|
1
|
Ashbaugh DG, Bigelow DB, Petty TL and
Levine BE: Acute respiratory distress in adults. Lancet. 2:319–323.
1967.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Ferguson ND, Fan E, Camporota L, Antonelli
M, Anzueto A, Beale R, Brochard L, Brower R, Esteban A, Gattinoni
L, et al: The Berlin definition of ARDS: An expanded rationale,
justification, and supplementary material. Intensive Care Med.
38:1573–1582. 2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Bellani G, Laffey JG, Pham T, Fan E,
Brochard L, Esteban A, Gattinoni L, van Haren F, Larsson A, McAuley
DF, et al: LUNG SAFE Investigators; ESICM Trials Group:
Epidemiology, patterns of care, and mortality for patients with
acute respiratory distress syndrome in intensive care units in 50
countries. JAMA. 315:788–800. 2016.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Herridge MS, Tansey CM, Matté A, Tomlinson
G, Diaz-Granados N, Cooper A, Guest CB, Mazer CD, Mehta S, Stewart
TE, et al: Canadian Critical Care Trials Group: Functional
disability 5 years after acute respiratory distress syndrome. N
Engl J Med. 364:1293–1304. 2011.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Han S and Mallampalli RK: The acute
respiratory distress syndrome: From mechanism to translation. J
Immunol. 194:855–860. 2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Griffiths MJD, McAuley DF, Perkins GD,
Barrett N, Blackwood B, Boyle A, Chee N, Connolly B, Dark P, Finney
S, et al: Guidelines on the management of acute respiratory
distress syndrome. BMJ Open Respir Res. 6(e000420)2019.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Walkey AJ, Del Sorbo L, Hodgson CL,
Adhikari NKJ, Wunsch H, Meade MO, Uleryk E, Hess D, Talmor DS,
Thompson BT, et al: Higher PEEP versus Lower PEEP Strategies for
Patients with Acute Respiratory Distress Syndrome. A Systematic
Review and Meta-Analysis. Ann Am Thorac Soc. 14 (Suppl
4):S297–S303. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Hodgson CL, Cooper DJ, Arabi Y, King V,
Bersten A, Bihari S, Brickell K, Davies A, Fahey C, Fraser J, et
al: Maximal Recruitment Open Lung Ventilation in Acute Respiratory
Distress Syndrome (PHARLAP). A Phase II, Multicenter Randomized
Controlled Clinical Trial. Am J Respir Crit Care Med.
200:1363–1372. 2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Steinberg KP, Hudson LD, Goodman RB, Hough
CL, Lanken PN, Hyzy R, Thompson BT and Ancukiewicz M: National
Heart, Lung and Blood Institute Acute Respiratory Distress Syndrome
(ARDS) Clinical Trials Network. Efficacy and safety of
corticosteroids for persistent acute respiratory distress syndrome.
N Engl J Med. 354:1671–1684. 2006.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Peck TJ and Hibbert KA: Recent advances in
the understanding and management of ARDS. F1000 Res.
8(8)2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Villar J, Ferrando C, Martínez D, Ambrós
A, Muñoz T, Soler JA, Aguilar G, Alba F, González-Higueras E,
Conesa LA, et al: dexamethasone in ARDS network: Dexamethasone
treatment for the acute respiratory distress syndrome: A
multicentre, randomised controlled trial. Lancet Respir Med.
8:267–276. 2020.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Rubenfeld GD, Caldwell E, Peabody E,
Weaver J, Martin DP, Neff M, Stern EJ and Hudson LD: Incidence and
outcomes of acute lung injury. N Engl J Med. 353:1685–1693.
2005.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ito K, Caramori G, Lim S, Oates T, Chung
KF, Barnes PJ and Adcock IM: Expression and activity of histone
deacetylases in human asthmatic airways. Am J Respir Crit Care Med.
166:392–396. 2002.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Sadoul K, Boyault C, Pabion M and Khochbin
S: Regulation of protein turnover by acetyltransferases and
deacetylases. Biochimie. 90:306–312. 2008.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Dekker FJ and Haisma HJ: Histone acetyl
transferases as emerging drug targets. Drug Discov Today.
14:942–948. 2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Zou H, Wu Y, Navre M and Sang BC:
Characterization of the two catalytic domains in histone
deacetylase 6. Biochem Biophys Res Commun. 341:45–50.
2006.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Zhang Y, Gilquin B, Khochbin S and
Matthias P: Two catalytic domains are required for protein
deacetylation. J Biol Chem. 281:2401–2404. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Schäfer S, Saunders L, Eliseeva E, Velena
A, Jung M, Schwienhorst A, Strasser A, Dickmanns A, Ficner R and
Schlimme S: Phenylalanine-containing hydroxamic acids as selective
inhibitors of class IIb histone deacetylases (HDACs). Bioorg Med
Chem. 16:2011–2033. 2008.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Zhang X, Yuan Z, Zhang Y, Yong S,
Salas-Burgos A, Koomen J, Olashaw N, Parsons JT, Yang XJ, Dent SR,
et al: HDAC6 modulates cell motility by altering the acetylation
level of cortactin. Mol Cell. 27:197–213. 2007.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Bali P, Pranpat M, Bradner J, Balasis M,
Fiskus W, Guo F, Rocha K, Kumaraswamy S, Boyapalle S, Atadja P, et
al: Inhibition of histone deacetylase 6 acetylates and disrupts the
chaperone function of heat shock protein 90: A novel basis for
antileukemia activity of histone deacetylase inhibitors. J Biol
Chem. 280:26729–26734. 2005.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Parab S, Shetty O, Gaonkar R, Balasinor N,
Khole V and Parte P: Correction to: HDAC6 deacetylates alpha
tubulin in sperm and modulates sperm motility in Holtzman rat. Cell
Tissue Res. 371(375)2018.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Wang XX, Wan RZ and Liu ZP: Recent
advances in the discovery of potent and selective HDAC6 inhibitors.
Eur J Med Chem. 143:1406–1418. 2018.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Jia YJ, Liu ZB, Wang WG, Sun CB, Wei P,
Yang YL, You MJ, Yu BH, Li XQ and Zhou XY: HDAC6 regulates
microRNA-27b that suppresses proliferation, promotes apoptosis and
target MET in diffuse large B-cell lymphoma. Leukemia. 32:703–711.
2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Vogl DT, Raje N, Jagannath S, Richardson
P, Hari P, Orlowski R, Supko JG, Tamang D, Yang M, Jones SS, et al:
Ricolinostat, the first selective histone deacetylase 6 inhibitor,
in combination with bortezomib and dexamethasone for relapsed or
refractory multiple myeloma. Clin Cancer Res. 23:3307–3315.
2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Yee AJ, Bensinger WI, Supko JG, Voorhees
PM, Berdeja JG, Richardson PG, Libby EN, Wallace EE, Birrer NE,
Burke JN, et al: Ricolinostat plus lenalidomide, and dexamethasone
in relapsed or refractory multiple myeloma: A multicentre phase 1b
trial. Lancet Oncol. 17:1569–1578. 2016.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Tu Y, Hershman DL, Bhalla K, Fiskus W,
Pellegrino CM, Andreopoulou E, Makower D, Kalinsky K, Fehn K,
Fineberg S, et al: A phase I-II study of the histone deacetylase
inhibitor vorinostat plus sequential weekly paclitaxel and
doxorubicin-cyclophosphamide in locally advanced breast cancer.
Breast Cancer Res Treat. 146:145–152. 2014.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Halili MA, Andrews MR, Labzin LI, Schroder
K, Matthias G, Cao C, Lovelace E, Reid RC, Le GT, Hume DA, et al:
Differential effects of selective HDAC inhibitors on macrophage
inflammatory responses to the Toll-like receptor 4 agonist LPS. J
Leukoc Biol. 87:1103–1114. 2010.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Estenssoro E and Dubin A: Acute
respiratory distress syndrome. Medicina (B Aires). 76:235–241.
2016.PubMed/NCBI(In Spanish).
|
|
29
|
Kasznica J, Helmann M, Collins JP and
Akhtar R: Bilateral Ebstein-like anomaly with atrial septal defect.
Jpn Heart J. 36:119–125. 1995.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Fu P, Murley JS, Grdina DJ, Birukova AA
and Birukov KG: Induction of cellular antioxidant defense by
amifostine improves ventilator-induced lung injury. Crit Care Med.
39:2711–2721. 2011.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kratzer E, Tian Y, Sarich N, Wu T, Meliton
A, Leff A and Birukova AA: Oxidative stress contributes to lung
injury and barrier dysfunction via microtubule destabilization. Am
J Respir Cell Mol Biol. 47:688–697. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Zhao B, Gao W, Gao X, Leng Y, Liu M, Hou J
and Wu Y: Sulforaphane attenuates acute lung injury by inhibiting
oxidative stress via Nrf2/HO-1 pathway in a rat sepsis model. Int J
Clin Exp Pathol. 10:9021–9028. 2017.PubMed/NCBI
|
|
33
|
Peng X, Hassoun PM, Sammani S, McVerry BJ,
Burne MJ, Rabb H, Pearse D, Tuder RM and Garcia JG: Protective
effects of sphingosine 1-phosphate in murine endotoxin-induced
inflammatory lung injury. Am J Respir Crit Care Med. 169:1245–1251.
2004.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Kong J, Zhu X, Shi Y, Liu T, Chen Y, Bhan
I, Zhao Q, Thadhani R and Li YC: VDR attenuates acute lung injury
by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol
Endocrinol. 27:2116–2125. 2013.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Thangavel J, Malik AB, Elias HK, Rajasingh
S, Simpson AD, Sundivakkam PK, Vogel SM, Xuan YT, Dawn B and
Rajasingh J: Combinatorial therapy with acetylation and methylation
modifiers attenuates lung vascular hyperpermeability in
endotoxemia-induced mouse inflammatory lung injury. Am J Pathol.
184:2237–2249. 2014.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Xu Q, Liu J, Wang Z, Guo X, Zhou G, Liu Y,
Huang Q and Su L: Heat stress-induced disruption of endothelial
barrier function is via PAR1 signaling and suppressed by Xuebijing
injection. PLoS One. 10(e0118057)2015.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Joshi AD, Barabutis N, Birmpas C,
Dimitropoulou C, Thangjam G, Cherian-Shaw M, Dennison J and
Catravas JD: Histone deacetylase inhibitors prevent pulmonary
endothelial hyperpermeability and acute lung injury by regulating
heat shock protein 90 function. Am J Physiol Lung Cell Mol Physiol.
309:L1410–L1419. 2015.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Borgas D, Chambers E, Newton J, Ko J,
Rivera S, Rounds S and Lu Q: Cigarette Smoke Disrupted Lung
Endothelial Barrier Integrity and Increased Susceptibility to Acute
Lung Injury via Histone Deacetylase 6. Am J Respir Cell Mol Biol.
54:683–696. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Yu J, Ma Z, Shetty S, Ma M and Fu J:
Selective HDAC6 inhibition prevents TNF-α-induced lung endothelial
cell barrier disruption and endotoxin-induced pulmonary edema. Am J
Physiol Lung Cell Mol Physiol. 311:L39–L47. 2016.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Karki P, Ke Y, Tian Y, Ohmura T, Sitikov
A, Sarich N, Montgomery CP and Birukova AA: Staphylococcus
aureus-induced endothelial permeability and inflammation are
mediated by microtubule destabilization. J Biol Chem.
294:3369–3384. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Rosenjack J, Hodges CA, Darrah RJ and
Kelley TJ: HDAC6 depletion improves cystic fibrosis mouse airway
responses to bacterial challenge. Sci Rep. 9(10282)2019.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Deng Q, Zhao T, Pan B, Dennahy IS, Duan X,
Williams AM, Liu B, Lin N, Bhatti UF, Chen E, et al: Protective
Effect of Tubastatin A in CLP-Induced Lethal Sepsis. Inflammation.
41:2101–2109. 2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Li Y, Zhao T, Liu B, Halaweish I,
Mazitschek R, Duan X and Alam HB: Inhibition of histone deacetylase
6 improves long-term survival in a lethal septic model. J Trauma
Acute Care Surg. 78:378–385. 2015.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Yu J, Ma M, Ma Z and Fu J: HDAC6
inhibition prevents TNF-α-induced caspase 3 activation in lung
endothelial cell and maintains cell-cell junctions. Oncotarget.
7:54714–54722. 2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Cheng X, Liu Z, Liu B, Zhao T, Li Y and
Alam HB: Selective histone deacetylase 6 inhibition prolongs
survival in a lethal two-hit model. J Surg Res. 197:39–44.
2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Yoo J, Kim SJ, Son D, Seo H, Baek SY,
Maeng CY, Lee C, Kim IS, Jung YH, Lee SM, et al: Computer-aided
identification of new histone deacetylase 6 selective inhibitor
with anti-sepsis activity. Eur J Med Chem. 116:126–135.
2016.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Moreno-Gonzalo O, Mayor F Jr and
Sánchez-Madrid F: HDAC6 at Crossroads of Infection and Innate
Immunity. Trends Immunol. 39:591–595. 2018.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhao T, Li Y, Liu B, Pan B, Cheng X,
Georgoff P and Alam HB: Inhibition of histone deacetylase 6
restores innate immune cells in the bone marrow in a lethal septic
model. J Trauma Acute Care Surg. 80:34–40; discussion 40-41.
2016.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Yan B, Xie S, Liu Y, Liu W, Li D, Liu M,
Luo HR and Zhou J: Histone deacetylase 6 modulates macrophage
infiltration during inflammation. Theranostics. 8:2927–2938.
2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Zhang WB, Yang F, Wang Y, Jiao FZ, Zhang
HY, Wang LW and Gong ZJ: Inhibition of HDAC6 attenuates LPS-induced
inflammation in macrophages by regulating oxidative stress and
suppressing the TLR4-MAPK/NF-κB pathways. Biomed Pharmacother.
117(109166)2019.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Zhao T, Li Y, Bronson RT, Liu B, Velmahos
GC and Alam HB: Selective histone deacetylase-6 inhibition
attenuates stress responses and prevents immune organ atrophy in a
lethal septic model. Surgery. 156:235–242. 2014.PubMed/NCBI View Article : Google Scholar
|
|
52
|
González-Mariscal L, Tapia R and Chamorro
D: Crosstalk of tight junction components with signaling pathways.
Biochim Biophys Acta. 1778:729–756. 2008.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Di Liddo R, Valente S, Taurone S, Zwergel
C, Marrocco B, Turchetta R, Conconi MT, Scarpa C, Bertalot T,
Schrenk S, et al: Histone deacetylase inhibitors restore IL-10
expression in lipopolysaccharide-induced cell inflammation and
reduce IL-1β and IL-6 production in breast silicone implant in
C57BL/6J wild-type murine model. Autoimmunity: Jan 20, 2016 (Epub
ahead of print).
|
|
54
|
Youn GS, Lee KW, Choi SY and Park J:
Overexpression of HDAC6 induces pro-inflammatory responses by
regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages.
Free Radic Biol Med. 97:14–23. 2016.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Youn GS, Ju SM, Choi SY and Park J: HDAC6
mediates HIV-1 tat-induced proinflammatory responses by regulating
MAPK-NF-kappaB/AP-1 pathways in astrocytes. Glia. 63:1953–1965.
2015.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Jo H, Jang HY, Youn GS, Kim D, Lee CY,
Jang JH, Choi SY, Jun JG and Park J: Hindsiipropane B alleviates
HIV-1 Tat-induced inflammatory responses by suppressing HDAC6-NADPH
oxidase-ROS axis in astrocytes. BMB Rep. 51:394–399.
2018.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Zhang WB, Zhang HY, Jiao FZ, Wang LW,
Zhang H and Gong ZJ: Histone deacetylase 6 inhibitor ACY-1215
protects against experimental acute liver failure by regulating the
TLR4-MAPK/NF-κB pathway. Biomed Pharmacother. 97:818–824.
2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Liu L, Zhou X, Shetty S, Hou G, Wang Q and
Fu J: HDAC6 inhibition blocks inflammatory signaling and caspase-1
activation in LPS-induced acute lung injury. Toxicol Appl
Pharmacol. 370:178–183. 2019.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Wang J, Zhao L, Wei Z, Zhang X, Wang Y, Li
F, Fu Y and Liu B: Inhibition of histone deacetylase reduces
lipopolysaccharide-induced-inflammation in primary mammary
epithelial cells by regulating ROS-NF-кB signaling pathways. Int
Immunopharmacol. 56:230–234. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Hiscott J: Convergence of the NF-kappaB
and IRF pathways in the regulation of the innate antiviral
response. Cytokine Growth Factor Rev. 18:483–490. 2007.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Nusinzon I and Horvath CM: Positive and
negative regulation of the innate antiviral response and beta
interferon gene expression by deacetylation. Mol Cell Biol.
26:3106–3113. 2006.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chattopadhyay S, Fensterl V, Zhang Y,
Veleeparambil M, Wetzel JL and Sen GC: Inhibition of viral
pathogenesis and promotion of the septic shock response to
bacterial infection by IRF-3 are regulated by the acetylation and
phosphorylation of its coactivators. MBio. 4(4)2013.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Trani M and Dejana E: New insights in the
control of vascular permeability: Vascular endothelial-cadherin and
other players. Curr Opin Hematol. 22:267–272. 2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Rodrigues SF and Granger DN: Blood cells
and endothelial barrier function. Tissue Barriers.
3(e978720)2015.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Nam HJ, Kang JK, Kim SK, Ahn KJ, Seok H,
Park SJ, Chang JS, Pothoulakis C, Lamont JT and Kim H:
Clostridium difficile toxin A decreases acetylation of
tubulin, leading to microtubule depolymerization through activation
of histone deacetylase 6, and this mediates acute inflammation. J
Biol Chem. 285:32888–32896. 2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Saito S, Lasky JA, Guo W, Nguyen H, Mai A,
Danchuk S, Sullivan DE and Shan B: Pharmacological inhibition of
HDAC6 attenuates endothelial barrier dysfunction induced by
thrombin. Biochem Biophys Res Commun. 408:630–634. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Wang F, Zheng L, Yi Y, Yang Z, Qiu Q, Wang
X, Yan W, Bai P, Yang J, Li D, et al: SKLB-23bb, A HDAC6-Selective
Inhibitor, Exhibits Superior and Broad-Spectrum Antitumor Activity
via Additionally Targeting Microtubules. Mol Cancer Ther.
17:763–775. 2018.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Majolée J, Pronk MCA, Jim KK, van Bezu
JSM, van der Sar AM, Hordijk PL and Kovačević I: CSN5 inhibition
triggers inflammatory signaling and Rho/ROCK-dependent loss of
endothelial integrity. Sci Rep. 9(8131)2019.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Croisé P, Estay-Ahumada C, Gasman S and
Ory S: Rho GTPases, phosphoinositides, and actin: A tripartite
framework for efficient vesicular trafficking. Small GTPases.
5(e29469)2014.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Joshi AD, Dimitropoulou C, Thangjam G,
Snead C, Feldman S, Barabutis N, Fulton D, Hou Y, Kumar S, Patel V,
et al: Heat shock protein 90 inhibitors prevent LPS-induced
endothelial barrier dysfunction by disrupting RhoA signaling. Am J
Respir Cell Mol Biol. 50:170–179. 2014.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Valenta T, Hausmann G and Basler K: The
many faces and functions of β-catenin. EMBO J. 31:2714–2736.
2012.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Winer IS, Bommer GT, Gonik N and Fearon
ER: Lysine residues Lys-19 and Lys-49 of beta-catenin regulate its
levels and function in T cell factor transcriptional activation and
neoplastic transformation. J Biol Chem. 281:26181–26187.
2006.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Sauteur L, Krudewig A, Herwig L,
Ehrenfeuchter N, Lenard A, Affolter M and Belting HG:
Cdh5/VE-cadherin promotes endothelial cell interface elongation via
cortical actin polymerization during angiogenic sprouting. Cell
Rep. 9:504–513. 2014.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Dejana E and Vestweber D: The role of
VE-cadherin in vascular morphogenesis and permeability control.
Prog Mol Biol Transl Sci. 116:119–144. 2013.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Huber AH and Weis WI: The structure of the
beta-catenin/E-cadherin complex and the molecular basis of diverse
ligand recognition by beta-catenin. Cell. 105:391–402.
2001.PubMed/NCBI View Article : Google Scholar
|
|
76
|
D'Alessandro M, Hnia K, Gache V, Koch C,
Gavriilidis C, Rodriguez D, Nicot AS, Romero NB, Schwab Y, Gomes E,
et al: Amphiphysin 2 orchestrates nucleus positioning and shape by
linking the nuclear envelope to the actin and microtubule
cytoskeleton. Dev Cell. 35:186–198. 2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Coles CH and Bradke F: Coordinating
neuronal actin-microtubule dynamics. Curr Biol. 25:R677–R691.
2015.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Hubbert C, Guardiola A, Shao R, Kawaguchi
Y, Ito A, Nixon A, Yoshida M, Wang XF and Yao TP: HDAC6 is a
microtubule-associated deacetylase. Nature. 417:455–458.
2002.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Matsuyama A, Shimazu T, Sumida Y, Saito A,
Yoshimatsu Y, Seigneurin-Berny D, Osada H, Komatsu Y, Nishino N,
Khochbin S, et al: In vivo destabilization of dynamic microtubules
by HDAC6-mediated deacetylation. EMBO J. 21:6820–6831.
2002.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Shivanna M and Srinivas SP: Microtubule
stabilization opposes the (TNF-alpha)-induced loss in the barrier
integrity of corneal endothelium. Exp Eye Res. 89:950–959.
2009.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Bogatcheva NV and Verin AD: The role of
cytoskeleton in the regulation of vascular endothelial barrier
function. Microvasc Res. 76:202–207. 2008.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Iaconelli J, Huang JH, Berkovitch SS,
Chattopadhyay S, Mazitschek R, Schreiber SL, Haggarty SJ and
Karmacharya R: HDAC6 inhibitors modulate Lys49 acetylation and
membrane localization of β-catenin in human iPSC-derived neuronal
cells. ACS Chem Biol. 10:883–890. 2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Matsuda N, Takano Y, Kageyama S,
Hatakeyama N, Shakunaga K, Kitajima I, Yamazaki M and Hattori Y:
Silencing of caspase-8 and caspase-3 by RNA interference prevents
vascular endothelial cell injury in mice with endotoxic shock.
Cardiovasc Res. 76:132–140. 2007.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Sawant DA, Tharakan B, Tobin RP, Reilly J,
Hunter FA, Newell MK, Smythe WR and Childs EW: Microvascular
endothelial cell hyperpermeability induced by endogenous caspase 3
activator staurosporine. J Trauma Acute Care Surg. 74:516–523.
2013.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Lopez-Ramirez MA, Fischer R,
Torres-Badillo CC, Davies HA, Logan K, Pfizenmaier K, Male DK,
Sharrack B and Romero IA: Role of caspases in cytokine-induced
barrier breakdown in human brain endothelial cells. J Immunol.
189:3130–3139. 2012.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zehendner CM, Librizzi L, de Curtis M,
Kuhlmann CR and Luhmann HJ: Caspase-3 contributes to ZO-1 and Cl-5
tight-junction disruption in rapid anoxic neurovascular unit
damage. PLoS One. 6(e16760)2011.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Leyk J, Daly C, Janssen-Bienhold U,
Kennedy BN and Richter-Landsberg C: HDAC6 inhibition by tubastatin
A is protective against oxidative stress in a photoreceptor cell
line and restores visual function in a zebrafish model of inherited
blindness. Cell Death Dis. 8(e3028)2017.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Wang X, Tang X, Zhou Z and Huang Q:
Histone deacetylase 6 inhibitor enhances resistance to
Mycobacterium tuberculosis infection through innate and adaptive
immunity in mice. Pathog Dis. 76(76)2018.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Wang H, Ling L, Ai L and Bai L: HDAC6
inhibition induces the failure of mouse early embryonic
development. J Cell Physiol. 234:8752–8759. 2019.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Choi YJ, Kang MH, Hong K and Kim JH:
Tubastatin A inhibits HDAC and Sirtuin activity rather than being a
HDAC6-specific inhibitor in mouse oocytes. Aging (Albany NY).
11:1759–1777. 2019.PubMed/NCBI View Article : Google Scholar
|