|
1
|
Le Poole IC, van den Wijngaard RM,
Westerhof W, Dutrieux RP and Das PK: Presence or absence of
melanocytes in vitiligo lesions: An immunohistochemical
investigation. J Invest Dermatol. 100:816–822. 1993.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Salinas-Santander M, Díaz-García D,
Rojas-Martínez A, Cantú-Salinas C, Sánchez-Domínguez C, Reyes-López
M, Cerda-Flores RM, Ocampo-Candiani J and Ortiz-López R: Tumor
necrosis factor-α-308G/A polymorphism is associated with active
vitiligo vulgaris in a northeastern Mexican population. Exp Ther
Med. 3:893–897. 2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Le Poole IC, Das PK, van den Wijngaard RM,
Bos JD and Westerhof W: Review of the etiopathomechanism of
vitiligo: A convergence theory. Exp Dermatol. 2:145–153.
1993.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Rodrigues M, Ezzedine K, Hamzavi I, Pandya
AG and Harris JE: Vitiligo Working Group. New discoveries in the
pathogenesis and classification of vitiligo. J Am Acad Dermatol.
77:1–13. 2017.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Matin R: Vitiligo. BMJ Clin Evid.
2008(1717)2008.PubMed/NCBI
|
|
6
|
Costin GE and Hearing VJ: Human skin
pigmentation: Melanocytes modulate skin color in response to
stress. FASEB J. 21:976–994. 2007.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Hara M, Toyoda M, Yaar M, Bhawan J, Avila
EM, Penner IR and Gilchrest BA: Innervation of melanocytes in human
skin. J Exp Med. 184:1385–1395. 1996.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Reemann P, Reimann E, Ilmjärv S, Porosaar
O, Silm H, Jaks V, Vasar E, Kingo K and Kõks S: Melanocytes in the
skin-comparative whole transcriptome analysis of main skin cell
types. PLoS One. 9(e115717)2014.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Slominski A, Zmijewski MA and Pawelek J:
L-tyrosine and L-dihydroxyphenylalanine as hormone-like regulators
of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27.
2012.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Solano F: On the metal cofactor in the
tyrosinase family. Int J Mol Sci. 19(633)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Sturm RA, Teasdale RD and Box NF: Human
pigmentation genes: Identification, structure and consequences of
polymorphic variation. Gene. 277:49–62. 2001.PubMed/NCBI View Article : Google Scholar
|
|
12
|
D'Mello SA, Finlay GJ, Baguley BC and
Askarian-Amiri ME: Signaling pathways in melanogenesis. Int J Mol
Sci. 17(1144)2016.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ortonne JP: Normal and abnormal skin
color. Ann Dermatol Venereol. 139 (Suppl 4):S125–S129.
2012.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Brenner M and Hearing VJ: The protective
role of melanin against UV damage in human skin. Photochem
Photobiol. 84:539–549. 2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Hong Y, Song B, Chen HD and Gao XH:
Melanocytes and skin immunity. J Investig Dermatol Symp Proc.
17:37–39. 2015.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Elgendi A, Eslam A, Eman A, Nancy W, Karem
K, Osama A and Ahmed E: Association of HLA Class I and II Antigens
with Vitiligo in Egyptian Population. Molecular Enzymology and Drug
Targets, 2016 Vol 02. DOI: 10.21767/2572-5475.10011.
|
|
17
|
Kirnbauer R, Charvat B, Schauer E, Köck A,
Urbanski A, Förster E, Neuner P, Assmann I, Luger TA and Schwarz T:
Modulation of intercellular adhesion molecule-1 expression on human
melanocytes and melanoma cells: Evidence for a regulatory role of
IL-6, IL-7, TNF beta, and UVB light. J Invest Dermatol. 98:320–326.
1992.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Gasque P and Jaffar-Bandjee MC: The
immunology and inflammatory responses of human melanocytes in
infectious diseases. J Infect. 71:413–421. 2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Plonka PM, Passeron T, Brenner M, Tobin
DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D,
Peters E, et al: What are melanocytes really doing all day long...?
Exp Dermatol. 18:799–819. 2009.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Fisher GJ, Kang S, Varani J, Bata-Csorgo
Z, Wan Y, Datta S and Voorhees JJ: Mechanisms of photoaging and
chronological skin aging. Arch Dermatol. 138:1462–1470.
2002.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kvam E and Tyrrell RM: Induction of
oxidative DNA base damage in human skin cells by UV and near
visible radiation. Carcinogenesis. 18:2379–2384. 1997.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sander CS, Chang H, Hamm F, Elsner P and
Thiele JJ: Role of oxidative stress and the antioxidant network in
cutaneous carcinogenesis. Int J Dermatol. 43:326–335.
2004.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Tornaletti S and Pfeifer GP: UV damage and
repair mechanisms in mammalian cells. Bioessays. 18:221–228.
1996.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Linge C: Relevance of in vitro melanocytic
cell studies to the understanding of melanoma. Cancer Surv.
26:71–87. 1996.PubMed/NCBI
|
|
25
|
Vink AA and Roza L: Biological
consequences of cyclobutane pyrimidine dimers. J Photochem
Photobiol B. 65:101–104. 2001.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ezzedine K, Lim HW, Suzuki T, Katayama I,
Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, et
al: Revised classification/nomenclature of vitiligo and related
issues: The vitiligo global issues consensus conference. Pigment
Cell Melanoma Res. 25:E1–E13. 2012.PubMed/NCBI View Article : Google Scholar
|
|
27
|
van Geel N, Speeckaert R, Taieb A, Picardo
M, Böhm M, Gawkrodger DJ, Schallreuter K, Bennett DC, van der Veen
W, Whitton M, et al: Koebner's phenomenon in vitiligo: European
position paper. Pigment Cell Melanoma Res. 24:564–573.
2011.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Taïeb A and Picardo M: Clinical practice.
Vitiligo. N Engl J Med. 360:160–169. 2009.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Moellmann G, Klein-Angerer S, Scollay DA,
Nordlund JJ and Lerner AB: Extracellular granular material and
degeneration of keratinocytes in the normally pigmented epidermis
of patients with vitiligo. J Invest Dermatol. 79:321–330.
1982.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Falabella R, Arrunategui A, Barona MI and
Alzate A: The minigrafting test for vitiligo: Detection of stable
lesions for melanocyte transplantation. J Am Acad Dermatol. 32 (2
Pt 1):228–232. 1995.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Krüger C and Schallreuter KU: A review of
the worldwide prevalence of vitiligo in children/adolescents and
adults. Int J Dermatol. 51:1206–1212. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Sehgal VN and Srivastava G: Vitiligo:
Compendium of clinico-epidemiological features. Indian J Dermatol
Venereol Leprol. 73:149–156. 2007.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Martis J, Bhat R, Nandakishore B and
Shetty JN: A clinical study of vitiligo. Indian J Dermatol Venereol
Leprol. 68:92–93. 2002.PubMed/NCBI
|
|
34
|
Cesar Silva de Castro C and Miot HA:
Prevalence of vitiligo in Brazil-A population survey. Pigment Cell
Melanoma Res. 31:448–450. 2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Zhang Y, Cai Y, Shi M, Jiang S, Cui S, Wu
Y, Gao XH and Chen HD: The prevalence of vitiligo: A meta-analysis.
PLoS One. 11(e0163806)2016.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Wang X, Du J, Wang T, Zhou C, Shen Y, Ding
X, Tian S, Liu Y, Peng G, Xue S, et al: Prevalence and clinical
profile of vitiligo in China: A community-based study in six
cities. Acta Derm Venereol. 93:62–65. 2013.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Habib A and Raza N: Clinical pattern of
vitiligo. J Coll Physicians Surg Pak. 22:61–62. 2012.PubMed/NCBI
|
|
38
|
Salinas-Santander M, Sanchez-Dominguez C,
Cantú-Salinas C, Ocampo-Garza J, Cerda-Flores R, Ortiz-López R and
Ocampo-Candiani J: Vitiligo: Factores asociados con su aparición en
pacientes del Noreste de México. Dermatol Rev Mex. 232–238.
2014.(In Spanish).
|
|
39
|
Yaghoobi R, Omidian M and Bagherani N:
Vitiligo: A review of the published work. J Dermatol. 38:419–431.
2011.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Huggins RH, Janusz CA and Schwartz RA:
Vitiligo: A sign of systemic disease. Indian J Dermatol Venereol
Leprol. 72:68–71. 2006.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Jin Y, Mailloux CM, Gowan K, Riccardi SL,
LaBerge G, Bennett DC, Fain PR and Spritz RA: NALP1 in
vitiligo-associated multiple autoimmune disease. N Engl J Med.
356:1216–1225. 2007.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Vázquez-Martínez OT, Velásquez-Arenas L,
Méndez-Olvera N and Ocampo-Candiani J: Vitiligo. Overview and
current therapeutics. Dermatología CMQ. 4:187–192. 2006.
|
|
43
|
Chen YT, Chen YJ, Hwang CY, Lin MW, Chen
TJ, Chen CC, Chu SY, Lee DD, Chang YT and Liu HN: Comorbidity
profiles in association with vitiligo: A nationwide
population-based study in Taiwan. J Eur Acad Dermatol Venereol.
29:1362–1369. 2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Dahir AM and Thomsen SF: Comorbidities in
vitiligo: Comprehensive review. Int J Dermatol. 57:1157–1164.
2018.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bae JM, Lee JH, Yun JS, Han B and Han TY:
Vitiligo and overt thyroid diseases: A nationwide population-based
study in Korea. J Am Acad Dermatol. 76:871–878. 2017.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Sedighe M and Gholamhossein G: Thyroid
dysfunction and thyroid antibodies in Iranian patients with
vitiligo. Indian J Dermatol. 53:9–11. 2008.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Gopal KV, Rao GR and Kumar YH: Increased
prevalence of thyroid dysfunction and diabetes mellitus in Indian
vitiligo patients: A case-control study. Indian Dermatol Online J.
5:456–460. 2014.PubMed/NCBI View Article : Google Scholar
|
|
48
|
El-Gayyar MA, Helmy ME, Amer ER, Elsaied
MA and Gaballah MA: Antimelanocyte antibodies: A possible role in
patients with vitiligo. Indian J Dermatol. 65:33–37.
2020.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Liu CW and Huang YC: Vitiligo and
autoantibodies: A systematic review and meta-analysis. J Dtsch
Dermatol Ges. 16:845–851. 2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Genetics Home Reference. Vitiligo.
Inheritance Pattern. Available at: https://ghr.nlm.nih.gov/condition/vitiligo#inheritance
(last accessed 8 July 2019).
|
|
51
|
Alenizi DA: Consanguinity pattern and
heritability of Vitiligo in Arar, Saudi Arabia. J Family Community
Med. 21:13–16. 2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Allam M and Riad H: Concise review of
recent studies in vitiligo. Qatar Med J. 2013:1–19. 2013.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Franks AL and Slansky JE: Multiple
associations between a broad spectrum of autoimmune diseases,
chronic inflammatory diseases and cancer. Anticancer Res.
32:1119–1136. 2012.PubMed/NCBI
|
|
54
|
Asilian A, Momeni I and Khosravani P:
Vitiligo associated with esophageal adenocarcinoma. Int J Prev Med.
4:489–490. 2013.PubMed/NCBI
|
|
55
|
Balasubramanian A: Vitiligo associated
with breast cancer-a report of two cases. Int J Cur Res Rev.
7:56–58. 2015.
|
|
56
|
Manga P, Elbuluk N and Orlow SJ: Recent
advances in understanding vitiligo. F1000Res 5: F1000 Faculty
Rev-2234, 2016.
|
|
57
|
Patel S, Rauf A, Khan H, Meher BR and
Hassan SSU: A holistic review on the autoimmune disease vitiligo
with emphasis on the causal factors. Biomed Pharmacother.
92:501–508. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Giang J, Seelen MAJ, van Doorn MBA,
Rissmann R, Prens EP and Damman J: Complement activation in
inflammatory skin diseases. Front Immunol. 9(639)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ricklin D, Reis ES, Mastellos DC, Gros P
and Lambris JD: Complement component C3-The ‘Swiss Army Knife’ of
innate immunity and host defense. Immunol Rev. 274:33–58.
2016.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Sandoval-Cruz M, García-Carrasco M,
Sánchez-Porras R, Mendoza-Pinto C, Jiménez-Hernández M,
Munguía-Realpozo P and Ruiz-Argüelles A: Immunopathogenesis of
vitiligo. Autoimmun Rev. 10:762–765. 2011.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Basak PY, Adiloglu AK, Ceyhan AM, Tas T
and Akkaya VB: The role of helper and regulatory T cells in the
pathogenesis of vitiligo. J Am Acad Dermatol. 60:256–260.
2009.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Kotobuki Y, Tanemura A, Yang L, Itoi S,
Wataya-Kaneda M, Murota H, Fujimoto M, Serada S, Naka T and
Katayama I: Dysregulation of melanocyte function by Th17-related
cytokines: Significance of Th17 cell infiltration in autoimmune
vitiligo vulgaris. Pigment Cell Melanoma Res. 25:219–230.
2012.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Bassiouny DA and Shaker O: Role of
interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol.
36:292–297. 2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Wang CQF, Akalu YT, Suarez-Farinas M,
Gonzalez J, Mitsui H, Lowes MA, Orlow SJ, Manga P and Krueger JG:
IL-17 and TNF synergistically modulate cytokine expression while
suppressing melanogenesis: Potential relevance to psoriasis. J
Invest Dermatol. 133:2741–2752. 2013.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Moretti S, Fabbri P, Baroni G, Berti S,
Bani D, Berti E, Nassini R, Lotti T and Massi D: Keratinocyte
dysfunction in vitiligo epidermis: Cytokine microenvironment and
correlation to keratinocyte apoptosis. Histol Histopathol.
24:849–857. 2009.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Webb KC, Tung R, Winterfield LS, Gottlieb
AB, Eby JM, Henning SW and Le Poole IC: Tumour necrosis factor-α
inhibition can stabilize disease in progressive vitiligo. Br J
Dermatol. 173:641–650. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Alghamdi K and Khurrum H: Methotrexate for
the treatment of generalized vitiligo. Saudi Pharm J. 21:423–424.
2013.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Sandra A, Pai S and Shenoi SD: Unstable
vitiligo responding to methotrexate. Indian J Dermatol Venereol
Leprol. 64(309)1998.PubMed/NCBI
|
|
69
|
Garza-Mayers AC and Kroshinsky D: Low-dose
methotrexate for vitiligo. J Drugs Dermatol. 16:705–706.
2017.PubMed/NCBI
|
|
70
|
Singh H, Kumaran MS, Bains A and Parsad D:
A randomized comparative study of oral corticosteroid minipulse and
low-dose oral methotrexate in the treatment of unstable vitiligo.
Dermatology. 231:286–290. 2015.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Abdelmaksoud A, Dave DD, Lotti T and
Vestita M: Topical methotrexate 1% gel for treatment of vitiligo: A
case report and review of the literature. Dermatol Ther.
32(e13013)2019.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Haller O and Kochs G: Human MxA protein:
An interferon-induced dynamin-like GTPase with broad antiviral
activity. J Interferon Cytokine Res. 31:79–87. 2011.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Boniface K, Seneschal J, Picardo M and
Taïeb A: Vitiligo: Focus on clinical aspects, immunopathogenesis,
and therapy. Clin Rev Allergy Immunol. 54:52–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Rezk AF, Kemp DM, El-Domyati M, El-Din WH,
Lee JB, Uitto J, Igoucheva O and Alexeev V: Misbalanced CXCL12 and
CCL5 chemotactic signals in vitiligo onset and progression. J
Invest Dermatol. 137:1126–1134. 2017.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Harris JE: Cellular stress and innate
inflammation in organ-specific autoimmunity: Lessons learned from
vitiligo. Immunol Rev. 269:11–25. 2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Li S, Zhu G, Yang Y, Jian Z, Guo S, Dai W,
Shi Q, Ge R, Ma J, Liu L, et al: Oxidative stress drives
CD8+ T-cell skin trafficking in patients with vitiligo
through CXCL16 upregulation by activating the unfolded protein
response in keratinocytes. J Allergy Clin Immunol. 140:177–189.e9.
2017.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wańkowicz-Kalińska A, van den Wijngaard
RM, Tigges BJ, Westerhof W, Ogg GS, Cerundolo V, Storkus WJ and Das
PK: Immunopolarization of CD4+ and CD8+ T
cells to type-1-like is associated with melanocyte loss in human
vitiligo. Lab Invest. 83:683–695. 2003.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Xie H, Zhou F, Liu L, Zhu Li Q, Li C and
Gao T: Vitiligo: How do oxidative stress-induced autoantigens
trigger autoimmunity? J Dermatol Sci. 81:3–9. 2016.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Le Poole IC, Wañkowicz-Kaliñska A, van den
Wijngaard RM, Nickoloff BJ and Das PK: Autoimmune aspects of
depigmentation in vitiligo. J Investig Dermatol Symp Proc. 9:68–72.
2004.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Le Poole IC, van den Wijngaard RM,
Westerhof W and Das PK: Presence of T cells and macrophages in
inflammatory vitiligo skin parallels melanocyte disappearance. Am J
Pathol. 148:1219–1228. 1996.PubMed/NCBI
|
|
81
|
Palermo B, Campanelli R, Garbelli S,
Mantovani S, Lantelme E, Brazzelli V, Ardigó M, Borroni G,
Martinetti M, Badulli C, et al: Specific cytotoxic T lymphocyte
responses against Melan-A/MART1, tyrosinase and gp100 in vitiligo
by the use of major histocompatibility complex/peptide tetramers:
The role of cellular immunity in the etiopathogenesis of vitiligo.
J Invest Dermatol. 117:326–332. 2001.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Relke N and Gooderham M: The use of janus
kinase inhibitors in vitiligo: A review of the literature. J Cutan
Med Surg. 23:298–306. 2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Rashighi M, Agarwal P, Richmond JM, Harris
TH, Dresser K, Su MW, Zhou Y, Deng A, Hunter CA, Luster AD and
Harris JE: CXCL10 is critical for the progression and maintenance
of depigmentation in a mouse model of vitiligo. Sci Transl Med.
6(223ra23)2014.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Ciechanowicz P, Rakowska A, Sikora M and
Rudnicka L: JAK-inhibitors in dermatology: Current evidence and
future applications. J Dermatolog Treat. 30:648–658.
2019.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Craiglow BG and King BA: Tofacitinib
citrate for the treatment of vitiligo: A pathogenesis-directed
therapy. JAMA Dermatol. 151:1110–1112. 2015.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Speeckaert R, Dugardin J, Lambert J,
Lapeere H, Verhaeghe E, Speeckaert MM and van Geel N: Critical
appraisal of the oxidative stress pathway in vitiligo: A systematic
review and meta-analysis. J Eur Acad Dermatol Venereol.
32:1089–1098. 2018.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Laddha NC, Dwivedi M, Mansuri MS, Gani AR,
Ansarullah M, Ramachandran AV, Dalai S and Begum R: Vitiligo:
Interplay between oxidative stress and immune system. Exp Dermatol.
22:245–250. 2013.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Dell'Anna ML, Urbanelli S, Mastrofrancesco
A, Camera E, Iacovelli P, Leone G, Manini P, D'Ischia M and Picardo
M: Alterations of mitochondria in peripheral blood mononuclear
cells of vitiligo patients. Pigment Cell Res. 16:553–559.
2003.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Schallreuter KU, Salem MA, Holtz S and
Panske A: Basic evidence for epidermal H2O2/ONOO(-)-mediated
oxidation/nitration in segmental vitiligo is supported by
repigmentation of skin and eyelashes after reduction of epidermal
H2O2 with topical NB-UVB-activated pseudocatalase PC-KUS. FASEB J.
27:3113–3122. 2013.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Xu P, Xue YN, Ji HH, Tan C and Guo S:
H2 O2 -induced oxidative stress disrupts
mitochondrial functions and impairs migratory potential of human
epidermal melanocytes. Exp Dermatol. 29:733–741. 2020.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Alshiyab DM, Al-Qarqaz FA, Muhaidat JM,
Alkhader YS, Al-Sheyab RF and Jafaar SI: Comparison of the efficacy
of Tacrolimus 0.1% ointment and Tacrolimus 0.1% plus topical
pseudocatalase/superoxide dismutase gel in children with limited
vitiligo: A randomized controlled trial. J Dermatolog Treat. 1–4.
2020.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
92
|
Mathachan SR, Khurana A, Gautam RK,
Kulhari A, Sharma L and Sardana K: Does oxidative stress correlate
with disease activity and severity in vitiligo? An analytical
study. J Cosmet Dermatol, 2020 (Epub ahead of print).
|
|
93
|
Spritz RA: The genetics of generalized
vitiligo and associated autoimmune diseases. J Dermatol Sci.
41:3–10. 2006.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Zhang XJ, Chen JJ and Liu JB: The genetic
concept of vitiligo. J Dermatol Sci. 39:137–146. 2005.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Genetics Home Reference. MITF gene.
Available at: https://ghr.nlm.nih.gov/gene/MITF. (last accessed 8
July 2019).
|
|
96
|
Genetics Home Reference. POMC gene.
Available at: https://ghr.nlm.nih.gov/gene/POMC. (last accessed 8
July 2019).
|
|
97
|
UniProtKB. UniProtKB-P40126 (TYRP2_HUMAN).
Available at: https://www.uniprot.org/uniprot/P40126. (last
accessed 8 July 2019).
|
|
98
|
UniProtKB. UniProtKB-P17643 (TYRP1_HUMAN).
Available at: https://www.uniprot.org/uniprot/P17643. (last
accessed 8 July 2019).
|
|
99
|
UniProtKB. UniProtKB-Q16655 (MAR1_HUMSN).
Available at: https://www.uniprot.org/uniprot/Q16655. (last
accessed 8 July 2019).
|
|
100
|
Genetics Home Reference. CAPN3 gene.
Available at: https://ghr.nlm.nih.gov/gene/CAPN3. (last accessed 8
July 2019).
|
|
101
|
Al-Shobaili HA: Update on the genetics
characterization of vitiligo. Int J Health Sci (Qassim). 5:167–179.
2011.PubMed/NCBI
|
|
102
|
Le Poole IC, Sarangarajan R, Zhao Y,
Stennett LS, Brown TL, Sheth P, Miki T and Boissy RE: ‘VIT1’, a
novel gene associated with vitiligo. Pigment Cell Res. 14:475–484.
2001.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Genetics Home Reference. CAT gene.
Available at: https://ghr.nlm.nih.gov/gene/CAT. (last accessed 8
July 2019).
|
|
104
|
Casp CB, She JX and McCormack WT: Genetic
association of the catalase gene (CAT) with vitiligo
susceptibility. Pigment Cell Res. 15:62–66. 2002.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Mosaad YM, Sallam M, Elsaied MA, Fathy H,
Fawzy Z, Elzehery R, Shaat RM and El-Gilany AH: Association of CAT
389 T/C and -89 T/A gene polymorphisms with vitiligo: Relation with
oxidative stress. J Egypt Women Dermatol Soc. 14:121–127. 2017.
|
|
106
|
UniProtKB. UniProtKD-P24821 (TENA_HUMAN).
Available at: https://www.uniprot.org/uniprot/P24821. (last
accessed 8 July 2019).
|
|
107
|
Le Poole IC, van den Wijngaard RM,
Westerhof W and Das PK: Tenascin is overexpressed in vitiligo
lesional skin and inhibits melanocyte adhesion. Br J Dermatol.
137:171–178. 1997.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Murphy-Ullrich JE: The de-adhesive
activity of matricellular proteins: Is intermediate cell adhesion
an adaptive state? J Clin Invest. 107:785–790. 2001.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Esmat SM, Hadidi HHE, Hegazy RA, Gawdat
HI, Tawdy AM, Fawzy MM, AbdelHalim DM, Sultan OS and Shaker OG:
Increased tenascin C and DKK1 in vitiligo: Possible role of
fibroblasts in acral and non-acral disease. Arch Dermatol Res.
310:425–430. 2018.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Schunter JA, Löffler D, Wiesner T, Kovacs
P, Badenhoop K, Aust G, Tönjes A, Müller P, Baber R, Simon JC, et
al: A novel FoxD3 variant is associated with vitiligo and elevated
thyroid auto-antibodies. J Clin Endocrinol Metab. 100:E1335–E1342.
2015.PubMed/NCBI View Article : Google Scholar
|
|
111
|
National Center for Biothechnology
Information. Genes and Expression. Gene. FOXD3 forkhead box D3
[Homo sapiens (human)]. Available at: https://www.ncbi.nlm.nih.gov/gene/27022?report=full_report%202017%20Caption:%201588786844.
(last accesed 8 July 2019).
|
|
112
|
Alghamdi KM, Khurrum H, Taieb A and
Ezzedine K: Treatment of generalized vitiligo with anti-TNF-α
Agents. J Drugs Dermatol. 11:534–539. 2012.PubMed/NCBI
|
|
113
|
Wilson AG, de Vries N, Pociot F, di
Giovine FS, van der Putte LB and Duff GW: An allelic polymorphism
within the human tumor necrosis factor alpha promoter region is
strongly associated with HLA A1, B8, and DR3 alleles. J Exp Med.
177:557–560. 1993.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Wilson AG, Symons JA, McDowell TL,
McDevitt HO and Duff GW: Effects of a polymorphism in the human
tumor necrosis factor alpha promoter on transcriptional activation.
Proc Natl Acad Sci USA. 94:3195–3199. 1997.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Mitra S, De Sarkar S, Pradhan A, Pati AK,
Pradhan R, Mondal D, Sen S, Ghosh A, Chatterjee S and Chatterjee M:
Levels of oxidative damage and proinflammatory cytokines are
enhanced in patients with active vitiligo. Free Radic Res.
51:986–994. 2017.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Garcia-Melendez ME, Salinas-Santander M,
Sanchez-Dominguez C, Gonzalez-Cardenas H, Cerda-Flores RM,
Ocampo-Candiani J and Ortiz-López R: Protein tyrosine phosphatase
PTPN22 +1858C/T polymorphism is associated with active vitiligo.
Exp Ther Med. 8:1433–1437. 2014.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Vang T, Miletic AV, Bottini N and Mustelin
T: Protein tyrosine phosphatase PTPN22 in human autoimmunity.
Autoimmunity. 40:453–461. 2007.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Arora A and Kumaran M: Pathogenesis of
vitiligo: An update. Pigment Int. 4:65–77. 2017.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Kingo K, Aunin E, Karelson M, Philips MA,
Ratsep R, Silm H, Vasar E, Soomets U and Koks S: Gene expression
analysis of melanocortin system in vitiligo. J Dermatol Sci.
48:113–122. 2007.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Kingo K, Aunin E, Karelson M, Ratsep R,
Silm H, Vasar E and Koks S: Expressional changes in the
intracellular melanogenesis pathways and their possible role in the
pathogenesis of vitiligo. J Dermatol Sci. 52:39–46. 2008.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Strömberg S, Bjorklund MG, Asplund A,
Rimini R, Lundeberg J, Nilsson P, Ponten F and Olsson MJ:
Transcriptional profiling of melanocytes from patients with
vitiligo vulgaris. Pigment Cell Melanoma Res. 21:162–171.
2008.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Salinas Santander MA: Análisis del perfil
de expresión de pacientes con vitiligo. Universidad Autónoma de
Nuevo Leon, Repositorio Académico Digital, p 143, 2012. http://eprints.uanl.mx/3248/.
|
|
123
|
Salinas-Santander M, Trevino V, De la
Rosa-Moreno E, Verduzco-Garza B, Sánchez-Domínguez CN,
Cantú-Salinas C, Ocampo-Garza J, Lagos-Rodríguez A, Ocampo-Candiani
J and Ortiz-López R: CAPN3, DCT, MLANA and TYRP1 are overexpressed
in skin of vitiligo vulgaris Mexican patients. Exp Ther Med.
15:2804–2811. 2018.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Shi F, Kong BW, Song JJ, Lee JY,
Dienglewicz RL and Erf GF: Understanding mechanisms of vitiligo
development in Smyth line of chickens by transcriptomic microarray
analysis of evolving autoimmune lesions. BMC Immunol.
13(18)2012.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Mansuri MS, Singh M and Begum R: MiRNA
signatures and transcriptional regulation of their target genes in
vitiligo. J Dermatol Sci. 84:50–58. 2016.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Dey-Rao R and Sinha AA: Vitiligo blood
transcriptomics provides new insights into disease mechanisms and
identifies potential novel therapeutic targets. BMC Genomics.
18(109)2017.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Regazzetti C, Joly F, Marty C, Rivier M,
Mehul B, Reiniche P, Mounier C, Rival Y, Piwnica D, Cavalié M, et
al: Transcriptional analysis of vitiligo skin reveals the
alteration of WNT pathway: A promising target for repigmenting
vitiligo patients. J Invest Dermatol. 135:3105–3114.
2015.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Segalés J, Perdiguero E and Muñoz-Cánoves
P: Regulation of muscle stem cell functions: A focus on the p38
MAPK signaling pathway. Front Cell Dev Biol. 4(91)2016.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Wei S and Siegal GP: Mechanisms modulating
inflammatory osteolysis: A review with insights into therapeutic
targets. Pathol Res Pract. 204:695–706. 2008.PubMed/NCBI View Article : Google Scholar
|
|
130
|
National Center of Biotechnology
Information. Genes and Expression. Gene. PIK3CB
phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit
beta [Homo sapiens (human)]. Available at: https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=5291.
(last accessed 8 July 2019).
|
|
131
|
UniProtKB. UniProtKB-P23443 (KS6B1_HUMAN).
Available at: https://www.uniprot.org/uniprot/P23443. (last
accessed 8 July 2019).
|
|
132
|
UniProtKB. UniProtKB-Q07812 (BAX_HUMAN).
Available at: https://www.uniprot.org/uniprot/Q07812. (last
accessed 8 July 2019).
|
|
133
|
National Center of Biotechnology
Information. Genes and Expression. Gene. USF1 upstream
transcription factor 1 [Homo sapiens (human)] Available at:
https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=7391.
(last accessed 8 July 2019).
|
|
134
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002.PubMed/NCBI View Article : Google Scholar
|