|
1
|
Mitra S and Rennie J: Neonatal jaundice:
Aetiology, diagnosis and treatment. Br J Hosp Med (Lond).
78:699–704. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Greco C, Arnolda G, Boo NY, Iskander IF,
Okolo AA, Rohsiswatmo R, Shapiro SM, Watchko J, Wennberg RP,
Tiribelli C and Coda Zabetta CD: Neonatal jaundice in low- and
middle-income countries: Lessons and future directions from the
2015 don ostrow trieste yellow retreat. Neonatology. 110:172–180.
2016.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Zhou S, Wu X, Ma A, Zhang M and Liu Y:
Analysis of therapeutic effect of intermittent and continuous
phototherapy on neonatal hemolytic jaundice. Exp Ther Med.
17:4007–4012. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Deshmukh J, Deshmukh M and Patole S:
Probiotics for the management of neonatal hyperbilirubinemia: A
systematic review of randomized controlled trials. J Matern Fetal
Neonatal Med. 32:154–163. 2019.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Mojtahedi SY, Izadi A, Seirafi G, Khedmat
L and Tavakolizadeh R: Risk factors associated with neonatal
jaundice: A cross-sectional study from Iran. Open Access Maced J
Med Sci. 6:1387–1393. 2018.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Jiao Y, Jin Y, Meng H and Wen M: An
analysis on treatment effect of blue light phototherapy combined
with Bifico in treating neonatal hemolytic jaundice. Exp Ther Med.
16:1360–1364. 2018.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Ebbesen F, Hansen TWR and Maisels MJ:
Update on phototherapy in jaundiced neonates. Curr Pediatr Rev.
13:176–180. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Arnold C, Tyson JE, Pedroza C, Carlo WA,
Stevenson DK, Wong R, Dempsey A, Khan A, Fonseca R, Wyckoff M, et
al: Cycled phototherapy dose-finding study for extremely
low-birth-weight infants: A randomized clinical trial. JAMA
Pediatr. 174:649–656. 2020.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Roll EB, Christensen T and Gederaas OA:
Effects of bilirubin and phototherapy on osmotic fragility and
haematoporphyrin-induced photohaemolysis of normal erythrocytes and
spherocytes. Acta Paediatr. 94:1443–1447. 2005.PubMed/NCBI View Article : Google Scholar
|
|
10
|
El-Abdin MYZ, El-Salam MA, Ibrhim MY,
Koraa SSM and Mahmoud E: Phototherapy and DNA changes in full term
neonates with hyperbilirubinemia. Egypt J Med Hum Genet. 13:29–35.
2012.
|
|
11
|
Mesbah-Namin SA, Shahidi M and Nakhshab M:
An increased genotoxic risk in lymphocytes from
phototherapy-treated hyperbilirubinemic neonates. Iran Biomed J.
21:182–189. 2017.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Newman TB, Wickremasinghe AC, Walsh EM,
Grimes BA, McCulloch CE and Kuzniewicz MW: Retrospective cohort
study of phototherapy and childhood cancer in northern california.
Pediatrics. 137(e20151354)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Morris BH, Oh W, Tyson JE, Stevenson DK,
Phelps DL, O'Shea TM, McDavid GE, Perritt RL, Van Meurs KP, Vohr
BR, et al: Aggressive vs conservative phototherapy for infants with
extremely low birth weight. N Engl J Med. 359:1885–1896.
2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Das S and van Landeghem FKH:
Clinicopathological spectrum of bilirubin
encephalopathy/kernicterus. Diagnostics (Basel).
9(24)2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Alizadeh Taheri P, Sadeghi M and Sajjadian
N: Severe neonatal hyperbilirubinemia leading to exchange
transfusion. Med J Islam Repub Iran. 28(64)2014.PubMed/NCBI
|
|
16
|
Ansong-Assoku B and Ankola PA: Neonatal
jaundice. In: StatPearls [Internet]. StatPearls Publishing,
Treasure Island (FL), 2020. PMID: 30422525.
|
|
17
|
Kalakonda A, Jenkins BA and John S:
Physiology, bilirubin. In: StatPearls [Internet]. StatPearls
Publishing, Treasure Island (FL), 2020.
|
|
18
|
Stokowski LA: Fundamentals of phototherapy
for neonatal jaundice. Adv Neonatal Care. 6:303–312.
2006.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Tabrizi SO, Mirghafourvand M, Dost AJ,
Mohammad-Alizadeh-Charandabi S, Javadzadeh Y and Seyedi R: Effect
of metoclopramide administration to mothers on neonatal bilirubin
and maternal prolactin: A randomized, controlled, clinical trial.
World J Pediatr. 15:135–142. 2019.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Olusanya BO, Kaplan M and Hansen TWR:
Neonatal hyperbilirubinaemia: A global perspective. Lancet Child
Adolesc Health. 2:610–620. 2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Hansen TWR, Wong RJ and Stevenson DK:
Molecular physiology and pathophysiology of bilirubin handling by
the blood, liver, intestine, and brain in the newborn. Physiol Rev.
100:1291–1346. 2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Zhou YY, Lee LY, Ng SY, Hia CP, Low KT,
Chong YS and Goh DL: UGT1A1 haplotype mutation among Asians in
Singapore. Neonatology. 96:150–155. 2009.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Allen D: Neonatal jaundice. Nurs Child
Young People. 28(11)2016.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Amin SB and Wang H: Unbound unconjugated
hyperbilirubinemia is associated with central apnea in premature
infants. J Pediatr. 166:571–575. 2015.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Spoorthi SM, Dandinavar SF, Ratageri VH
and Wari PK: Prediction of neonatal hyperbilirubinemia using 1st
day serum bilirubin levels. Indian J Pediatr. 86:174–176.
2019.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Mir SE, van der Geest BAM and Been JV:
Management of neonatal jaundice in low- and lower-middle-income
countries. BMJ Paediatr Open. 3(e000408)2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Alkén J, Håkansson S, Ekéus C, Gustafson P
and Norman M: Rates of extreme neonatal hyperbilirubinemia and
kernicterus in children and adherence to national guidelines for
screening, diagnosis, and treatment in Sweden. JAMA Netw Open.
2(e190858)2019.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Aprillia Z, Gayatri D and Waluyanti FT:
Sensitivity, specificity, and accuracy of kramer examination of
neonatal jaundice: Comparison with total bilirubin serum. Compr
Child Adolesc Nurs. 40:88–94. 2017.PubMed/NCBI View Article : Google Scholar
|
|
29
|
van der Schoor LWE, van Faassen M, Kema I,
Baptist DH, Olthuis AJ, Jonker JW, Verkade HJ, Groen H and Hulzebos
CV: Blue LED phototherapy in preterm infants: Effects on an
oxidative marker of DNA damage. Arch Dis Child Fetal Neonatal Ed.
105:628–633. 2020.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Karimzadeh P, Fallahi M, Kazemian M,
Taslimi Taleghani N, Nouripour S and Radfar M: Bilirubin induced
encephalopathy. Iran J Child Neurol. 14:7–19. 2020.PubMed/NCBI
|
|
31
|
Rennie JM, Beer J and Upton M: Learning
from claims: Hyperbilirubinaemia and kernicterus. Arch Dis Child
Fetal Neonatal Ed. 104:F202–F204. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Le Pichon JB, Riordan SM, Watchko J and
Shapiro SM: The Neurological sequelae of neonatal
hyperbilirubinemia: Definitions, diagnosis and treatment of the
kernicterus spectrum disorders (KSDs). Curr Pediatr Rev.
13:199–209. 2017.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Lee BK, Le Ray I, Sun JY, Wikman A, Reilly
M and Johansson S: Haemolytic and nonhaemolytic neonatal jaundice
have different risk factor profiles. Acta Paediatr. 105:1444–1450.
2016.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Dean E: Neonatal jaundice. Nurs Stand.
30(15)2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Slusher TM, Zamora TG, Appiah D, Stanke
JU, Strand MA, Lee BW, Richardson SB, Keating EM, Siddappa AM and
Olusanya BO: Burden of severe neonatal jaundice: A systematic
review and meta-analysis. BMJ Paediatr Open.
1(e000105)2017.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Bahr TM, Christensen RD, Agarwal AM,
George TI and Bhutani VK: The neonatal acute bilirubin
encephalopathy registry (NABER): Background, aims, and protocol.
Neonatology. 115:242–246. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Zheng J, Wei C, Zhao M and Zhao D:
Phototherapy is associated with the decrease in serum globulin
levels in neonatal hyperbilirubinemia. Biomed Rep. 10:63–69.
2019.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Woodgate P and Jardine LA: Neonatal
jaundice: Phototherapy. BMJ Clin Evid. 2015(0319)2015.PubMed/NCBI
|
|
39
|
Slusher TM, Zipursky A and Bhutani VK: A
global need for affordable neonatal jaundice technologies. Semin
Perinatol. 35:185–191. 2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Cai A, Qi S, Su Z, Shen H, Yang Y, Cai W
and Dai Y: A pilot metabolic profiling study of patients with
neonatal jaundice and response to phototherapy. Clin Transl Sci.
9:216–220. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Kale Y, Aydemir O, Celik Ü, Kavurt S,
Isikoglu S, Bas AY and Demirel N: Effects of phototherapy using
different light sources on oxidant and antioxidant status of
neonates with jaundice. Early Hum Dev. 89:957–960. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Tham EH, Loo EXL, Goh A, Teoh OH, Yap F,
Tan KH, Godfrey KM, Van Bever H, Lee BW, Chong YS and Shek LP:
Phototherapy for neonatal hyperbilirubinemia and childhood eczema,
rhinitis and wheeze. Pediatr Neonatol. 60:28–34. 2019.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Slominski AT, Zmijewski MA, Plonka PM,
Szaflarski JP and Paus R: How UV light touches the brain and
endocrine system through skin, and why. Endocrinology.
159:1992–2007. 2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Waterham M, Bhatia R, Donath S, Molesworth
C, Tan K and Stewart M: Phototherapy in transport for neonates with
unconjugated hyperbilirubinaemia. J Paediatr Child Health.
52:67–71. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Donneborg ML, Vandborg PK, Hansen BM,
Rodrigo-Domingo M and Ebbesen F: Double versus single intensive
phototherapy with LEDs in treatment of neonatal hyperbilirubinemia.
J Perinatol. 38:154–158. 2018.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Ebbesen F, Madsen PH, Vandborg PK,
Jakobsen LH, Trydal T and Vreman HJ: Bilirubin isomer distribution
in jaundiced neonates during phototherapy with LED light centered
at 497 nm (turquoise) vs 459 nm (blue). Pediatr Res. 80:511–515.
2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Itoh S, Okada H, Kuboi T and Kusaka T:
Phototherapy for neonatal hyperbilirubinemia. Pediatr Int.
59:959–966. 2017.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Faulhaber FRS, Procianoy RS and Silveira
RC: Side effects of phototherapy on neonates. Am J Perinatol.
36:252–257. 2019.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Altuntas N, Dogan OC and Kislal FM: Effect
of phototherapy on neutrophil VCS parameters and white blood cells.
J Coll Physicians Surg Pak. 29:453–455. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ramy N, Ghany EA, Alsharany W, Nada A,
Darwish RK, Rabie WA and Aly H: Jaundice, phototherapy and DNA
damage in full-term neonates. J Perinatol. 36:132–136.
2016.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Wickremasinghe AC, Kuzniewicz MW, Grimes
BA, McCulloch CE and Newman TB: Neonatal phototherapy and infantile
cancer. Pediatrics. 137(e20151353)2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Abedi F, Mirbagher Ajorpaz N, Esalatmanesh
S, Rahemi Z, Gilasi HR, Kafaei Atrian M and Hosseinian M: The
effect of tactile-kinesthetic stimulation on growth indices of
healthy neonates. J Bodyw Mov Ther. 22:308–312. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Dalili H, Sheikhi S, Shariat M and
Haghnazarian E: Effects of baby massage on neonatal jaundice in
healthy Iranian infants: A pilot study. Infant Behav Dev. 42:22–26.
2016.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Ju SH and Lin CH: The effect of moderate
non-hemolytic jaundice and phototherapy on newborn behavior.
Zhonghua Min Guo Xiao Er Ke Yi Xue Hui Za Zhi. 32:31–41.
1991.PubMed/NCBI
|
|
55
|
Kavcic P, Rojc B, Dolenc-Groselj L,
Claustrat B, Fujs K and Poljak M: The impact of sleep deprivation
and nighttime light exposure on clock gene expression in humans.
Croat Med J. 52:594–603. 2011.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Chen A, Du L, Xu Y, Chen L and Wu Y: The
effect of blue light exposure on the expression of circadian genes:
Bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of
jaundiced neonates. Pediatr Res. 58:1180–1184. 2005.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Yeganeh Salehpour M, Mollica A, Momtaz S,
Sanadgol N and Farzaei MH: Melatonin and multiple sclerosis: From
plausible neuropharmacological mechanisms of action to experimental
and clinical evidence. Clin Drug Investig. 39:607–624.
2019.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Tarocco A, Caroccia N, Morciano G,
Wieckowski MR, Ancora G, Garani G and Pinton P: Melatonin as a
master regulator of cell death and inflammation: molecular
mechanisms and clinical implications for newborn care. Cell Death
Dis. 10(317)2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Maayan-Metzger A, Yosipovitch G, Hadad E
and Sirota L: Transepidermal water loss and skin hydration in
preterm infants during phototherapy. Am J Perinatol. 18:393–396.
2001.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Kumar P, Murki S, Malik GK, Chawla D,
Deorari AK, Karthi N, Subramanian S, Sravanthi J, Gaddam P and
Singh SN: Light emitting diodes versus compact fluorescent tubes
for phototherapy in neonatal jaundice: A multi center randomized
controlled trial. Indian Pediatr. 47:131–137. 2010.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Asghar I, Khan IA and Hassan F: Effect of
head covering on phototherapy induced hypocalcemia in term neonates
with hyperbilirubinemia: A randomised controlled study. J Neonatal
Perinatal Med: October 10, 2020 (Online ahead of print).
|
|
62
|
Khan M, Malik KA and Bai R: Hypocalcemia
in jaundiced neonates receiving phototherapy. Pak J Med Sci.
32:1449–1452. 2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Gheshmi AN, Naderi S, Homayrani E and
Safari B: Prevalence of hypocalcemia after phototherapy among
neonates who underwent phototherapy in Koodakan Hospital in Bandar
Abbas in 2013. Electron Physician. 7:1387–1390. 2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Barekatain B, Badiea Z and Hoseini N: The
effect of head covering in prevention of phototherapy-induced
hypocalcemia in icterus newborns with gestational age less than 35
weeks. Adv Biomed Res. 5(176)2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kargar M, Jamshidi Z, Beheshtipour N,
Pishva N and Jamali M: Effect of head covering on
phototherapy-induced hypocalcaemia in icterus newborns; a
randomized controlled trial. Int J Community Based Nurs Midwifery.
2:121–126. 2014.PubMed/NCBI
|
|
66
|
Shahriarpanah S, Haji Ebrahim Tehrani F,
Davati A and Ansari I: Effect of phototherapy on serum level of
calcium, magnesium and vitamin D in infants with
hyperbilirubinemia. Iran J Pathol. 13:357–362. 2018.PubMed/NCBI
|
|
67
|
Khera S and Gupta R: Incidence of
thrombocytopenia following phototherapy in hyperbilirubinemic
neonates. Med J Armed Forces India. 67:329–332. 2011.PubMed/NCBI View Article : Google Scholar
|
|
68
|
LaRusso J, Wilson J and Ceilley R:
Phototherapy-induced purpuric eruption in a neonate. J Clin Aesthet
Dermatol. 8:46–48. 2015.PubMed/NCBI
|
|
69
|
Jeffrey Maisels M: Phototherapy and skin
rashes. Pediatr Dermatol. 30:636–637. 2013.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Le TN and Reese J: Bronze baby syndrome. J
Pediatr. 188:301–301.e1. 2017.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Kar S, Mohankar A and Krishnan A: Bronze
baby syndrome. Indian Pediatr. 50(624)2013.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Ayyappan S, Philip S, Bharathy N, Ramesh
V, Kumar CN, Swathi S and Kumar AA: Antioxidant status in neonatal
jaundice before and after phototherapy. J Pharm Bioallied Sci. 7
(Suppl 1):S16–S21. 2015.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Demirel G, Uras N, Celik IH, Aksoy HT,
Oguz SS, Erdeve O, Erel O and Dilmen U: Comparison of total
oxidant/antioxidant status in unconjugated hyperbilirubinemia of
newborn before and after conventional and LED phototherapy: A
prospective randomized controlled trial. Clin Invest Med.
33:335–341. 2010.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Suzen S, Gurer-Orhan H and Saso L:
Detection of reactive oxygen and nitrogen species by electron
paramagnetic resonance (EPR) technique. Molecules.
22(181)2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Uhrikova Z, Zibolen M, Javorka K,
Chladekova L and Javorka M: Hyperbilirubinemia and phototherapy in
newborns: Effects on cardiac autonomic control. Early Hum Dev.
91:351–356. 2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Benders MJ, Van Bel F and Van de Bor M:
Cardiac output and ductal reopening during phototherapy in preterm
infants. Acta Paediatr. 88:1014–1019. 1999.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Behrendt D and Ganz P: Endothelial
function. From vascular biology to clinical applications. Am J
Cardiol. 90:40L–48L. 2002.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Liu GS, Wu H, Wu BQ, Huang RZ, Zhao LH and
Wen Y: Effect of phototherapy on blood endothelin and nitric oxide
levels: Clinical significance in preterm infants. World J Pediatr.
4:31–35. 2008.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Benders MJ, van Bel F and van de Bor M:
Haemodynamic consequences of phototherapy in term infants. Eur J
Pediatr. 158:323–328. 1999.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Barefield ES, Dwyer MD and Cassady G:
Association of patent ductus arteriosus and phototherapy in infants
weighing less than 1000 g. J Perinatol. 13:376–380. 1993.PubMed/NCBI
|
|
81
|
Batenburg WW, Kappers MH, Eikmann MJ,
Ramzan SN, de Vries R and Danser AH: Light-induced vs
bradykinin-induced relaxation of coronary arteries: Do
S-nitrosothiols act as endothelium-derived hyperpolarizing factors?
J Hypertens. 27:1631–1640. 2009.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Bhola K, Foster JP and Osborn DA: Chest
shielding for prevention of a haemodynamically significant patent
ductus arteriosus in preterm infants receiving phototherapy.
Cochrane Database Syst Rev. (CD009816)2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Hamrick SE and Hansmann G: Patent ductus
arteriosus of the preterm infant. Pediatrics. 125:1020–1030.
2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Mannan J and Amin SB: Meta-analysis of the
effect of chest shielding on preventing patent ductus arteriosus in
premature infants. Am J Perinatol. 34:359–363. 2017.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Travadi J, Simmer K, Ramsay J, Doherty D
and Hagan R: Patent ductus arteriosus in extremely preterm infants
receiving phototherapy: Does shielding the chest make a difference?
A randomized, controlled trial. Acta Paediatr. 95:1418–1423.
2006.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Nakanishi-Ueda T, Majima HJ, Watanabe K,
Ueda T, Indo HP, Suenaga S, Hisamitsu T, Ozawa T, Yasuhara H and
Koide R: Blue LED light exposure develops intracellular reactive
oxygen species, lipid peroxidation, and subsequent cellular
injuries in cultured bovine retinal pigment epithelial cells. Free
Radic Res. 47:774–780. 2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Grimm C, Wenzel A, Williams T, Rol P,
Hafezi F and Remé C: Rhodopsin-mediated blue-light damage to the
rat retina: Effect of photoreversal of bleaching. Invest Ophthalmol
Vis Sci. 42:497–505. 2001.PubMed/NCBI
|
|
88
|
Chen P, Lai Z, Wu Y, Xu L, Cai X, Qiu J,
Yang P, Yang M, Zhou P, Zhuang J, et al: Retinal neuron is more
sensitive to blue light-induced damage than glia cell due to DNA
double-strand breaks. Cells. 8(68)2019.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Kara S, Yalniz-Akkaya Z, Yeniaras A, Örnek
F and Bilge YD: Ocular findings on follow-up in children who
received phototherapy for neonatal jaundice. J Chin Med Assoc.
80:729–732. 2017.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Lin L, Chen Z, Tang X, Dai F, Wei J and
Sun G: 5-Oxo-ETE from nasal epithelial cells upregulates eosinophil
cation protein by eosinophils in nasal polyps in vitro. Int Arch
Allergy Immunol. 177:107–115. 2018.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Beken S, Aydin B, Zenciroğğlu A, Dilli D,
Özkan E, Dursun A and Okumus N: The effects of phototherapy on
eosinophil and eosinophilic cationic protein in newborns with
hyperbilirubinemia. Fetal Pediatr Pathol. 33:151–156.
2014.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Aspberg S, Dahlquist G, Kahan T and Källén
B: Confirmed association between neonatal phototherapy or neonatal
icterus and risk of childhood asthma. Pediatr Allergy Immunol.
21:e733–e739. 2010.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Magi S, Piccirillo S, Amoroso S and
Lariccia V: Excitatory amino acid transporters (EAATs): Glutamate
transport and beyond. Int J Mol Sci. 20(5674)2019.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sedlak TW, Saleh M, Higginson DS, Paul BD,
Juluri KR and Snyder SH: Bilirubin and glutathione have
complementary antioxidant and cytoprotective roles. Proc Natl Acad
Sci USA. 106:5171–5176. 2009.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Karadag F, Sengul CB, Enli Y, Karakulah K,
Alacam H, Kaptanoglu B, Kalkanci O and Herken H: Relationship
between serum bilirubin levels and metabolic syndrome in patients
with schizophrenia spectrum disorders. Clin Psychopharmacol
Neurosci. 15:153–162. 2017.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Gloria-Bottini F and Bottini E: Is there a
role of early neonatal events in susceptibility to allergy? Int J
Biomed Sci. 6:8–12. 2010.PubMed/NCBI
|
|
97
|
Ollinger R, Kogler P, Troppmair J, Hermann
M, Wurm M, Drasche A, Königsrainer I, Amberger A, Weiss H, Ofner D,
et al: Bilirubin inhibits tumor cell growth via activation of ERK.
Cell Cycle. 6:3078–3085. 2007.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Rawat V, Bortolussi G, Gazzin S, Tiribelli
C and Muro AF: Bilirubin-induced oxidative stress leads to DNA
damage in the cerebellum of hyperbilirubinemic neonatal mice and
activates DNA double-strand break repair pathways in human cells.
Oxid Med Cell Longev. 2018(1801243)2018.PubMed/NCBI View Article : Google Scholar
|
|
99
|
NaveenKumar SK, Thushara RM, Sundaram MS,
Hemshekhar M, Paul M, Thirunavukkarasu C, Basappa Nagaraju G,
Raghavan SC, Girish KS, et al: Unconjugated bilirubin exerts
pro-apoptotic effect on platelets via p38-MAPK activation. Sci Rep.
5(15045)2015.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Aycicek A, Kocyigit A, Erel O and Senturk
H: Phototherapy causes DNA damage in peripheral mononuclear
leukocytes in term infants. J Pediatr (Rio J). 84:141–146.
2008.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Gómez-Meda BC, Barros-Hernández A,
Guzmán-Bárcenas J, Lemus-Varela Mde L, Zamora-Perez AL,
Torres-Mendoza BM, Gallegos-Arreola MP, Armendáriz-Borunda J and
Zúñiga-González GM: Effects of blue light phototherapy on DNA
integrity in preterm newborns. J Photochem Photobiol B.
141:283–287. 2014.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Tatli MM, Minnet C, Kocyigit A and Karadag
A: Phototherapy increases DNA damage in lymphocytes of
hyperbilirubinemic neonates. Mutat Res. 654:93–95. 2008.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Bulut O, Erek A and Duruyen S: Effects of
hyperbilirubinemia on markers of genotoxicity and total oxidant and
antioxidant status in newborns. Drug Chem Toxicol. 1–5.
2020.PubMed/NCBI View Article : Google Scholar : (Online ahead of
print).
|
|
104
|
Hong B, van den Heuvel AP, Prabhu VV,
Zhang S and El-Deiry WS: Targeting tumor suppressor p53 for cancer
therapy: Strategies, challenges and opportunities. Curr Drug
Targets. 15:80–89. 2014.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kanapathipillai M: Treating p53 mutant
aggregation-associated cancer. Cancers (Basel).
10(154)2018.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Yahia S, Shabaan A, Gouida M, El-Ghanam D,
Eldegla H, El-Bakary A and Abdel-Hady H: Influence of
hyperbilirubinemia and phototherapy on markers of genotoxicity and
apoptosis in full-term infants. Eur J Pediatr. 174:459–464.
2015.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Tyson JE and Miller CC: Whether neonatal
phototherapy increases the risk of cancer in children is a
disturbing unresolved issue. Evid Based Med. 22:39–40.
2017.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Auger N, Laverdiere C, Ayoub A, Lo E and
Luu TM: Neonatal phototherapy and future risk of childhood cancer.
Int J Cancer. 145:2061–2069. 2019.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Brewster DH, Tucker JS, Fleming M, Morris
C, Stockton DL, Lloyd DJ, Bhattacharya S and Chalmers JW: Risk of
skin cancer after neonatal phototherapy: Retrospective cohort
study. Arch Dis Child. 95:826–831. 2010.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Matichard E, Le Hénanff A, Sanders A,
Leguyadec J, Crickx B and Descamps V: Effect of neonatal
phototherapy on melanocytic nevus count in children. Arch Dermatol.
142:1599–1604. 2006.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Auger N, Ayoub A, Lo E and Luu TM:
Increased risk of hemangioma after exposure to neonatal
phototherapy in infants with predisposing risk factors. Acta
Paediatr. 108:1447–1452. 2019.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Kanmaz HG, Okur N, Dilli D, Yeşilyurt A
and Oğuz ŞS: The effect of phototherapy on sister chromatid
exchange with different light density in newborn
hyperbilirubinemia. Turk Pediatri Ars. 52:202–207. 2017.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Arnold C, Pedroza C and Tyson JE:
Phototherapy in ELBW newborns: Does it work? Is it safe? The
evidence from randomized clinical trials. Semin Perinatol.
38:452–464. 2014.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Hansen TW: Let there be light-but should
there be less? J Perinatol. 32:649–651. 2012.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Lamola AA: A pharmacologic view of
phototherapy. Clin Perinatol. 43:259–276. 2016.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Sisson TR: Photodegradation of riboflavin
in neonates. Fed Proc. 46:1883–1885. 1987.PubMed/NCBI
|
|
117
|
Kadalraja R, Patole SK, Muller R and
Whitehall JS: Is mesenteric blood flow compromised during
phototherapy in preterm neonates? Arch Dis Child Fetal Neonatal Ed.
89(F564)2004.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Raghavan K, Thomas E, Patole S and Muller
R: Is phototherapy a risk factor for ileus in high-risk neonates? J
Matern Fetal Neonatal Med. 18:129–131. 2005.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Rosenberg K and Mechcatie E: Increased
seizure risk after phototherapy for jaundice. Am J Nurs. 119:50–51.
2019.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Newman TB, Wu YW, Kuzniewicz MW, Grimes BA
and McCulloch CE: Childhood seizures after phototherapy.
Pediatrics. 142(e20180648)2018.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Kuboi T, Kusaka T, Okada H, Arioka M, Nii
K, Takahashi M, Yamato S, Sadamura T, Jinnai W, Nakano A and Itoh
S: Green light-emitting diode phototherapy for neonatal
hyperbilirubinemia: Randomized controlled trial. Pediatr Int.
61:465–470. 2019.PubMed/NCBI View Article : Google Scholar
|