|
1
|
Compston A and Confavreux C: The
distribution of multiple sclerosis. In: McAlPine's multiPle
Sclerosis. 4th edition. Pioli S (ed). Churchill
Livingstone/Elsevier, Philadelphia, pp69-180, 2006.
|
|
2
|
Bellavista E, Santoro A, Galimberti D,
Comi C, Luciani F and Mishto M: Current understanding on the role
of standard and immunoproteasomes in inflammatory/immunological
pathways of multiple sclerosis. Autoimmune Dis.
2014(739705)2014.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Miller AE: Multiple sclerosis: Where will
we be in 2020? Mt Sinai J Med. 78:268–279. 2011.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Noseworthy JH, Lucchinetti C, Rodriguez M
and Weinshenker BG: Multiple sclerosis. N Engl J Med. 343:938–952.
2000.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Song GG, Choi SJ, Ji JD and Lee YH:
Genome-wide pathway analysis of a genome-wide association study on
multiple sclerosis. Mol Biol Rep. 40:2557–2564. 2013.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Nicoletti F, Patti F, Cocuzza C, Zaccone
P, Nicoletti A, Di Marco R and Reggio A: Elevated serum levels of
interleukin-12 in chronic progressive multiple sclerosis. J
Neuroimmunol. 70:87–90. 1996.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Nicoletti F, Di Marco R, Mangano K, Patti
F, Reggio E, Nicoletti A, Bendtzen K and Reggio A: Increased serum
levels of interleukin-18 in patients with multiple sclerosis.
Neurology. 57:342–244. 2001.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Cavalli E, Mazzon E, Basile MS, Mangano K,
Di Marco R, Bramanti P, Nicoletti F, Fagone P and Petralia MC:
Upregulated expression of macrophage migration inhibitory factor,
its analogue D-dopachrome tautomerase, and the CD44 receptor in
peripheral CD4 T cells from clinically isolated syndrome patients
with rapid conversion to clinical defined multiple sclerosis.
Medicina (Kaunas). 55(667)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Fagone P, Mazzon E, Cavalli E, Bramanti A,
Petralia MC, Mangano K, Al-Abed Y, Bramati P and Nicoletti F:
Contribution of the macrophage migration inhibitory factor
superfamily of cytokines in the pathogenesis of preclinical and
human multiple sclerosis: In silico and in vivo evidences. J
Neuroimmunol. 322:46–56. 2018.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Govindarajan V, de Rivero Vaccari JP and
Keane RW: Role of inflammasomes in multiple sclerosis and their
potential as therapeutic targets. J Neuroinflammation.
17(260)2020.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Cavalli E, Mazzon E, Basile MS, Mammana S,
Pennisi M, Fagone P, Kalfin R, Martinovic V, Ivanovic J, Andabaka
M, et al: In silico and in vivo analysis of IL37 in multiple
sclerosis reveals its probable homeostatic role on the clinical
activity, disability, and treatment with fingolimod. Molecules.
25(20)2019.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Nicoletti F, Patti F, DiMarco R, Zaccone
P, Nicoletti A, Meroni P and Reggio A: Circulating serum levels of
IL-1ra in patients with relapsing remitting multiple sclerosis are
normal during remission phases but significantly increased either
during exacerbations or in response to IFN-beta treatment.
Cytokine. 8:395–400. 1996.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Dujmovic I, Mangano K, Pekmezovic T,
Quattrocchi C, Mesaros S, Stojsavljevic N, Nicoletti F and Drulovic
J: The analysis of IL-1 beta and its naturally occurring inhibitors
in multiple sclerosis: The elevation of IL-1 receptor antagonist
and IL-1 receptor type II after steroid therapy. J Neuroimmunol.
207:101–106. 2009.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fagone P, Patti F, Mangano K, Mammana S,
Coco M, Touil-Boukoffa C, Chikovani T, Di Marco R and Nicoletti F:
Heme oxygenase-1 expression in peripheral blood mononuclear cells
correlates with disease activity in multiple sclerosis. J
Neuroimmunol. 261:82–86. 2013.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Australia and New Zealand Multiple
Sclerosis Genetics Consortium (ANZgene) Genome-wide association
study identifies new multiple sclerosis susceptibility loci on
chromosomes 12 and 20. Nat Genet. 41:824–828. 2009.PubMed/NCBI View Article : Google Scholar
|
|
16
|
International Multiple Sclerosis Genetics
Conssortium (IMSGC). IL12A, MPHOSPH9/CDK2AP1 and RGS1 are novel
multiple sclerosis susceptibility loci. Genes Immun. 11:397–405.
2010.PubMed/NCBI View Article : Google Scholar
|
|
17
|
International Multiple Sclerosis Genetics
Consortium. Hafler DA, Compston A, Sawcer S, Lander ES, Daly MJ, de
Jager PL, de Bakker PI, Gabriel SB, Mirel DB, et al: Risk allels
for multiple sclerosis identified by a genome wide study. N Engl J
Med. 357:851–862. 2007.PubMed/NCBI View Article : Google Scholar
|
|
18
|
De Jager PL, Jia X, Wang J, de Bakker PI,
Ottoboni L, Aggarwal NT, Piccio L, Raychaudhuri S, Tran D, Aubin C,
et al: Meta-analysis of genome scans and replication identify CD6,
IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci.
Nat Genet. 41:776–782. 2009.PubMed/NCBI View
Article : Google Scholar
|
|
19
|
Kofler DM, Severson CA, Mousissian N, De
Jager PL and Hafler DA: The CD6 multiple sclerosis susceptibility
allele is associated with alterations in CD4+ T cell
proliferation. J Immunol. 187:3286–3291. 2011.PubMed/NCBI View Article : Google Scholar
|
|
20
|
International Multiple Sclerosis Genetics
Consortium; Wellcome Trust Case Control Consortium 2. Sawcer S,
Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L,
Dilthey A, Su Z, et al: Genetic risk and a primary role for
cell-mediated immune mechanisms in multiple sclerosis. Nature.
476:214–219. 2011.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Zhang K, Chang S, Cui S, Guo L, Zhang L
and Wang J: ICSNPathway: Identify candidate causal SNPs and
pathways from genome-wide association study by one analytical
framework. Nucleic Acids Res. 39:W437–W443. 2011.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Fissolo N, Kraus M, Reich M, Ayturan M,
Overkleeft H, Driessen C and Weissert R: Dual inhibition of
proteasomal and lysosomal proteolysis ameliorates autoimmune
central nervous system inflammation. Eur J Immunol. 38:2401–2411.
2008.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Mayo I, Arribas J, Villoslada P, Alvarez
DoForno R, Rodríguez-Vilariño S, Montalban X, De Sagarra MR and
Castaño JG: The proteasome is a major autoantigen in multiple
sclerosis. Brain. 125:2658–2667. 2002.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Zheng J and Bizzozero OA: Decreased
activity of the 20S proteasome in the brain white matter and gray
matter of patients with multiple sclerosis. J Neurochem.
117:143–153. 2011.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Minagar A, Ma W, Zhang X, Wang X, Zhang K,
Alexander JS, Gonzalez-Toledo E and Albitar M: Plasma
ubiquitin-proteasome system profile in patients with multiple
sclerosis: Correlation with clinical features, neuroimaging, and
treatment with interferon-beta-1b. Neurol Res. 34:611–618.
2012.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Pardo G and Jones DE: The sequence of
disease-modifying therapies in relapsing multiple sclerosis: Safety
and immunologic considerations. J Neurol. 264:2351–2374.
2017.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Nicoletti F, Di Marco R, Patti F, Reggio
E, Nicoletti A, Zaccone P, Stivala F, Meroni PL and Reggio A: Blood
levels of transforming growth factor-beta 1 (TGF-beta1) are
elevated in both relapsing remitting and chronic progressive
multiple sclerosis (MS) patients and are further augmented by
treatment with interferon-beta 1b (IFN-beta1b). Clin Exp Immunol.
113:96–99. 1998.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Patti F, Cataldi ML, Nicoletti F, Reggio
E, Nicoletti A and Reggio A: Combination of cyclophosphamide and
interferon-beta halts progression in patients with rapidly
transitional multiple sclerosis. J Neurol Neurosurg Psychiatry.
71:404–407. 2001.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Fagone P, Mazzon E, Mammana S, Di Marco R,
Spinasanta F, Basile MS, Petralia MC, Bramanti P, Nicoletti F and
Mangano K: Identification of CD4+ T cell biomarkers for
predicting the response of patients with relapsing-remitting
multiple sclerosis to natalizumab treatment. Mol Med Rep.
20:678–684. 2019.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Derfuss T, Mehling M, Papadopoulou A,
Bar-Or A, Cohen JA and Kappos L: Advances in oral immunomodulating
therapies in relapsing multiple sclerosis. Lancet Neurol.
19:336–347. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kulakova OG, Tsareva EY, Boyko AN, Shchur
SG, Gusev EI, Lvovs D, Favorov AV, Vandenbroeck K and Favorova OO:
Allelic combinations of immune-response genes as possible composite
markers of IFN-β efficacy in multiple sclerosis patients.
Pharmacogenomics. 13:1689–1700. 2012.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Kalnina J, Paramonova N, Sjakste N and
Sjakste T: Study of association between polymorphisms in the PSMB5
(rs11543947) and PSMA3 (rs2348071) genes and multiple sclerosis in
Latvians. Biopolymers Cell. 30:305–309. 2014.
|
|
33
|
Mishto M, Bellavista E, Ligorio C,
Textoris-Taube K, Santoro A, Giordano M, D'Alfonso S, Listì F,
Nacmias B, Cellini E, et al: Immunoproteasome LMP2 60HH variant
alters MBP epitope generation and reduces the risk to develop
multiple sclerosis in Italian female population. PLoS One.
5(e9287)2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Sjakste T, Paramonova N, Rumba-Rozenfelde
I, Trapina I, Sugoka O and Sjakste N: Juvenile idiopathic arthritis
subtype- and sex-specific associations with genetic variants in the
PSMA6/PSMC6/PSMA3 gene cluster. Pediatr Neonatol. 55:393–403.
2014.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Paramonova N, Wu LS, Rumba-Rozenfelde I,
Wang JY, Sjakste N and Sjakste T: Genetic variants in the PSMA6,
PSMC6 and PSMA3 genes associated with childhood asthma in Latvian
and Taiwanese populations. Biopolymers Cell. 30:377–387. 2014.
|
|
36
|
Paramonova N, Kupca S, Rumba-Rozenfelde I,
Sjakste N and Sjakste T: Association between the PSMB5 and PSMC6
genetic variations and children obesity in the Latvian population.
Biopolymers Cell. 30:477–480. 2014.
|
|
37
|
Sjakste T, Kalis M, Poudziunas I, Pirags
V, Lazdins M, Groop L and Sjakste N: Association of microsatellite
polymorphisms of the human 14q13.2 region with type 2 diabetes
mellitus in Latvian and Finnish populations. Ann Hum Genet.
71:772–776. 2007.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Sjakste T, Paramonova N, Osina K, Dokane
K, Sokolovska J and Sjakste N: Genetic variations in the PSMA3,
PSMA6 and PSMC6 genes are associated with type 1 diabetes in
Latvians and with expression level of number of UPS-related and
T1DM-susceptible genes in HapMap individuals. Mol Genet Genomics.
291:891–903. 2016.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Sjakste T, Poudziunas I, Ninio E, Perret
C, Pirags V, Nicaud V, Lazdins M, Evanss A, Morrison C, Cambien F
and Sjakste N: SNPs of PSMA6 gene-investigation of possible
association with myocardial infarction and type 2 diabetes
mellitus. Genetika. 43:553–559. 2007.PubMed/NCBI
|
|
40
|
Wang H, Jiang M, Zhu H, Chen Q, Gong P,
Lin J, Lu J and Qiu J: Quantitative assessment of the influence of
PSMA6 variant (rs1048990) on coronary artery disease risk. Mol Biol
Rep. 40:1035–1041. 2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Sjakste T, Paramonova N, Wu LS, Zemeckiene
Z, Sitkauskiene B, Sakalauskas R, Wang JY and Sjakste N: PSMA6
(rs2277460, rs1048990), PSMC6 (rs2295826, rs2295827) and PSMA3
(rs2348071) genetic diversity in Latvians, lithuanians and
taiwanese. Meta Gene. 2:283–298. 2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Rojas-Villarraga A, Amaya-Amaya J,
Rodriguez-Rodriguez A, Mantilla RD and Anaya JM: Introducing
polyautoimmunity: Secondary autoimmune diseases no longer exist.
Autoimmune Dis. 2012(254319)2012.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Holm K, Melum E, Franke A and Karlsen TH:
SNPexp-A web tool for calculating and visualizing correlation
between HapMap genotypes and gene expression levels. BMC
Bioinformatics. 11(600)2010.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Polman CH, Reingold SC, Banwell B, Clanet
M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M,
Kappos L, et al: Diagnostic criteria for multiple sclerosis: 2010
Revisions to the McDonald criteria. Ann Neurol. 69:292–302.
2011.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Stangel M, Penner IK, Kallmann BA, Lukas C
and Kieseier BC: Towards the implementation of ‘no evidence of
disease activity’ in multiple sclerosis treatment: The multiple
sclerosis decision model. Ther Adv Neurol Disord. 8:3–13.
2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Lewis CM: Genetic association studies:
Design, analysis and interpretation. Brief Bioinform. 3:146–153.
2002.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Alsmadi O, Muiya P, Khalak H, Al-Saud H,
Meyer BF, Al-Mohanna F, Alshahid M and Dzimiri N: Haplotypes
encompassing the KIAA0391 and PSMA6 gene cluster confer a genetic
link for myocardial infarction and coronary artery disease. Ann Hum
Genet. 73:475–483. 2009.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Andreassen OA, Harbo HF, Wang Y, Thompson
WK, Schork AJ, Mattingsdal M, Zuber V, Bettella F, Ripke S, Kelsoe
JR, et al: Genetic pleiotropy between multiple sclerosis and
schizophrenia but not bipolar disorder: Differential involvement of
immune-related gene loci. Mol Psychiatry. 20:207–214.
2015.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Lee S, Xu L, Shin Y, Gardner L, Hartzes A,
Dohan FC, Raine C, Homayouni R and Levin MC: A potential link
between autoimmunity and neurodegeneration in immune-mediated
neurological disease. J Neuroimmunol. 235:56–69. 2011.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Thompson SD, Barnes MG, Griffin TA, Grom
AA and Glass DN: Heterogeneity in juvenile idiopathic arthritis:
Impact of molecular profiling based on DNA polymorphism and gene
expression patterns. Arthritis Rheum. 62:2611–2615. 2010.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Sivakumaran S, Agakov F, Theodoratou E,
Prendergast JG, Zgaga L, Manolio T, Rudan I, McKeigue P, Wilson JF
and Campbell H: Abundant pleiotropy in human complex diseases and
traits. Am J Hum Genet. 89:607–618. 2011.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Hallstrand TS, Fischer ME, Wurfel MM,
Afari N, Buchwald D and Goldberg J: Genetic pleiotropy between
asthma and obesity in a community-based sample of twins. J Allergy
Clin Immunol. 116:1235–1241. 2005.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Murphy A, Tantisira KG, Soto-Quirós ME,
Avila L, Klanderman BJ, Lake S, Weiss ST and Celedón JC: PRKCA: A
positional candidate gene for body mass index and asthma. Am J Hum
Genet. 85:87–96. 2009.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Lee SH, Lee EB, Shin ES, Lee JE, Cho SH,
Min KU and Park HW: The interaction between allelic variants of
CD86 and CD40LG: A common risk factor of allergic asthma and
rheumatoid arthritis. Allergy Asthma Immunol Res. 6:137–141.
2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ramírez-Bello J, Jiménez-Morales S,
Espinosa-Rosales F, Gómez-Vera J, Gutiérrez A, Velázquez Cruz R,
Baca V and Orozco L: Juvenile rheumatoid arthritis and asthma, but
not childhood-onset systemic lupus erythematosus are associated
with FCRL3 polymorphisms in Mexicans. Mol Immunol. 53:374–378.
2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Johnson DA, Amirahmadi S, Ward C, Fabry Z
and Johnson JA: The absence of the pro-antioxidant transcription
factor Nrf2 exacerbates experimental autoimmune encephalomyelitis.
Toxicol Sci. 114:237–246. 2010.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Bekenstein U and Soreq H: Heterogeneous
nuclear ribonucleoprotein A1 in health and neurodegenerative
disease: From structural insights to post-transcriptional
regulatory roles. Mol Cell Neurosci. 56:436–446. 2013.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Leibowitz SM and Yan J: NF-κB pathways in
the pathogenesis of multiple sclerosis and the therapeutic
implications. Front Mol Neurosci. 9(84)2016.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Yue Y, Stone S and Lin W: Role of nuclear
factor κB in multiple sclerosis and experimental autoimmune
encephalomyelitis. Neural Regen Res. 13:1507–1515. 2018.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Wu ZH and Shi Y: When ubiquitin meets
NF-κB: A trove for anti-cancer drug development. Curr Pharm Des.
19:3263–3275. 2013.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Fedorova OA, Moiseeva TN, Nikiforov AA,
Tsimokha AS, Livinskaya VA, Hodson M, Bottrill A, Evteeva IN,
Ermolayeva JB, Kuznetzova IM, et al: Proteomic analysis of the 20S
proteasome (PSMA3)-interacting proteins reveals a functional link
between the proteasome and mRNA metabolism. Biochem Biophys Res
Commun. 416:258–265. 2011.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Wosik K, Antel J, Kuhlmann T, Brück W,
Massie B and Nalbantoglu J: Oligodendrocyte injury in multiple
sclerosis: A role for p53. J Neurochem. 85:635–644. 2003.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Dozmorov M, Wu W, Chakrabarty K, Booth JL,
Hurst RE, Coggeshall KM and Metcalf JP: Gene expression profiling
of human alveolar macrophages infected by B. anthracis spores
demonstrates TNF-alpha and NF-kappab are key components of the
innate immune response to the pathogen. BMC Infect Dis.
9(152)2009.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Gill GN: Decoding the LIM development
code. Trans Am Clin Climatol Assoc. 114:179–189. 2003.PubMed/NCBI
|
|
65
|
Phillips K and Luisi B: The virtuoso of
versatility: POU proteins that flex to fit. J Mol Biol.
302:1023–1039. 2000.PubMed/NCBI View Article : Google Scholar
|
|
66
|
She H and Mao Z: Regulation of myocyte
enhancer factor-2 transcription factors by neurotoxins.
Neurotoxicology. 32:563–566. 2011.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Uzumcu A, Karaman B, Toksoy G, Uyguner ZO,
Candan S, Eris H, Tatli B, Geckinli B, Yuksel A, Kayserili H and
Basaran S: Molecular genetic screening of MBS1 locus on chromosome
13 for microdeletions and exclusion of FGF9, GSH1 and CDX2 as
causative genes in patients with Moebius syndrome. Eur J Med Genet.
52:315–320. 2009.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Ho B, Olson G, Figel S, Gelman I, Cance WG
and Golubovskaya VM: Nanog increases focal adhesion kinase (FAK)
promoter activity and expression and directly binds to FAK protein
to be phosphorylated. J Biol Chem. 287:18656–18673. 2012.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Ozaki K, Sato H, Iida A, Mizuno H,
Nakamura T, Miyamoto Y, Takahashi A, Tsunoda T, Ikegawa S, Kamatani
N, et al: A functional SNP in PSMA6 confers risk of myocardial
infarction in the Japanese population. Nat Genet. 38:921–925.
2006.PubMed/NCBI View
Article : Google Scholar
|
|
70
|
Caputi FF, Carboni L, Mazza D, Candeletti
S and Romualdi P: Cocaine and ethanol target 26S proteasome
activity and gene expression in neuroblastoma cells. Drug Alcohol
Depend. 161:265–275. 2016.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Bedford L, Lowe J, Dick LR, Mayer RJ and
Brownell JE: Ubiquitin-like protein conjugation and the
ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov.
10:29–46. 2011.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Torkildsen Ø, Myhr KM and Bø L:
Disease-modifying treatments for multiple sclerosis-a review of
approved medications. Eur J Neurol. 23 (Suppl 1):S18–S27.
2016.PubMed/NCBI View Article : Google Scholar
|