
The role of miRNA, lncRNA and circRNA in the development of intervertebral disk degeneration (Review)
- Authors:
- Jian Jiang
- Yuefeng Sun
- Gaoran Xu
- Hong Wang
- Ling Wang
-
Affiliations: Department of Minimally Invasive Spine Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510000, P.R. China, Department of Spine Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Department of General Surgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China, Department of Oncology Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China - Published online on: March 26, 2021 https://doi.org/10.3892/etm.2021.9987
- Article Number: 555
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
Maher C, Underwood M and Buchbinder R: Non-specific low back pain. Lancet. 389:736–747. 2017.PubMed/NCBI View Article : Google Scholar | |
Dudli S, Fields AJ, Samartzis D, Karppinen J and Lotz JC: Pathobiology of modic changes. Eur Spine J. 25:3723–3734. 2016.PubMed/NCBI View Article : Google Scholar | |
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, et al: Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: A systematic analysis for the global burden of disease study 2010. Lancet. 380:2163–2196. 2012.PubMed/NCBI View Article : Google Scholar | |
Hartvigsen J, Hancock MJ, Kongsted A, Louw Q, Ferreira ML, Genevay S, Hoy D, Karppinen J, Pransky G, Sieper J, et al: What low back pain is and why we need to pay attention. Lancet. 391:2356–2367. 2018.PubMed/NCBI View Article : Google Scholar | |
Yelin E, Weinstein S and King T: The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum. 46:259–260. 2016.PubMed/NCBI View Article : Google Scholar | |
Foster NE, Anema JR, Cherkin D, Chou R, Cohen SP, Gross DP, Ferreira PH, Fritz JM, Koes BW, Peul W, et al: Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet. 391:2368–2383. 2018.PubMed/NCBI View Article : Google Scholar | |
Risbud MV and Shapiro IM: Role of cytokines in intervertebral disc degeneration: Pain and disc content. Nat Rev Rheumatol. 10:44–56. 2014.PubMed/NCBI View Article : Google Scholar | |
Adams MA and Roughley PJ: What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976). 31:2151–2161. 2006.PubMed/NCBI View Article : Google Scholar | |
Vo NV, Hartman RA, Patil PR, Risbud MV, Kletsas D, Iatridis JC, Hoyland JA, Le Maitre CL, Sowa GA and Kang JD: Molecular mechanisms of biological aging in intervertebral discs. J Orthop Res. 34:1289–1306. 2016.PubMed/NCBI View Article : Google Scholar | |
Bian Q, Jain A, Xu X, Kebaish K, Crane JL, Zhang Z, Wan M, Ma L, Riley LH, Sponseller PD, et al: Excessive activation of TGFβ by spinal instability causes vertebral endplate sclerosis. Sci Rep. 6(27093)2016.PubMed/NCBI View Article : Google Scholar | |
Huang YC, Urban JP and Luk KD: Intervertebral disc regeneration: Do nutrients lead the way? Nat Rev Rheumatol. 10:561–566. 2014.PubMed/NCBI View Article : Google Scholar | |
Liao Z, Wu X, Song Y, Luo R, Yin H, Zhan S, Li S, Wang K, Zhang Y and Yang C: Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. J Cell Mol Med. 23:5737–5750. 2019.PubMed/NCBI View Article : Google Scholar | |
Liu X, Zhuang J, Wang D, Lv L, Zhu F, Yao A and Xu T: Glycyrrhizin suppresses inflammation and cell apoptosis by inhibition of HMGB1 via p38/p-JUK signaling pathway in attenuating intervertebral disc degeneration. Am J Transl Res. 11:5105–5113. 2019.PubMed/NCBI | |
Grant MP, Epure LM, Bokhari R, Roughley P, Antoniou J and Mwale F: Human cartilaginous endplate degeneration is induced by calcium and the extracellular calcium-sensing receptor in the intervertebral disc. Eur Cell Mater. 32:137–151. 2016.PubMed/NCBI View Article : Google Scholar | |
Yao Y, Deng Q, Song W, Zhang H, Li Y, Yang Y, Fan X, Liu M, Shang J, Sun C, et al: MIF plays a key role in regulating tissue-specific chondro-osteogenic differentiation fate of human cartilage endplate stem cells under hypoxia. Stem Cell Reports. 7:249–262. 2016.PubMed/NCBI View Article : Google Scholar | |
Tang Z, Hu B, Zang F, Wang J, Zhang X and Chen H: Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis. 10(510)2019.PubMed/NCBI View Article : Google Scholar | |
Wang G, Huang K, Dong Y, Chen S, Zhang J, Wang J, Xie Z, Lin X, Fang X and Fan S: Lycorine suppresses endplate-chondrocyte degeneration and prevents intervertebral disc degeneration by inhibiting NF-κB signalling pathway. Cell Physiol Biochem. 45:1252–1269. 2018.PubMed/NCBI View Article : Google Scholar | |
Matsui M and Corey DR: Non-coding RNAs as drug targets. Nat Rev Drug Discov. 16:167–179. 2017.PubMed/NCBI View Article : Google Scholar | |
Ning B, Yu D and Yu AM: Advances and challenges in studying noncoding RNA regulation of drug metabolism and development of RNA therapeutics. Biochem Pharmacol. 169(113638)2019.PubMed/NCBI View Article : Google Scholar | |
Wang WT, Han C, Sun YM, Chen TQ and Chen YQ: Noncoding RNAs in cancer therapy resistance and targeted drug development. J Hematol Oncol. 12(55)2019.PubMed/NCBI View Article : Google Scholar | |
Guttman M and Rinn JL: Modular regulatory principles of large non-coding RNAs. Nature. 482:339–346. 2012.PubMed/NCBI View Article : Google Scholar | |
Sato-Kuwabara Y, Melo SA, Soares FA and Calin GA: The fusion of two worlds: Non-coding RNAs and extracellular vesicles-diagnostic and therapeutic implications (Review). Int J Oncol. 46:17–27. 2015.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Chen L, Grad S, Alini M, Pan H, Yang D, Zhen W, Li Z, Huang S and Peng S: The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration. J Tissue Eng Regen Med. 11:3481–3487. 2017.PubMed/NCBI View Article : Google Scholar | |
St Laurent G, Wahlestedt C and Kapranov P: The Landscape of long noncoding RNA classification. Trends Genet. 31:239–251. 2015.PubMed/NCBI View Article : Google Scholar | |
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhou L, Dong S, Deng Y, Yang P, Zheng Y, Yao L, Zhang M, Yang S, Wu Y, Zhai Z, et al: GOLGA7 rs11337, a polymorphism at the MicroRNA binding site, is associated with glioma prognosis. Mol Ther Nucleic Acids. 18:56–65. 2019.PubMed/NCBI View Article : Google Scholar | |
Bhan A, Soleimani M and Mandal SS: Long noncoding RNA and cancer: A new paradigm. Cancer Res. 77:3965–3981. 2017.PubMed/NCBI View Article : Google Scholar | |
Wei Y, Chen X, Liang C, Ling Y, Yang X, Ye X, Zhang H, Yang P, Cui X, Ren Y, et al: A noncoding regulatory RNAs network driven by Circ-CDYL acts specifically in the early stages hepatocellular carcinoma. Hepatology. 71:130–147. 2020.PubMed/NCBI View Article : Google Scholar | |
Shang Q, Yang Z, Jia R and Ge S: The novel roles of circRNAs in human cancer. Mol Cancer. 18(6)2019.PubMed/NCBI View Article : Google Scholar | |
Wu K, Liao X, Gong Y, He J, Zhou JK, Tan S, Pu W, Huang C, Wei YQ and Peng Y: Circular RNA F-circSR derived from SLC34A2-ROS1 fusion gene promotes cell migration in non-small cell lung cancer. Mol Cancer. 18(98)2019.PubMed/NCBI View Article : Google Scholar | |
Wu Y, Xie Z, Chen J, Chen J, Ni W, Ma Y, Huang K, Wang G, Wang J, Ma J, et al: Circular RNA circTADA2A promotes osteosarcoma progression and metastasis by sponging miR-203a-3p and regulating CREB3 expression. Mol Cancer. 18(73)2019.PubMed/NCBI View Article : Google Scholar | |
Lange S, Banerjee I, Carrion K, Serrano R, Habich L, Kameny R, Lengenfelder L, Dalton N, Meili R, Börgeson E, et al: miR-486 is modulated by stretch and increases ventricular growth. JCI Insight. 4(e125507)2019.PubMed/NCBI View Article : Google Scholar | |
Calderon-Dominguez M, Belmonte T, Quezada-Feijoo M, Ramos-Sánchez M, Fernández-Armenta J, Pérez-Navarro A, Cesar S, Peña-Peña L, Vea À, Llorente-Cortés V, et al: Emerging role of microRNAs in dilated cardiomyopathy: Evidence regarding etiology. Transl Res. 215:86–101. 2020.PubMed/NCBI View Article : Google Scholar | |
Cai B, Zhang Y, Zhao Y, Wang J, Li T, Zhang Y, Jiang Y, Jin X, Xue G, Li P, et al: Long noncoding RNA-DACH1 (Dachshund Homolog 1) regulates cardiac function by inhibiting SERCA2a (Sarcoplasmic Reticulum Calcium ATPase 2a). Hypertension. 74:833–842. 2019.PubMed/NCBI View Article : Google Scholar | |
Huang S, Li X, Zheng H, Si X, Li B, Wei G, Li C, Chen Y, Chen Y, Liao W, et al: Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice. Circulation. 139:2857–2876. 2019.PubMed/NCBI View Article : Google Scholar | |
Hasvik E, Schjølberg T, Jacobsen DP, Haugen AJ, Grøvle L, Schistad EI and Gjerstad J: Up-regulation of circulating microRNA-17 is associated with lumbar radicular pain following disc herniation. Arthritis Res Ther. 21(186)2019.PubMed/NCBI View Article : Google Scholar | |
Wang C, Zhang ZZ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, Chen WK, Yan YG and Wang WJ: MiR-210 facilitates ECM degradation by suppressing autophagy via silencing of ATG7 in human degenerated NP cells. Biomed Pharmacother. 93:470–479. 2017.PubMed/NCBI View Article : Google Scholar | |
Shao T, Hu Y, Tang W, Shen H, Yu Z and Gu J: The long noncoding RNA HOTAIR serves as a microRNA-34a-5p sponge to reduce nucleus pulposus cell apoptosis via a NOTCH1-mediated mechanism. Gene. 715(144029)2019.PubMed/NCBI View Article : Google Scholar | |
Tan H, Zhao L, Song R, Liu Y and Wang L: The long noncoding RNA SNHG1 promotes nucleus pulposus cell proliferation through regulating miR-326 and CCND1. Am J Physiol Cell Physiol. 315:C21–C27. 2018.PubMed/NCBI View Article : Google Scholar | |
Cheng X, Zhang L, Zhang K, Zhang G, Hu Y, Sun X, Zhao C, Li H, Li YM and Zhao J: Circular RNA VMA21 protects against intervertebral disc degeneration through targeting miR-200c and X linked inhibitor-of-apoptosis protein. Ann Rheum Dis. 77:770–779. 2018.PubMed/NCBI View Article : Google Scholar | |
Song J, Wang HL, Song KH, Ding ZW, Wang HL, Ma XS, Lu FZ, Xia XL, Wang YW, Fei-Zou and Jiang JY: CircularRNA_104670 plays a critical role in intervertebral disc degeneration by functioning as a ceRNA. Exp Mol Med. 50(94)2018.PubMed/NCBI View Article : Google Scholar | |
Lu TX and Rothenberg ME: MicroRNA. J Allergy Clin Immunol. 141:1202–1207. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang B, Wang D, Yan T and Yuan H: miR-138-5p promotes TNF-α-induced apoptosis in human intervertebral disc degeneration by targeting SIRT1 through PTEN/PI3K/Akt signaling. Exp Cell Res. 345:199–205. 2016.PubMed/NCBI View Article : Google Scholar | |
Hayes J, Peruzzi PP and Lawler S: MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med. 20:460–469. 2014.PubMed/NCBI View Article : Google Scholar | |
Wang C, Wang WJ, Yan YG, Xiang YX, Zhang J, Tang ZH and Jiang ZS: MicroRNAs: New players in intervertebral disc degeneration. Clin Chim Acta. 450:333–341. 2015.PubMed/NCBI View Article : Google Scholar | |
Mo YY: MicroRNA regulatory networks and human disease. Cell Mol Life Sci. 69:3529–3531. 2012.PubMed/NCBI View Article : Google Scholar | |
Ivey KN and Srivastava D: microRNAs as developmental regulators. Cold Spring Harb Perspect Biol. 7(a008144)2015.PubMed/NCBI View Article : Google Scholar | |
Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009.PubMed/NCBI View Article : Google Scholar | |
Liu B, Li J and Cairns MJ: Identifying miRNAs, targets and functions. Brief Bioinform. 15:1–19. 2014.PubMed/NCBI View Article : Google Scholar | |
Chi Y, Wang D, Wang J, Yu W and Yang J: Long non-coding RNA in the pathogenesis of cancers. Cells. 8(1015)2019.PubMed/NCBI View Article : Google Scholar | |
Robinson EK, Covarrubias S and Carpenter S: The how and why of lncRNA function: An innate immune perspective. Biochim Biophys Acta Gene Regul Mech. 1863(194419)2019.PubMed/NCBI View Article : Google Scholar | |
Ji E, Kim C, Kim W and Lee EK: Role of long non-coding RNAs in metabolic control. Biochim Biophys Acta Gene Regul Mech. 1863(194348)2020.PubMed/NCBI View Article : Google Scholar | |
Chen WK, Yu XH, Yang W, Wang C, He WS, Yan YG, Zhang J and Wang WJ: lncRNAs: Novel players in intervertebral disc degeneration and osteoarthritis. Cell Prolif. 50(e12313)2017.PubMed/NCBI View Article : Google Scholar | |
Ulitsky I and Bartel DP: lincRNAs: Genomics, evolution, and mechanisms. Cell. 154:26–46. 2013.PubMed/NCBI View Article : Google Scholar | |
Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W, Merkurjev D, Ohgi KA, Meng D, Zhang J, et al: lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature. 500:598–602. 2013.PubMed/NCBI View Article : Google Scholar | |
Santer L, Bär C and Thum T: Circular RNAs: A novel class of functional RNA molecules with a therapeutic perspective. Mol Ther. 27:1350–1363. 2019.PubMed/NCBI View Article : Google Scholar | |
Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A and Mayeda A: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34(e63)2006.PubMed/NCBI View Article : Google Scholar | |
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014.PubMed/NCBI View Article : Google Scholar | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019.PubMed/NCBI View Article : Google Scholar | |
Li X, Yang L and Chen LL: The biogenesis, functions, and challenges of circular RNAs. Mol Cell. 71:428–442. 2018.PubMed/NCBI View Article : Google Scholar | |
Szabo L and Salzman J: Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 17:679–692. 2016.PubMed/NCBI View Article : Google Scholar | |
Li W, Wang P, Zhang Z, Wang W, Liu Y and Qi Q: miR-184 regulates proliferation in nucleus pulposus cells by targeting GAS1. World Neurosurg. 97:710–715.e1. 2017.PubMed/NCBI View Article : Google Scholar | |
Che YJ, Guo JB, Liang T, Chen X, Zhang W, Yang HL and Luo ZP: Assessment of changes in the micro-nano environment of intervertebral disc degeneration based on Pfirrmann grade. Spine J. 19:1242–1253. 2019.PubMed/NCBI View Article : Google Scholar | |
Yang SD, Yang DL, Sun YP, Wang BL, Ma L, Feng SQ and Ding WY: 17β-estradiol protects against apoptosis induced by interleukin-1β in rat nucleus pulposus cells by down-regulating MMP-3 and MMP-13. Apoptosis. 20:348–357. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang T, Li P, Ma X, Tian P, Han C, Zang J, Kong J and Yan H: MicroRNA-494 inhibition protects nucleus pulposus cells from TNF-α-induced apoptosis by targeting JunD. Biochimie. 115:1–7. 2015.PubMed/NCBI View Article : Google Scholar | |
Wang WJ, Yang W, Ouyang ZH, Xue JB, Li XL, Zhang J, He WS, Chen WK, Yan YG and Wang C: MiR-21 promotes ECM degradation through inhibiting autophagy via the PTEN/akt/mTOR signaling pathway in human degenerated NP cells. Biomed Pharmacother. 99:725–734. 2018.PubMed/NCBI View Article : Google Scholar | |
Zhao B, Yu Q, Li H, Guo X and He X: Characterization of microRNA expression profiles in patients with intervertebral disc degeneration. Int J Mol Med. 33:43–50. 2014.PubMed/NCBI View Article : Google Scholar | |
Ji ML, Zhang XJ, Shi PL, Lu J, Wang SZ, Chang Q, Chen H and Wang C: Downregulation of microRNA-193a-3p is involved in invertebral disc degeneration by targeting MMP14. J Mol Med (Berl). 94:457–468. 2016.PubMed/NCBI View Article : Google Scholar | |
Xu YQ, Zhang ZH, Zheng YF and Feng SQ: Dysregulated miR-133a mediates loss of type II collagen by directly targeting matrix metalloproteinase 9 (MMP9) in human intervertebral disc degeneration. Spine (Phila Pa 1976). 41:E717–E724. 2016.PubMed/NCBI View Article : Google Scholar | |
Hua WB, Wu XH, Zhang YK, Song Y, Tu J, Kang L, Zhao KC, Li S, Wang K, Liu W, et al: Dysregulated miR-127-5p contributes to type II collagen degradation by targeting matrix metalloproteinase-13 in human intervertebral disc degeneration. Biochimie. 139:74–80. 2017.PubMed/NCBI View Article : Google Scholar | |
Ji ML, Lu J, Shi PL, Zhang XJ, Wang SZ, Chang Q, Chen H and Wang C: Dysregulated miR-98 contributes to extracellular matrix degradation by targeting IL-6/STAT3 signaling pathway in human intervertebral disc degeneration. J Bone Miner Res. 31:900–909. 2016.PubMed/NCBI View Article : Google Scholar | |
Chen H, Wang J, Hu B, Wu X, Chen Y, Li R and Yuan W: miR-34a promotes Fas-mediated cartilage endplate chondrocyte apoptosis by targeting Bcl-2. Mol Cell Biochem. 406:21–30. 2015.PubMed/NCBI View Article : Google Scholar | |
Liu MH, Sun C, Yao Y, Fan X, Liu H, Cui YH, Bian XW, Huang B and Zhou Y: Matrix stiffness promotes cartilage endplate chondrocyte calcification in disc degeneration via miR-20a targeting ANKH expression. Sci Rep. 6(25401)2016.PubMed/NCBI View Article : Google Scholar | |
Xiao L, Xu S, Xu Y, Liu C, Yang B, Wang J and Xu H: TGF-β/SMAD signaling inhibits intermittent cyclic mechanical tension-induced degeneration of endplate chondrocytes by regulating the miR-455-5p/RUNX2 axis. J Cell Biochem. 119:10415–10425. 2018.PubMed/NCBI View Article : Google Scholar | |
Li Z, Li X, Chen C, Li S, Shen J, Tse G, Chan MTV and Wu WKK: Long non-coding RNAs in nucleus pulposus cell function and intervertebral disc degeneration. Cell Prolif. 51(e12483)2018.PubMed/NCBI View Article : Google Scholar | |
Yu Y, Zhang X, Li Z, Kong L and Huang Y: LncRNA HOTAIR suppresses TNF-α induced apoptosis of nucleus pulposus cells by regulating miR-34a/Bcl-2 axis. Biomed Pharmacother. 107:729–737. 2018.PubMed/NCBI View Article : Google Scholar | |
Li X, Lou Z, Liu J, Li H, Lei Y, Zhao X and Zhang F: Upregulation of the long noncoding RNA lncPolE contributes to intervertebral disc degeneration by negatively regulating DNA polymerase epsilon. Am J Transl Res. 11:2843–2854. 2019.PubMed/NCBI | |
Wang Y, Song Q, Huang X, Chen Z, Zhang F, Wang K, Huang G and Shen H: Long noncoding RNA GAS5 promotes apoptosis in primary nucleus pulposus cells derived from the human intervertebral disc via Bcl-2 downregulation and caspase3 upregulation. Mol Med Rep. 19:2164–2172. 2019.PubMed/NCBI View Article : Google Scholar | |
Yu L, Hao Y, Xu C, Zhu G and Cai Y: LINC00969 promotes the degeneration of intervertebral disk by sponging miR-335-3p and regulating NLRP3 inflammasome activation. IUBMB life. 71:611–618. 2019.PubMed/NCBI View Article : Google Scholar | |
Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X and He Y: Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep. 7(13234)2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, Peng L, Gong X, Zhang X, Sun R and Du J: lncRNA-RMRP promotes nucleus pulposus cell proliferation through regulating miR-206 expression. J Cell Mol Med. 22:5468–5476. 2018.PubMed/NCBI View Article : Google Scholar | |
Wei R, Chen Y, Zhao Z, Gu Q and Wu J: LncRNA FAM83H-AS1 induces nucleus pulposus cell growth via targeting the Notch signaling pathway. J Cell Physiol. 234:22163–22171. 2019.PubMed/NCBI View Article : Google Scholar | |
Ruan Z, Ma H, Li J, Liu H, Jia H and Li F: The long non-coding RNA NEAT1 contributes to extracellular matrix degradation in degenerative human nucleus pulposus cells. Exp Biol Med (Maywood). 243:595–600. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang K, Song Y, Liu W, Wu X, Zhang Y, Li S, Kang L, Tu J, Zhao K, Hua W and Yang C: The noncoding RNA linc-ADAMTS5 cooperates with RREB1 to protect from intervertebral disc degeneration through inhibiting ADAMTS5 expression. Clin Sci (Lond). 131:965–979. 2017.PubMed/NCBI View Article : Google Scholar | |
Chen J, Jia YS, Liu GZ, Sun Q, Zhang F, Ma S and Wang YJ: Role of LncRNA TUG1 in intervertebral disc degeneration and nucleus pulposus cells via regulating Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun. 491:668–674. 2017.PubMed/NCBI View Article : Google Scholar | |
Wang X, Zou M, Li J, Wang B, Zhang Q, Liu F and Lü G: lncRNA H19 targets miR-22 to modulate H2 O2-induced deregulation in nucleus pulposus cell senescence, proliferation, and ECM synthesis through Wnt signaling. J Cell Biochem. 119:4990–5002. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang XB, Wang H, Long HQ, Li DY and Zheng X: LINC00641 regulates autophagy and intervertebral disc degeneration by acting as a competitive endogenous RNA of miR-153-3p under nutrition deprivation stress. J Cell Physiol. 234:7115–7127. 2019.PubMed/NCBI View Article : Google Scholar | |
Sampara P, Banala RR, Vemuri SK, Av GR and Gpv S: Understanding the molecular biology of intervertebral disc degeneration and potential gene therapy strategies for regeneration: A review. Gene Ther. 25:67–82. 2018.PubMed/NCBI View Article : Google Scholar | |
Wang X, Wang B, Zou M, Li J, Lü G, Zhang Q, Liu F and Lu C: CircSEMA4B targets miR-431 modulating IL-1β-induced degradative changes in nucleus pulposus cells in intervertebral disc degeneration via Wnt pathway. Biochim Biophys Acta Mol Basis Dis. 1864:3754–3768. 2018.PubMed/NCBI View Article : Google Scholar | |
Xiao L, Ding B, Xu S, Gao J, Yang B, Wang J and Xu H: circRNA_0058097 promotes tension-induced degeneration of endplate chondrocytes by regulating HDAC4 expression through sponge adsorption of miR-365a-5p. J Cell Biochem. 121:418–429. 2019.PubMed/NCBI View Article : Google Scholar |