Google Scholar

15 

Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A and Aifantis I: The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 204:1825–1835. 2007.PubMed/NCBI View Article : Google Scholar

16 

Zhu W, Zhu Y, Xu H, Wang T, Wang J, Meng M, Liu Y, Yan H, Yang Q and Liu P: Flavone inhibited proliferation of T-ALL by promoting c-Cbl-induced ubiquitinylation and degradation of Notch1. Biochem Biophys Res Commun. 522:684–689. 2020.PubMed/NCBI View Article : Google Scholar

17 

Zieba JT, Chen YT, Lee BH and Bae Y: Notch signaling in skeletal development, homeostasis and pathogenesis. Biomolecules. 10(332)2020.PubMed/NCBI View Article : Google Scholar

18 

Chikara S and Reindl KM: Notch signaling: A hero or villain in the war against cancer? Transl Lung Cancer Res. 2:449–451. 2013.PubMed/NCBI View Article : Google Scholar

19 

Jundt F, Anagnostopoulos I, Forster R, Mathas S, Stein H and Dorken B: Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood. 99:3398–3403. 2002.PubMed/NCBI View Article : Google Scholar

20 

Li L, Tang P, Li S, Qin X, Yang H, Wu C and Liu Y: Notch signaling pathway networks in cancer metastasis: A new target for cancer therapy. Med Oncol. 34(180)2017.PubMed/NCBI View Article : Google Scholar

21 

Espinoza I, Pochampally R, Xing F, Watabe K and Miele L: Notch signaling: Targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther. 6:1249–1259. 2013.PubMed/NCBI View Article : Google Scholar

22 

Wu J and Bresnick EH: Bare rudiments of notch signaling: How receptor levels are regulated. Trends Biochem Sci. 32:477–485. 2007.PubMed/NCBI View Article : Google Scholar

23 

Meloty-Kapella L, Shergill B, Kuon J, Botvinick E and Weinmaster G: Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell. 22:1299–1312. 2012.PubMed/NCBI View Article : Google Scholar

24 

Fischer A and Gessler M: Delta-Notch-and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35:4583–4596. 2007.PubMed/NCBI View Article : Google Scholar

25 

Bessho Y, Sakata R, Komatsu S, Shiota K, Yamada S and Kageyama R: Dynamic expression and essential functions of Hes7 in somite segmentation. Genes Dev. 15:2642–2647. 2001.PubMed/NCBI View Article : Google Scholar

26 

Fischer A, Schumacher N, Maier M, Sendtner M and Gessler M: The Notch target genes Hey1 and Hey2 are required for embryonic vascular development. Genes Dev. 18:901–911. 2004.PubMed/NCBI View Article : Google Scholar

27 

Dohda T, Maljukova A, Liu L, Heyman M, Grandér D, Brodin D, Sangfelt O and Lendahl U: Notch signaling induces SKP2 expression and promotes reduction of p27Kip1 in T-cell acute lymphoblastic leukemia cell lines. Exp Cell Res. 313:3141–3152. 2007.PubMed/NCBI View Article : Google Scholar

28 

Ronchini C and Capobianco AJ: Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): Implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol. 21:5925–5934. 2001.PubMed/NCBI View Article : Google Scholar

29 

Demarest RM, Dahmane N and Capobianco AJ: Notch is oncogenic dominant in T-cell acute lymphoblastic leukemia. Blood. 117:2901–2909. 2011.PubMed/NCBI View Article : Google Scholar

30 

Zhang P, Yang Y, Nolo R, Zweidler-McKay PA and Hughes DPM: Regulation of NOTCH signaling by reciprocal inhibition of HES1 and Deltex 1 and its role in osteosarcoma invasiveness. Oncogene. 29:2916–2926. 2010.PubMed/NCBI View Article : Google Scholar

31 

Dutta D, Sharma V, Mutsuddi M and Mukherjee A: Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J: Feb 28, 2021 (Epubs ahead of print). doi: 10.1111/febs.15792.

32 

Seita J and Weissman IL: Hematopoietic stem cell: Self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med. 2:640–653. 2010.PubMed/NCBI View Article : Google Scholar

33 

Sinka L, Biasch K, Khazaal I, Peault B and Tavian M: Angiotensin-converting enzyme (CD143) specifies emerging lympho-hematopoietic progenitors in the human embryo. Blood. 119:3712–3723. 2012.PubMed/NCBI View Article : Google Scholar

34 

Suzuki T and Chiba S: Notch signaling in hematopoietic stem cells. Int J Hematol. 82:285–294. 2005.PubMed/NCBI View Article : Google Scholar

35 

Saito K, Nobuhisa I, Harada K, Takahashi S, Anani M, Lickert H, Kanai-Azuma M, Kanai Y and Taga T: Maintenance of hematopoietic stem and progenitor cells in fetal intra-aortic hematopoietic clusters by the Sox17-Notch1-Hes1 axis. Exp Cell Res. 365:145–155. 2018.PubMed/NCBI View Article : Google Scholar

36 

Zhang P, He Q, Chen D, Liu W, Wang L, Zhang C, Ma D, Li W, Liu B and Liu F: G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res. 25:1093–1107. 2015.PubMed/NCBI View Article : Google Scholar

37 

Kumano K, Chiba S, Kunisato A, Sata M, Saito T, Nakagami-Yamaguchi E, Yamaguchi T, Masuda S, Shimizu K, Takahashi T, et al: Notch1 but Not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity. 18:699–711. 2003.PubMed/NCBI View Article : Google Scholar

38 

Gama-Norton L, Ferrando E, Ruiz-Herguido C, Liu Z, Guiu J, Islam AB, Lee SU, Yan M, Guidos CJ, López-Bigas N, et al: Notch signal strength controls cell fate in the haemogenic endothelium. Nat Commun. 6(8510)2015.PubMed/NCBI View Article : Google Scholar

39 

Jang IH, Lu YF, Zhao L, Wenzel PL, Kume T, Datta SM, Arora N, Guiu J, Lagha M, Kim PG, et al: Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood. 125:1418–1426. 2015.PubMed/NCBI View Article : Google Scholar

40 

Stier S, Cheng T, Dombkowski D, Carlesso N and Scadden DT: Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood. 99:2369–2378. 2002.PubMed/NCBI View Article : Google Scholar

41 

Shao L, Paik NY and Pajcini KV: Hematopoietic jagged1 is required for the transition of hematopoietic stem cells from the fetal liver to the adult bone marrow niche. Blood. 136:10–11. 2020.

42 

Ishiko E, Matsumura I, Ezoe S, Gale K, Ishiko J, Satoh Y, Tanaka H, Shibayama H, Mizuki M, Era T, et al: Notch signals inhibit the development of erythroid/megakaryocytic cells by suppressing GATA-1 activity through the induction of HES1. J Biol Chem. 280:4929–4939. 2005.PubMed/NCBI View Article : Google Scholar

43 

Henning K, Heering J, Schwanbeck R, Schroeder T, Helmbold H, Schäfer H, Deppert W, Kim E and Just U: Notch1 activation reduces proliferation in the multipotent hematopoietic progenitor cell line FDCP-mix through a p53-dependent pathway but Notch1 effects on myeloid and erythroid differentiation are independent of p53. Cell Death Differ. 15:398–407. 2008.PubMed/NCBI View Article : Google Scholar

44 

Yashiro-Ohtani Y, Ohtani T and Pear WS: Notch regulation of early thymocyte development. Semin Immunol. 22:261–269. 2010.PubMed/NCBI View Article : Google Scholar

45 

Allman D, Karnell FG, Punt JA, Bakkour S, Xu L, Myung P, Koretzky GA, Pui JC, Aster JC and Pear WS: Separation of Notch1 promoted lineage commitment and expansion/transformation in developing T cells. J Exp Med. 194:99–106. 2001.PubMed/NCBI View Article : Google Scholar

46 

Gerhardt DM, Pajcini KV, D'Altri T, Tu L, Jain R, Xu L, Chen MJ, Rentschler S, Shestova O, Wertheim GB, et al: The Notch1 transcriptional activation domain is required for development and reveals a novel role for Notch1 signaling in fetal hematopoietic stem cells. Genes Dev. 28:576–593. 2014.PubMed/NCBI View Article : Google Scholar

47 

Deftos ML and Bevan MJ: Notch signaling in T cell development. Curr Opin Immunol. 12:166–172. 2000.PubMed/NCBI View Article : Google Scholar

48 

Tomita K, Hattori M, Nakamura E, Nakanishi S, Minato N and Kageyama R: The bHLH gene Hes1 is essential for expansion of early T cell precursors. Genes Dev. 13:1203–1210. 1999.PubMed/NCBI View Article : Google Scholar

49 

De Decker M, Lavaert M, Roels J, Tilleman L, Vandekerckhove B, Leclercq G, Van Nieuwerburgh F, Van Vlierberghe P and Taghon T: HES1 and HES4 have non-redundant roles downstream of Notch during early human T-cell development. Haematologica. 106:130–141. 2021.PubMed/NCBI View Article : Google Scholar

50 

Haque R and Song J, Haque M, Lei F, Sandhu P, Ni B, Zheng S, Fang D, Yang JM and Song J: c-Myc-Induced survivin is essential for promoting the Notch-dependent T cell differentiation from hematopoietic stem cells. Genes (Basel). 8(97)2017.PubMed/NCBI View Article : Google Scholar

51 

Van de Walle I, De Smet G, Gärtner M, De Smedt M, Waegemans E, Vandekerckhove B, Leclercq G, Plum J, Aster JC, Bernstein ID, et al: Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood. 117:4449–4459. 2011.PubMed/NCBI View Article : Google Scholar

52 

Wendorff AA and Ferrando AA: Modeling NOTCH1 driven T-cell acute lymphoblastic leukemia in mice. Bio Protoc. 10(e3620)2020.PubMed/NCBI View Article : Google Scholar

53 

Ma W, Gutierrez A, Goff DJ, Geron I, Sadarangani A, Jamieson CA, Court AC, Shih AY, Jiang Q, Wu CC, et al: NOTCH1 signaling promotes human T-cell acute lymphoblastic leukemia initiating cell regeneration in supportive niches. PLoS One. 7(e39725)2012.PubMed/NCBI View Article : Google Scholar

54 

Bhanushali AA, Babu S, Thangapandi VR, Pillai R, Chheda P and Das BR: Mutations in the HD and PEST domain of Notch-1 receptor in T-cell acute lymphoblastic leukemia: Report of novel mutations from Indian population. Oncol Res. 19:99–104. 2010.PubMed/NCBI View Article : Google Scholar

55 

Ding J, Cardoso AA, Yoshimoto M and Kobayashi M: The Earliest T-Precursors in the mouse embryo are susceptible to leukemic transformation. Front Cell Dev Biol. 9(634151)2021.PubMed/NCBI View Article : Google Scholar

56 

Di Ianni M, Baldoni S, Del Papa B, Aureli P, Dorillo E, De Falco F, Albi E, Varasano E, Di Tommaso A, Giancola R, et al: NOTCH1 is aberrantly activated in chronic lymphocytic leukemia hematopoietic stem cells. Front Oncol. 8(105)2018.PubMed/NCBI View Article : Google Scholar

57 

Spit M, Rieser E and Walczak H: Linear ubiquitination at a glance. J Cell Sci. 132(jcs208512)2019.PubMed/NCBI View Article : Google Scholar

58 

Mansour MA: Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol. 101:80–93. 2018.PubMed/NCBI View Article : Google Scholar

59 

Martins S, Dohmann EMN, Cayrel A, Johnson A, Fischer W, Pojer F, Satiat-Jeunemaître B, Jaillais Y, Chory J, Geldner N and Vert G: Author Correction: Internalization and vacuolar targeting of the brassinosteroid hormone receptor BRI1 are regulated by ubiquitination. Nat Commun. 12(2982)2021.PubMed/NCBI View Article : Google Scholar

60 

Barbosa P, Zhaunova L, Debilio S, Steccanella V, Kelly V, Ly T and Ohkura H: SCF-Fbxo42 promotes synaptonemal complex assembly by downregulating PP2A-B56. J Cell Biol. 220(e202009167)2021.PubMed/NCBI View Article : Google Scholar

61 

Li ZQ, Chen X and Wang Y: Small molecules targeting ubiquitination to control inflammatory diseases. Drug Discov Today. 26:2414–2422. 2021.PubMed/NCBI View Article : Google Scholar

62 

Dybas JM, Herrmann C and Weitzman MD: Ubiquitination at the interface of tumor viruses and DNA damage responses. Curr Opin Virol. 32:40–47. 2018.PubMed/NCBI View Article : Google Scholar

63 

Seo J, Kim MW, Bae KH, Lee SC, Song J and Lee EW: The roles of ubiquitination in extrinsic cell death pathways and its implications for therapeutics. Biochem Pharmacol. 162:21–40. 2019.PubMed/NCBI View Article : Google Scholar

64 

Sun T, Liu Z and Yang Q: The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 19(146)2020.PubMed/NCBI View Article : Google Scholar

65 

Zuo Y, Feng Q, Jin L, Huang F, Miao Y, Liu J, Xu Y, Chen X, Zhang H, Guo T, et al: Regulation of the linear ubiquitination of STAT1 controls antiviral interferon signaling. Nat Commun. 11(1146)2020.PubMed/NCBI View Article : Google Scholar

66 

Liu Y and Deng J: Ubiquitinationdeubiquitination in the Hippo signaling pathway (Review). Oncol Rep. 41:1455–1475. 2019.PubMed/NCBI View Article : Google Scholar

67 

Soysouvanh F, Giuliano S, Habel N, El-Hachem N, Pisibon C, Bertolotto C and Ballotti R: An Update on the role of ubiquitination in melanoma development and therapies. J Clin Med. 10(113)2021.PubMed/NCBI View Article : Google Scholar

68 

Jeusset LM and McManus KJ: Developing targeted therapies that exploit aberrant histone ubiquitination in cancer. Cells. 8(165)2019.PubMed/NCBI View Article : Google Scholar

69 

Celebi G, Kesim H, Ozer E and Kutlu O: The effect of dysfunctional ubiquitin enzymes in the pathogenesis of most common diseases. Int J Mol Sci. 21(6335)2020.PubMed/NCBI View Article : Google Scholar

70 

Liu BQ, Jin J and Li YY: Ubiquitination modification: Critical regulation of IRF family stability and activity. Sci China Life Sci. 64:957–965. 2021.PubMed/NCBI View Article : Google Scholar

71 

Chen RH, Chen YH and Huang TY: Ubiquitin-mediated regulation of autophagy. J Biomed Sci. 26(80)2019.PubMed/NCBI View Article : Google Scholar

72 

Song YQ, Wu C, Wu KJ, Han QB, Miao XM, Ma DL and Leung CH: Ubiquitination regulators discovered by virtual screening for the treatment of cancer. Front Cell Dev Biol. 9(665646)2021.PubMed/NCBI View Article : Google Scholar

73 

Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A and Israël A: Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 276:34371–34378. 2001.PubMed/NCBI View Article : Google Scholar

74 

Fostier M, Evans DA, Artavanis-Tsakonas S and Baron M: Genetic characterization of the Drosophila melanogaster Suppressor of deltex gene: A regulator of notch signaling. Genetics. 150:1477–1485. 1998.PubMed/NCBI View Article : Google Scholar

75 

Cornell M, Evans DA, Mann R, Fostier M, Flasza M, Monthatong M, Artavanis-Tsakonas S and Baron M: The Drosophila melanogaster Suppressor of deltex gene, a regulator of the Notch receptor signaling pathway, is an E3 class ubiquitin ligase. Genetics. 152:567–576. 1999.PubMed/NCBI View Article : Google Scholar

76 

Qiu L, Joazeiro C, Fang N, Wang HY, Elly C, Altman Y, Fang D, Hunter T and Liu YC: Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J Biol Chem. 275:35734–35737. 2000.PubMed/NCBI View Article : Google Scholar

77 

McGill MA and McGlade CJ: Mammalian numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J Biol Chem. 278:23196–23203. 2003.PubMed/NCBI View Article : Google Scholar

78 

Che F, Chen J, Wan C and Huang X: MicroRNA-27 inhibits autophagy and promotes proliferation of multiple myeloma cells by targeting the NEDD4/Notch1 Axis. Front Oncol. 10(571914)2020.PubMed/NCBI View Article : Google Scholar

79 

Baron M: Endocytic routes to Notch activation. Semin Cell Dev Biol. 23:437–442. 2012.PubMed/NCBI View Article : Google Scholar

80 

Wilkin M, Tongngok P, Gensch N, Clemence S, Motoki M, Yamada K, Hori K, Taniguchi-Kanai M, Franklin E, Matsuno K and Baron M: Drosophila HOPS and AP-3 complex genes are required for a Deltex-regulated activation of notch in the endosomal trafficking pathway. Dev Cell. 15:762–772. 2008.PubMed/NCBI View Article : Google Scholar

81 

Jehn BM, Dittert I, Beyer S, von der Mark K and Bielke W: c-Cbl binding and ubiquitin-dependent lysosomal degradation of membrane-associated Notch1. J Biol Chem. 277:8033–8040. 2002.PubMed/NCBI View Article : Google Scholar

82 

Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ and Kitajewski J: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 21:7403–7415. 2001.PubMed/NCBI View Article : Google Scholar

83 

Li L, Guturi KKN, Gautreau B, Patel PS, Saad A, Morii M, Mateo F, Palomero L, Barbour H, Gomez A, et al: Ubiquitin ligase RNF8 suppresses Notch signaling to regulate mammary development and tumorigenesis. J Clin Invest. 128:4525–4542. 2018.PubMed/NCBI View Article : Google Scholar

84 

McGill MA, Dho SE, Weinmaster G and McGlade CJ: Numb regulates post-endocytic trafficking and degradation of Notch1. J Biol Chem. 284:26427–26438. 2009.PubMed/NCBI View Article : Google Scholar

85 

Chastagner P, Israel A and Brou C: AIP4/Itch regulates Notch receptor degradation in the absence of ligand. PLoS One. 3(e2735)2008.PubMed/NCBI View Article : Google Scholar

86 

Sakata T, Sakaguchi H, Tsuda L, Higashitani A, Aigaki T, Matsuno K and Hayashi S: Drosophila Nedd4 regulates endocytosis of notch and suppresses its ligand-independent activation. Curr Biol. 14:2228–2236. 2004.PubMed/NCBI View Article : Google Scholar

87 

Henne WM, Buchkovich NJ and Emr SD: The ESCRT pathway. Dev Cell. 21:77–91. 2011.PubMed/NCBI View Article : Google Scholar

88 

Moretti J and Brou C: Ubiquitinations in the notch signaling pathway. Int J Mol Sci. 14:6359–6381. 2013.PubMed/NCBI View Article : Google Scholar

89 

MacDonald C, Buchkovich NJ, Stringer DK, Emr SD and Piper RC: Cargo ubiquitination is essential for multivesicular body intralumenal vesicle formation. EMBO Rep. 13:331–338. 2012.PubMed/NCBI View Article : Google Scholar

90 

Perry JM and Li L: Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis. Genes Dev. 22:1107–1109. 2008.PubMed/NCBI View Article : Google Scholar

91 

Iriuchishima H, Takubo K, Matsuoka S, Onoyama I, Nakayama KI, Nojima Y and Suda T: Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7α overexpression. Blood. 117:2373–2377. 2011.PubMed/NCBI View Article : Google Scholar

92 

Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD and Aifantis I: Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med. 205:1395–1408. 2008.PubMed/NCBI View Article : Google Scholar

93 

Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, et al: Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22:986–991. 2008.PubMed/NCBI View Article : Google Scholar

94 

Rathinam C, Thien CB, Langdon WY, Gu H and Flavell RA: The E3 ubiquitin ligase c-Cbl restricts development and functions of hematopoietic stem cells. Genes Dev. 22:992–997. 2008.PubMed/NCBI View Article : Google Scholar

95 

Rathinam C, Matesic LE and Flavell RA: The E3 ligase Itch is a negative regulator of the homeostasis and function of hematopoietic stem cells. Nat Immunol. 12:399–407. 2011.PubMed/NCBI View Article : Google Scholar

96 

Asgarpour K, Shojaei Z, Amiri F, Ai J, Mahjoubin-Tehran M, Ghasemi F, ArefNezhad R, Hamblin MR and Mirzaei H: Exosomal microRNAs derived from mesenchymal stem cells: Cell-to-cell messages. Cell Commun Signal. 18(149)2020.PubMed/NCBI View Article : Google Scholar

97 

Moradian Tehrani R, Verdi J, Noureddini M, Salehi R, Salarinia R, Mosalaei M, Simonian M, Alani B, Ghiasi MR, Jaafari MR, et al: Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol. 233:3831–3845. 2018.PubMed/NCBI View Article : Google Scholar

98 

Mirzaei H, Sahebkar A, Avan A, Jaafari MR, Salehi R, Salehi H, Baharvand H, Rezaei A, Hadjati J, Pawelek JM and Mirzaei HR: Application of mesenchymal stem cells in melanoma: A potential therapeutic strategy for delivery of targeted agents. Curr Med Chem. 23:455–463. 2016.PubMed/NCBI View Article : Google Scholar

99 

Mirzaei H, Salehi H, Oskuee RK, Mohammadpour A, Mirzaei HR, Sharifi MR, Salarinia R, Darani HY, Mokhtari M, Masoudifar A, et al: The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett. 419:30–39. 2018.PubMed/NCBI View Article : Google Scholar

100 

Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, Rezaee A, Sahebnasagh R, Pourhanifeh MH, Mirzaei H and Hamblin MR: Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res Ther. 10(340)2019.PubMed/NCBI View Article : Google Scholar

101 

Goradel NH, Hour FG, Negahdari B, Malekshahi ZV, Hashemzehi M, Masoudifar A and Mirzaei H: Stem cell therapy: A new therapeutic option for cardiovascular diseases. J Cell Biochem. 119:95–104. 2018.PubMed/NCBI View Article : Google Scholar

102 

Mohammadi M, Jaafari MR, Mirzaei HR and Mirzaei H: Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther. 23:285–286. 2016.PubMed/NCBI View Article : Google Scholar

103 

Hatzimichael E and Tuthill M: Hematopoietic stem cell transplantation. Stem Cells Cloning. 3:105–117. 2010.PubMed/NCBI View Article : Google Scholar

104 

Walsh K, Margossian S and Duncan CN: Pediatric hematopoietic cell transplantation. J Pediatr Intensive Care. 3:91–101. 2014.PubMed/NCBI View Article : Google Scholar

105 

Dessie G, Derbew Molla M, Shibabaw T and Ayelign B: Role of stem-cell transplantation in leukemia treatment. Stem Cells Cloning. 13:67–77. 2020.PubMed/NCBI View Article : Google Scholar

106 

Vanderwalde AM, Sun CL, Laddaran L, Francisco L, Armenian S, Berano-Teh J, Wong FL, Popplewell L, Somlo G, Stein AS, et al: Conditional survival and cause-specific mortality after autologous hematopoietic cell transplantation for hematological malignancies. Leukemia. 27:1139–1145. 2013.PubMed/NCBI View Article : Google Scholar

107 

Wang Y, Chen H, Chen J, Han M, Hu J, Jiong Hu, Huang H, Lai Y, Liu D, Liu Q, et al: The consensus on the monitoring, treatment, and prevention of leukemia relapse after allogeneic hematopoietic stem cell transplantation in China. Cancer Lett. 438:63–75. 2018.PubMed/NCBI View Article : Google Scholar

108 

Copelan EA: Medical progress: Hematopoietic stem-cell transplantation. N Engl J Med. 354:1813–1826. 2006.PubMed/NCBI View Article : Google Scholar

109 

Doubek M, Folber F, Koristek Z, Brychtova Y, Krejci M, Tomiska M, Navratil M, Mikulasova P and Mayer J: Autologous hematopoietic stem cell transplantation in adult acute lymphoblastic leukemia: Still not out of fashion. Ann Hematol. 88:881–887. 2009.PubMed/NCBI View Article : Google Scholar

110 

Atsuta Y, Hirakawa A, Nakasone H, Kurosawa S, Oshima K, Sakai R, Ohashi K, Takahashi S, Mori T, Ozawa Y, et al: Late mortality and causes of death among long-term survivors after allogeneic stem cell transplantation. Biol Blood Marrow Transplant. 22:1702–1709. 2016.PubMed/NCBI View Article : Google Scholar

111 

Wang X, Xia B and Zhang YZ: Progress of Auto-HSCT for treatment of DLBCL-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 26:1841–1846. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).

112 

Alimoghaddam K, Ghavamzadeh A, Jahani M, Jalali A, Jorjani H, Iravani M, Hamidieh AA, Mousavi A, Bahar B, Behfar M, et al: Hematopoietic stem cell transplantation in acute promyelocytic leukemia, experience in Iran. Arch Iran Med. 14:332–334. 2011.PubMed/NCBI

113 

Zhu J: Thoughts on autologous hematopoietic stem cell transplantation and mobilization in Chinese patients with non Hodgkin's lymphoma. Zhonghua Xue Ye Xue Za Zhi. 41:1–4. 2020.PubMed/NCBI View Article : Google Scholar : (In Chinese).

114 

Liu JR, Li J and Huang XJ: Problems and progress of autologous hematopoietic stem cell transplantation in multiple myeloma. Zhonghua Xue Ye Xue Za Zhi. 42:82–86. 2021.PubMed/NCBI View Article : Google Scholar : (In Chinese).

115 

Zhao Y, Chen X and Feng S: Autologous hematopoietic stem cell transplantation in acute Myelogenous leukemia. Biol Blood Marrow Transplant. 25:e285–e292. 2019.PubMed/NCBI View Article : Google Scholar

116 

Passweg JR: Autologous hematopoetic cell transplantation: Preferred consolidation treatment in low-risk AML? Leuk Lymphoma. 60:2341–2342. 2019.PubMed/NCBI View Article : Google Scholar

117 

Xuan L and Liu Q: Maintenance therapy in acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation. J Hematol Oncol. 14(4)2021.PubMed/NCBI View Article : Google Scholar

118 

Yong AS, Brissot E, Rubinstein S, Savani BN and Mohty M: Transplant to treatment-free remission: The evolving view of ‘cure’ in chronic myeloid leukemia. Expert Rev Hematol. 8:785–797. 2015.PubMed/NCBI View Article : Google Scholar

119 

Kook MH, Yhim HY, Lee NR, Song EK, Kim HS, Yim CY and Kwak JY: Successful treatment of myelodysplastic syndrome and Behcet colitis after allogeneic hematopoietic stem cell transplantation. Korean J Intern Med. 29:123–125. 2014.PubMed/NCBI View Article : Google Scholar

120 

Chen X and Feng SZ: Advances in allogeneic hematopoietic stem cell transplantation for severe aplastic anemia. Zhonghua Xue Ye Xue Za Zhi. 33:963–967. 2012.PubMed/NCBI(In Chinese).

121 

Peters C: Allogeneic hematopoietic stem cell transplantation to cure transfusion-dependent thalassemia: Timing Matters! Biol Blood Marrow Transplant. 24:1107–1108. 2018.PubMed/NCBI View Article : Google Scholar

122 

Del Galy AS, Marouf A, Raffoux E, Robin M, Michonneau D, Sébert M, Sicre de Fontebrune F, Xhaard A, Lengline E, Itzykson R, et al: Correction to: Allogeneic hematopoietic stem cell transplantation in elderly patients with acute myeloid leukemia or myelodysplastic syndromes: Myth and reality. Leukemia. 35(934)2021.PubMed/NCBI View Article : Google Scholar

123 

Chen XP, Cao ZR and Hu J: Advances in allogeneic hematopoietic stem cell transplantation for chronic Myelogenous leukemia-review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:1334–1338. 2019.PubMed/NCBI View Article : Google Scholar : (In Chinese).

124 

Iioka F, Tanabe H, Honjo G, Misaki T and Ohno H: Resolution of bone, cutaneous, and muscular involvement after haploidentical hematopoietic stem cell transplantation followed by post-transplant cyclophosphamide in adult T-cell leukemia/lymphoma. Clin Case Rep. 8:1553–1559. 2020.PubMed/NCBI View Article : Google Scholar

125 

Natarajan V, Bandapalli OR, Rajkumar T, Sagar TG and Karunakaran N: NOTCH1 and FBXW7 mutations favor better outcome in pediatric South Indian T-cell acute lymphoblastic leukemia. J Pediat Hematol Oncol. 37:E23–E30. 2015.PubMed/NCBI View Article : Google Scholar

126 

Valliyammai N, Nancy NK, Sagar TG and Rajkumar T: Study of NOTCH1 and FBXW7 mutations and its prognostic significance in South Indian T-cell acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 40:e1–e8. 2018.PubMed/NCBI View Article : Google Scholar

127 

Jenkinson S, Koo K, Mansour MR, Goulden N, Vora A, Mitchell C, Wade R, Richards S, Hancock J, Moorman AV, et al: Impact of NOTCH1/FBXW7 mutations on outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on the MRC UKALL 2003 trial. Leukemia. 27:41–47. 2013.PubMed/NCBI View Article : Google Scholar

128 

Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, Reman O, Witz F, Fagot T, Tavernier E, et al: NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): A Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) study. Blood. 113:3918–3924. 2009.PubMed/NCBI View Article : Google Scholar

129 

Malyukova A, Brown S, Papa R, O'Brien R, Giles J, Trahair TN, Dalla Pozza L, Sutton R, Liu T, Haber M, et al: FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia. 27:1053–1062. 2013.PubMed/NCBI View Article : Google Scholar

130 

Saito Y, Aoki Y, Muramatsu H, Makishima H, Maciejewski JP, Imaizumi M, Rikiishi T, Sasahara Y, Kure S, Niihori T, et al: Casitas B-cell lymphoma mutation in childhood T-cell acute lymphoblastic leukemia. Leuk Res. 36:1009–1015. 2012.PubMed/NCBI View Article : Google Scholar

131 

Huang HL, Weng HY, Wang LQ, Yu CH, Huang QJ, Zhao PP, Wen JZ, Zhou H and Qu LH: Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis. Mol Cancer Ther. 11:1155–1165. 2012.PubMed/NCBI View Article : Google Scholar

132 

Zheng R, Li M, Wang S and Liu Y: Advances of target therapy on NOTCH1 signaling pathway in T-cell acute lymphoblastic leukemia. Exp Hematol Oncol. 9(31)2020.PubMed/NCBI View Article : Google Scholar

133 

Chiba S: Notch signaling in stem cell systems. Stem Cells. 24:2437–2447. 2006.PubMed/NCBI View Article : Google Scholar

134 

Tan SH, Bertulfo FC and Sanda T: Leukemia-initiating cells in T-cell acute lymphoblastic leukemia. Front Oncol. 7(218)2017.PubMed/NCBI View Article : Google Scholar

135 

Belmonte M, Hoofd C, Weng AP and Giambra V: Targeting leukemia stem cells: Which pathways drive self-renewal activity in T-cell acute lymphoblastic leukemia? Curr Oncol. 23:34–41. 2016.PubMed/NCBI View Article : Google Scholar

136 

Gordeeva O: TGFβ family signaling pathways in pluripotent and teratocarcinoma stem Cells' fate decisions: Balancing between self-renewal, differentiation, and cancer. Cells. 8(1500)2019.PubMed/NCBI View Article : Google Scholar

137 

Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell Reports. 12:934–949. 2019.PubMed/NCBI View Article : Google Scholar

138 

Rho JY, Bae GY, Chae J, Yu K, Koo DB, Lee KK and Han YM: Transcriptional Properties of the BMP, TGF-β, RTK, Wnt, Hh, Notch, and JAK/STAT signaling molecules in mouse embryonic stem cells. Reproductive Dev Biol. 30:143–156. 2006.

139 

Ding D, Lim KS and Eberhart CG: Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathologica Communications. 2(31)2014.PubMed/NCBI View Article : Google Scholar

140 

Liu H, Zhu L and Liu YH: Effect of FBXW7 and NOTCH1 mutations on prognosis of patients with adult acute T lymphoblastic leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 26:1294–1300. 2018.PubMed/NCBI View Article : Google Scholar : (In Chinese).

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ge Y, Wang J, Zhang H, Li J, Ye M and Jin X: Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 23: 170, 2022.
APA
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., & Jin, X. (2022). Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Experimental and Therapeutic Medicine, 23, 170. https://doi.org/10.3892/etm.2021.11093
MLA
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., Jin, X."Fate of hematopoietic stem cells determined by Notch1 signaling (Review)". Experimental and Therapeutic Medicine 23.2 (2022): 170.
Chicago
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., Jin, X."Fate of hematopoietic stem cells determined by Notch1 signaling (Review)". Experimental and Therapeutic Medicine 23, no. 2 (2022): 170. https://doi.org/10.3892/etm.2021.11093
Copy and paste a formatted citation
x
Spandidos Publications style
Ge Y, Wang J, Zhang H, Li J, Ye M and Jin X: Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Exp Ther Med 23: 170, 2022.
APA
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., & Jin, X. (2022). Fate of hematopoietic stem cells determined by Notch1 signaling (Review). Experimental and Therapeutic Medicine, 23, 170. https://doi.org/10.3892/etm.2021.11093
MLA
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., Jin, X."Fate of hematopoietic stem cells determined by Notch1 signaling (Review)". Experimental and Therapeutic Medicine 23.2 (2022): 170.
Chicago
Ge, Y., Wang, J., Zhang, H., Li, J., Ye, M., Jin, X."Fate of hematopoietic stem cells determined by Notch1 signaling (Review)". Experimental and Therapeutic Medicine 23, no. 2 (2022): 170. https://doi.org/10.3892/etm.2021.11093
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team