|
1
|
Huang K, Yang T, Xu J, Yang L, Zhao J,
Zhang X, Bai C, Kang J, Ran P, Shen H, et al: Prevalence, risk
factors, and management of asthma in China: A national
cross-sectional study. Lancet. 394:407–418. 2019.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Yach D, Hawkes C, Gould CL and Hofman KJ:
The global burden of chronic diseases: Overcoming impediments to
prevention and control. JAMA. 291:2616–2622. 2004.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Heron M, Hoyert DL, Murphy SL, Xu J,
Kochanek KD and Tejada-Vera B: Deaths: Final data for 2006. Natl
Vital Stat Rep. 57:1–134. 2009.PubMed/NCBI
|
|
4
|
Orens JB, Shearon TH, Freudenberger RS,
Conte JV, Bhorade SM and Ardehali A: Thoracic organ transplantation
in the United States, 1995-2004. Am J Transplant. 6 (5 Pt
2):1188–1197. 2006.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Trulock EP, Christie JD, Edwards LB,
Boucek MM, Aurora P, Taylor DO, Dobbels F, Rahmel AO, Keck BM and
Hertz MI: Registry of the International Society for Heart and Lung
Transplantation: Twenty-fourth official adult lung and heart-lung
transplantation report-2007. J Heart Lung Transplant. 26:782–795.
2007.PubMed/NCBI View Article : Google Scholar
|
|
6
|
O'Beirne S, Counihan IP and Keane MP:
Interstitial lung disease and lung transplantation. Semin Respir
Crit Care Med. 31:139–146. 2010.PubMed/NCBI View Article : Google Scholar
|
|
7
|
King TE Jr, Pardo A and Selman M:
Idiopathic pulmonary fibrosis. Lancet. 378:1949–1961.
2011.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Zhao D, Yu Y, Shen Y, Liu Q, Zhao Z,
Sharma R and Reiter RJ: Melatonin synthesis and function:
Evolutionary history in animals and plants. Front Endocrinol
(Lausanne). 10(249)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Back K, Tan DX and Reiter RJ: Melatonin
biosynthesis in plants: Multiple pathways catalyze tryptophan to
melatonin in the cytoplasm or chloroplasts. J Pineal Res.
61:426–437. 2016.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Manchester LC, Coto-Montes A, Boga JA,
Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX and Reiter RJ:
Melatonin: An ancient molecule that makes oxygen metabolically
tolerable. J Pineal Res. 59:403–419. 2015.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Hardeland R: Melatonin, hormone of
darkness and more: Occurrence, control mechanisms, actions and
bioactive metabolites. Cell Mol Life Sci. 65:2001–2018.
2008.PubMed/NCBI View Article : Google Scholar
|
|
12
|
De Luca V, Marineau C and Brisson N:
Molecular cloning and analysis of cDNA encoding a plant tryptophan
decarboxylase: Comparison with animal dopa decarboxylases. Proc
Natl Acad Sci USA. 86:2582–2586. 1989.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Park M, Kang K, Park S and Back K:
Conversion of 5-hydroxytryptophan into serotonin by tryptophan
decarboxylase in plants, Escherichia coli, and yeast. Biosci
Biotechnol Biochem. 72:2456–2458. 2008.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Tan DX, Manchester LC, Esteban-Zubero E,
Zhou Z and Reiter RJ: Melatonin as a potent and inducible
endogenous antioxidant: Synthesis and Metabolism. Molecules.
20:18886–18906. 2015.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Axelrod J and Weissbach H: Enzymatic
O-methylation of N-acetylserotonin to melatonin. Science.
131(1312)1960.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Kang K, Lee K, Park S, Byeon Y and Back K:
Molecular cloning of rice serotonin N-acetyltransferase, the
penultimate gene in plant melatonin biosynthesis. J Pineal Res.
55:7–13. 2013.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Byeon Y, Choi GH, Lee HY and Back K:
Melatonin biosynthesis requires N-acetylserotonin methyltransferase
activity of caffeic acid O-methyltransferase in rice. J Exp Bot.
66:6917–6925. 2015.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Byeon Y, Lee HJ, Lee HY and Back K:
Cloning and functional characterization of the Arabidopsis
N-acetylserotonin O-methyltransferase responsible for melatonin
synthesis. J Pineal Res. 60:65–73. 2016.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Klein DC: Arylalkylamine
N-acetyltransferase: ‘The Timezyme’. J Biol Chem. 282:4233–4237.
2007.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Favero G, Moretti E, Bonomini F, Reiter
RJ, Rodella LF and Rezzani R: Promising antineoplastic actions of
melatonin. Front Pharmacol. 9(1086)2018.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Reiter RJ, Rosales-Corral SA, Tan DX,
Acuna-Castroviejo D, Qin L, Yang SF and Xu K: Melatonin, a full
service anti-cancer agent: Inhibition of initiation, progression
and metastasis. Int J Mol Sci. 18(843)2017.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Sanchez-Barcelo EJ, Rueda N, Mediavilla
MD, Martinez-Cue C and Reiter RJ: Clinical uses of melatonin in
neurological diseases and mental and behavioural disorders. Curr
Med Chem. 24:3851–3878. 2017.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Cipolla-Neto J, Amaral FG, Afeche SC, Tan
DX and Reiter RJ: Melatonin, energy metabolism, and obesity: A
review. J Pineal Res. 56:371–381. 2014.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Favero G, Franceschetti L, Bonomini F,
Rodella LF and Rezzani R: Melatonin as an Anti-Inflammatory agent
modulating inflammasome activation. Int J Endocrinol.
2017(1835195)2017.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Ma N, Zhang J, Reiter RJ and Ma X:
Melatonin mediates mucosal immune cells, microbial metabolism, and
rhythm crosstalk: A therapeutic target to reduce intestinal
inflammation. Med Res Rev. 40:606–632. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Moradkhani F, Moloudizargari M, Fallah M,
Asghari N, Heidari Khoei H and Asghari MH: Immunoregulatory role of
melatonin in cancer. J Cell Physiol. 235:745–757. 2020.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Alghamdi BS: The neuroprotective role of
melatonin in neurological disorders. J Neurosci Res. 96:1136–1149.
2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ji G, Zhou W, Li X, Du J, Li X and Hao H:
Melatonin inhibits proliferation and viability and promotes
apoptosis in colorectal cancer cells via upregulation of the
microRNA-34a/449a cluster. Mol Med Rep. 23(187)2021.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Al-Ghoul WM, Herman MD and Dubocovich ML:
Melatonin receptor subtype expression in human cerebellum.
Neuroreport. 9:4063–4068. 1998.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Klosen P, Lapmanee S, Schuster C,
Guardiola B, Hicks D, Pevet P and Felder-Schmittbuhl MP: MT1 and
MT2 melatonin receptors are expressed in nonoverlapping neuronal
populations. J Pineal Res. 67(e12575)2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Meléndez J, Maldonado V and Ortega A:
Effect of melatonin on beta-tubulin and MAP2 expression in NIE-115
cells. Neurochem Res. 21:653–658. 1996.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Lacoste B, Angeloni D, Dominguez-Lopez S,
Calderoni S, Mauro A, Fraschini F, Descarries L and Gobbi G:
Anatomical and cellular localization of melatonin MT1 and MT2
receptors in the adult rat brain. J Pineal Res. 58:397–417.
2015.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Ng KY, Leong MK, Liang H and Paxinos G:
Melatonin receptors: distribution in mammalian brain and their
respective putative functions. Brain Struct Funct. 222:2921–2939.
2017.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Gerbier R, Ndiaye-Lobry D, Martinez de
Morentin PB, Cecon E, Heisler LK, Delagrange P, Gbahou F and
Jockers R: Pharmacological evidence for transactivation within
melatonin MT2 and serotonin 5-HT2C receptor
heteromers in mouse brain. FASEB J. 35(e21161)2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Nosjean O, Ferro M, Coge F, Beauverger P,
Henlin JM, Lefoulon F, Fauchere JL, Delagrange P, Canet E and
Boutin JA: Identification of the melatonin-binding site MT3 as the
quinone reductase 2. J Biol Chem. 275:31311–31317. 2000.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Boutin JA and Ferry G: Is there sufficient
evidence that the melatonin binding site MT3 Is quinone
reductase 2? J Pharmacol Exp Ther. 368:59–65. 2019.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Hasan ZT, Atrakji DMQYMAA and Mehuaiden
DAK: The effect of melatonin on thrombosis, sepsis and mortality
rate in COVID-19 Patients. Int J Infect Dis. 114:79–84.
2022.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Ziaei A, Davoodian P, Dadvand H, Safa O,
Hassanipour S, Omidi M, Masjedi M, Mahmoudikia F, Rafiee B and
Fathalipour M: Evaluation of the efficacy and safety of Melatonin
in moderately ill patients with COVID-19: A structured summary of a
study protocol for a randomized controlled trial. Trials.
21(882)2020.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Medzhitov R: Origin and physiological
roles of inflammation. Nature. 454:428–435. 2008.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Kuprash DV and Nedospasov SA: Molecular
and cellular mechanisms of inflammation. Biochemistry (Mosc).
81:1237–1239. 2016.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zarrin AA, Bao K, Lupardus P and Vucic D:
Kinase inhibition in autoimmunity and inflammation. Nat Rev Drug
Discov. 20:39–63. 2021.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Wang W and Gao J: Effects of melatonin on
protecting against lung injury (Review). Exp Ther Med.
21(228)2021.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Hardeland R: Melatonin and
inflammation-Story of a double-edged blade. J Pineal Res.
65(e12525)2018.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Mańka S and Majewska E: Immunoregulatory
action of melatonin. The mechanism of action and the effect on
inflammatory cells. Postepy Hig Med Dosw (Online). 70:1059–1067.
2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Hardeland R, Cardinali DP, Brown GM and
Pandi-Perumal SR: Melatonin and brain inflammaging. Prog Neurobiol.
127:–128. 46–63. 2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Steinhilber D, Brungs M, Werz O,
Wiesenberg I, Danielsson C, Kahlen JP, Nayeri S, Schräder M and
Carlberg C: The nuclear receptor for melatonin represses
5-lipoxygenase gene expression in human B lymphocytes. J Biol Chem.
270:7037–7040. 1995.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Garcia-Mauriño S, Gonzalez-Haba MG, Calvo
JR, Goberna R and Guerrero JM: Involvement of nuclear binding sites
for melatonin in the regulation of IL-2 and IL-6 production by
human blood mononuclear cells. J Neuroimmunol. 92:76–84.
1998.PubMed/NCBI View Article : Google Scholar
|
|
48
|
García-Mauriño S, Pozo D, Calvo JR and
Guerrero JM: Correlation between nuclear melatonin receptor
expression and enhanced cytokine production in human lymphocytic
and monocytic cell lines. J Pineal Res. 29:129–137. 2000.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Carrillo-Vico A, García-Mauriño S, Calvo
JR and Guerrero JM: Melatonin counteracts the inhibitory effect of
PGE2 on IL-2 production in human lymphocytes via its mt1 membrane
receptor. FASEB J. 17:755–757. 2003.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Lardone PJ, Carrillo-Vico A, Naranjo MC,
De Felipe B, Vallejo A, Karasek M and Guerrero JM: Melatonin
synthesized by Jurkat human leukemic T cell line is implicated in
IL-2 production. J Cell Physiol. 206:273–279. 2006.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Kuklina EM, Glebezdina NS and Nekrasova
IV: Role of melatonin in the regulation of differentiation of T
cells producing interleukin-17 (Th17). Bull Exp Biol Med.
160:656–658. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Kühlwein E and Irwin M: Melatonin
modulation of lymphocyte proliferation and Th1/Th2 cytokine
expression. J Neuroimmunol. 117:51–57. 2001.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Hardeland R, Reiter RJ, Poeggeler B and
Tan DX: The significance of the metabolism of the neurohormone
melatonin: Antioxidative protection and formation of bioactive
substances. Neurosci Biobehav Rev. 17:347–357. 1993.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Poeggeler B, Reiter RJ, Tan DX, Chen LD
and Manchester LC: Melatonin, hydroxyl radical-mediated oxidative
damage, and aging: A hypothesis. J Pineal Res. 14:151–168.
1993.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Reiter RJ: Functional pleiotropy of the
neurohormone melatonin: Antioxidant protection and neuroendocrine
regulation. Front Neuroendocrinol. 16:383–415. 1995.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Reiter RJ, Tan DX, Manchester LC,
Lopez-Burillo S, Sainz RM and Mayo JC: Melatonin: Detoxification of
oxygen and nitrogen-based toxic reactants. Adv Exp Med Biol.
527:539–548. 2003.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Tamura H, Jozaki M, Tanabe M, Shirafuta Y,
Mihara Y, Shinagawa M, Tamura I, Maekawa R, Sato S, Taketani T, et
al: Importance of melatonin in assisted reproductive technology and
ovarian aging. Int J Mol Sci. 21(1135)2020.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Moniruzzaman M, Ghosal I, Das D and
Chakraborty SB: Melatonin ameliorates
H2O2-induced oxidative stress through
modulation of Erk/Akt/NFkB pathway. Biol Res. 51(17)2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Lissoni P, Brivio O, Brivio F, Barni S,
Tancini G, Crippa D and Meregalli S: Adjuvant therapy with the
pineal hormone melatonin in patients with lymph node relapse due to
malignant melanoma. J Pineal Res. 21:239–242. 1996.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Blask DE, Sauer LA, Dauchy RT, Holowachuk
EW, Ruhoff MS and Kopff HS: Melatonin inhibition of cancer growth
in vivo involves suppression of tumor fatty acid metabolism via
melatonin receptor-mediated signal transduction events. Cancer Res.
59:4693–4701. 1999.PubMed/NCBI
|
|
61
|
Blask DE, Dauchy RT, Brainard GC and
Hanifin JP: Circadian stage-dependent inhibition of human breast
cancer metabolism and growth by the nocturnal melatonin signal:
Consequences of its disruption by light at night in rats and women.
Integr Cancer Ther. 8:347–353. 2009.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Blask DE, Hill SM, Dauchy RT, Xiang S,
Yuan L, Duplessis T, Mao L, Dauchy E and Sauer LA: Circadian
regulation of molecular, dietary, and metabolic signaling
mechanisms of human breast cancer growth by the nocturnal melatonin
signal and the consequences of its disruption by light at night. J
Pineal Res. 51:259–269. 2011.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Susa N, Ueno S, Furukawa Y, Ueda J and
Sugiyama M: Potent protective effect of melatonin on
chromium(VI)-induced DNA single-strand breaks, cytotoxicity, and
lipid peroxidation in primary cultures of rat hepatocytes. Toxicol
Appl Pharmacol. 144:377–384. 1997.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Tan DX, Pöeggeler B, Reiter RJ, Chen LD,
Chen S, Manchester LC and Barlow-Walden LR: The pineal hormone
melatonin inhibits DNA-adduct formation induced by the chemical
carcinogen safrole in vivo. Cancer Lett. 70:65–71. 1993.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Kilic E, Kilic U, Reiter RJ, Bassetti CL
and Hermann DM: Prophylactic use of melatonin protects against
focal cerebral ischemia in mice: Role of endothelin converting
enzyme-1. J Pineal Res. 37:247–251. 2004.PubMed/NCBI View Article : Google Scholar
|
|
66
|
León J, Casado J, Jiménez Ruiz SM, Zurita
MS, González-Puga C, Rejón JD, Gila A, Muñoz de Rueda P, Pavón EJ,
Reiter RJ, et al: Melatonin reduces endothelin-1 expression and
secretion in colon cancer cells through the inactivation of FoxO-1
and NF-κβ. J Pineal Res. 56:415–426. 2014.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Elmore S: Apoptosis: A review of
programmed cell death. Toxicol Pathol. 35:495–516. 2007.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Obeng E: Apoptosis (programmed cell death)
and its signals-A review. Braz J Biol. 81:1133–1143.
2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Jang MH, Jung SB, Lee MH, Kim CJ, Oh YT,
Kang I, Kim J and Kim EH: Melatonin attenuates amyloid
beta25-35-induced apoptosis in mouse microglial BV2 cells. Neurosci
Lett. 380:26–31. 2005.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Yoo YM, Yim SV, Kim SS, Jang HY, Lea HZ,
Hwang GC, Kim JW, Kim SA, Lee HJ, Kim CJ, et al: Melatonin
suppresses NO-induced apoptosis via induction of Bcl-2 expression
in PGT-beta immortalized pineal cells. J Pineal Res. 33:146–150.
2002.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Joo SS and Yoo YM: Melatonin induces
apoptotic death in LNCaP cells via p38 and JNK pathways:
Therapeutic implications for prostate cancer. J Pineal Res.
47:8–14. 2009.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Mayo JC, Sainz RM, Uría H, Antolín I,
Estéban MM and Rodríguez : Inhibition of cell proliferation:
A mechanism likely to mediate the prevention of neuronal cell death
by melatonin. J Pineal Res. 25:12–18. 1998.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Han Z, Battaglia F and Terlecky SR:
Discharged COVID-19 patients testing positive again for SARS-CoV-2
RNA: A minireview of published studies from China. J Med Virol.
93:262–274. 2021.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu
Y, Zhang L, Fan G, Xu J, Gu X, et al: Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
395:497–506. 2020.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Salehi S, Abedi A, Balakrishnan S and
Gholamrezanezhad A: Coronavirus disease 2019 (COVID-19): A
systematic review of imaging findings in 919 patients. AJR Am J
Roentgenol. 215:87–93. 2020.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Simko F, Hrenak J, Dominguez-Rodriguez A
and Reiter RJ: Melatonin as a putative protection against
myocardial injury in COVID-19 infection. Expert Rev Clin Pharmacol.
13:921–924. 2020.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Tan DX and Hardeland R: Targeting host
defense system and rescuing compromised mitochondria to increase
tolerance against pathogens by melatonin may impact outcome of
deadly virus infection pertinent to COVID-19. Molecules.
25(4410)2020.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Cross KM, Landis DM, Sehgal L and Payne
JD: Melatonin in early treatment for COVID-19: A narrative review
of current evidence and possible efficacy. Endocr Pract.
27:850–855. 2021.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur
A, Culver DA, Gack MU, Farha S, Zein J, Comhair S, et al: A network
medicine approach to investigation and population-based validation
of disease manifestations and drug repurposing for COVID-19. PLoS
Biol. 18(e3000970)2020.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Reiter RJ, Abreu-Gonzalez P, Marik PE and
Dominguez-Rodriguez A: Therapeutic algorithm for use of melatonin
in patients with COVID-19. Front Med (Lausanne).
7(226)2020.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Zhang R, Wang X, Ni L, Di X, Ma B, Niu S,
Liu C and Reiter RJ: COVID-19: Melatonin as a potential adjuvant
treatment. Life Sci. 250(117583)2020.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Cardinali DP, Brown GM, Reiter RJ and
Pandi-Perumal SR: Elderly as a high-risk group during COVID-19
pandemic: Effect of circadian misalignment, sleep dysregulation and
melatonin administration. Sleep Vigil. 1–7. 2020.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
83
|
Huang SH, Cao XJ, Liu W, Shi XY and Wei W:
Inhibitory effect of melatonin on lung oxidative stress induced by
respiratory syncytial virus infection in mice. J Pineal Res.
48:109–116. 2010.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Shneider A, Kudriavtsev A and Vakhrusheva
A: Can melatonin reduce the severity of COVID-19 pandemic? Int Rev
Immunol. 39:153–162. 2020.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Campos LA, Cipolla-Neto J, Amaral FG,
Michelini LC, Bader M and Baltatu OC: The Angiotensin-melatonin
axis. Int J Hypertens. 2013(521783)2013.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Zhang HM and Zhang Y: Melatonin: A
well-documented antioxidant with conditional pro-oxidant actions. J
Pineal Res. 57:131–146. 2014.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Wang R, Hozumi Y, Yin C and Wei GW:
Mutations on COVID-19 diagnostic targets. Genomics. 112:5204–5213.
2020.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Jia Z and Gong W: Will mutations in the
spike protein of SARS-CoV-2 lead to the failure of COVID-19
Vaccines? J Korean Med Sci. 36(e124)2021.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Samudrala PK, Kumar P, Choudhary K, Thakur
N, Wadekar GS, Dayaramani R, Agrawal M and Alexander A: Virology,
pathogenesis, diagnosis and in-line treatment of COVID-19. Eur J
Pharmacol. 883(173375)2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Raherison C and Girodet PO: Epidemiology
of COPD. Eur Respir Rev. 18:213–221. 2009.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Negewo NA, Gibson PG and McDonald VM: COPD
and its comorbidities: Impact, measurement and mechanisms.
Respirology. 20:1160–1171. 2015.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Vestbo J, Hurd SS, Agustí AG, Jones PW,
Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ,
Nishimura M, et al: Global strategy for the diagnosis, management,
and prevention of chronic obstructive pulmonary disease: GOLD
executive summary. Am J Respir Crit Care Med. 187:347–365.
2013.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Buist AS, McBurnie MA, Vollmer WM,
Gillespie S, Burney P, Mannino DM, Menezes AM, Sullivan SD, Lee TA,
Weiss KB, et al: International variation in the prevalence of COPD
(the BOLD Study): A population-based prevalence study. Lancet.
370:741–750. 2007.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Menn P, Heinrich J, Huber RM, Jörres RA,
John J, Karrasch S, Peters A, Schulz H and Holle R: KORA Study
Group. Direct medical costs of COPD-an excess cost approach based
on two population-based studies. Respir Med. 106:540–548.
2012.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Yong W, Ma H, Na M, Gao T, Zhang Y, Hao L,
Yu H, Yang H and Deng X: Roles of melatonin in the field of
reproductive medicine. Biomed Pharmacother.
144(112001)2021.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Mao K, Luo P, Geng W, Xu J, Liao Y, Zhong
H, Ma P, Tan Q, Xia H, Duan L, et al: An integrative transcriptomic
and metabolomic study revealed that melatonin plays a protective
role in chronic lung inflammation by reducing necroptosis. Front
Immunol. 12(668002)2021.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Shin NR, Ko JW, Kim JC, Park G, Kim SH,
Kim MS, Kim JS and Shin IS: Role of melatonin as an SIRT1 enhancer
in chronic obstructive pulmonary disease induced by cigarette
smoke. J Cell Mol Med. 24:1151–1156. 2020.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Shin NR, Park JW, Lee IC, Ko JW, Park SH,
Kim JS, Kim JC, Ahn KS and Shin IS: Melatonin suppresses fibrotic
responses induced by cigarette smoke via downregulation of TGF-β1.
Oncotarget. 8:95692–95703. 2017.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Mahalanobish S, Dutta S, Saha S and Sil
PC: Melatonin induced suppression of ER stress and mitochondrial
dysfunction inhibited NLRP3 inflammasome activation in COPD mice.
Food Chem Toxicol. 144(111588)2020.PubMed/NCBI View Article : Google Scholar
|
|
100
|
Shin IS, Shin NR, Park JW, Jeon CM, Hong
JM, Kwon OK, Kim JS, Lee IC, Kim JC, Oh SR and Ahn KS: Melatonin
attenuates neutrophil inflammation and mucus secretion in cigarette
smoke-induced chronic obstructive pulmonary diseases via the
suppression of Erk-Sp1 signaling. J Pineal Res. 58:50–60.
2015.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Hung MW, Yeung HM, Lau CF, Poon AMS, Tipoe
GL and Fung ML: Melatonin attenuates pulmonary hypertension in
chronically hypoxic rats. Int J Mol Sci. 18(1125)2017.PubMed/NCBI View Article : Google Scholar
|
|
102
|
Kim GD, Lee SE, Kim TH, Jin YH, Park YS
and Park CS: Melatonin suppresses acrolein-induced IL-8 production
in human pulmonary fibroblasts. J Pineal Res. 52:356–364.
2012.PubMed/NCBI View Article : Google Scholar
|
|
103
|
Pieper MP: The non-neuronal cholinergic
system as novel drug target in the airways. Life Sci. 91:1113–1118.
2012.PubMed/NCBI View Article : Google Scholar
|
|
104
|
Ferlay J, Colombet M, Soerjomataram I,
Parkin DM, Piñeros M, Znaor A and Bray F: Cancer statistics for the
year 2020: An overview. Int J Cancer. 2021.PubMed/NCBI View Article : Google Scholar : (Epub ahead of
print).
|
|
105
|
Carter-Harris L, Ceppa DP, Hanna N and
Rawl SM: Lung cancer screening: What do long-term smokers know and
believe? Health Expect. 20:59–68. 2017.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Pinsky P and Gierada DS: Long-term cancer
risk associated with lung nodules observed on low-dose screening CT
scans. Lung Cancer. 139:179–184. 2020.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Lemjabbar-Alaoui H, Hassan OU, Yang YW and
Buchanan P: Lung cancer: Biology and treatment options. Biochim
Biophys Acta. 1856:189–210. 2015.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Vinod SK and Hau E: Radiotherapy treatment
for lung cancer: Current status and future directions. Respirology.
25 (Suppl 2):S61–S71. 2020.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Lissoni P, Chilelli M, Villa S, Cerizza L
and Tancini G: Five years survival in metastatic non-small cell
lung cancer patients treated with chemotherapy alone or
chemotherapy and melatonin: A randomized trial. J Pineal Res.
35:12–15. 2003.PubMed/NCBI View Article : Google Scholar
|
|
110
|
García-Navarro A, González-Puga C, Escames
G, López LC, López A, López-Cantarero M, Camacho E, Espinosa A,
Gallo MA and Acuña-Castroviejo D: Cellular mechanisms involved in
the melatonin inhibition of HT-29 human colon cancer cell
proliferation in culture. J Pineal Res. 43:195–205. 2007.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Tam CW, Mo CW, Yao KM and Shiu SY:
Signaling mechanisms of melatonin in antiproliferation of
hormone-refractory 22Rv1 human prostate cancer cells: Implications
for prostate cancer chemoprevention. J Pineal Res. 42:191–202.
2007.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Benítez-King G, Soto-Vega E and
Ramírez-Rodriguez G: Melatonin modulates microfilament phenotypes
in epithelial cells: Implications for adhesion and inhibition of
cancer cell migration. Histol Histopathol. 24:789–799.
2009.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Mediavilla MD, Cos S and Sánchez-Barceló
EJ: Melatonin increases p53 and p21WAF1 expression in MCF-7 human
breast cancer cells in vitro. Life Sci. 65:415–420. 1999.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Zhou Q, Gui S, Zhou Q and Wang Y:
Melatonin inhibits the migration of human lung adenocarcinoma A549
cell lines involving JNK/MAPK pathway. PloS One.
9(e101132)2014.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Haus E, Dumitriu L, Nicolau GY, Bologa S
and Sackett-Lundeen L: Circadian rhythms of basic fibroblast growth
factor (bFGF), epidermal growth factor (EGF), insulin-like growth
factor-1 (IGF-1), insulin-like growth factor binding protein-3
(IGFBP-3), cortisol, and melatonin in women with breast cancer.
Chronobiol Int. 18:709–727. 2001.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z,
Li T, Zhang Z, Li W, Li X, et al: HDAC1 inhibition by melatonin
leads to suppression of lung adenocarcinoma cells via induction of
oxidative stress and activation of apoptotic pathways. J Pineal
Res. 59:321–333. 2015.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Wang J, Xiao X, Zhang Y, Shi D, Chen W, Fu
L, Liu L, Xie F, Kang T, Huang W and Deng W: Simultaneous
modulation of COX-2, p300, Akt, and Apaf-1 signaling by melatonin
to inhibit proliferation and induce apoptosis in breast cancer
cells. J Pineal Res. 53:77–90. 2012.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Lu JJ, Fu L, Tang Z, Zhang C, Qin L, Wang
J, Yu Z, Shi D, Xiao X, Xie F, et al: Melatonin inhibits
AP-2β/hTERT, NF-κB/COX-2 and Akt/ERK and activates caspase/Cyto C
signaling to enhance the antitumor activity of berberine in lung
cancer cells. Oncotarget. 7:2985–3001. 2016.PubMed/NCBI View Article : Google Scholar
|
|
119
|
Carrillo-Vico A, Calvo JR, Abreu P,
Lardone PJ, García-Mauriño S, Reiter RJ and Guerrero JM: Evidence
of melatonin synthesis by human lymphocytes and its physiological
significance: possible role as intracrine, autocrine, and/or
paracrine substance. FASEB J. 18:537–539. 2004.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Reiter RJ, Tan DX, Sainz RM, Mayo JC and
Lopez-Burillo S: Melatonin: Reducing the toxicity and increasing
the efficacy of drugs. J Pharm Pharmacol. 54:1299–1321.
2002.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Rockey DC, Bell PD and Hill JA: Fibrosis-a
common pathway to organ injury and failure. N Engl J Med.
372:1138–1149. 2015.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Birbrair A, Zhang T, Wang ZM, Messi ML,
Mintz A and Delbono O: Type-1 pericytes participate in fibrous
tissue deposition in aged skeletal muscle. Am J Physiol Cell
Physiol. 305:C1098–C1113. 2013.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Drobnik J, Karbownik-Lewińska M,
Szczepanowska A, Słotwińska D, Olczak S, Jakubowski L and Dabrowski
R: Regulatory influence of melatonin on collagen accumulation in
the infarcted heart scar. J Pineal Res. 45:285–290. 2008.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Di Lullo GA, Sweeney SM, Korkko J,
Ala-Kokko L and San Antonio JD: Mapping the ligand-binding sites
and disease-associated mutations on the most abundant protein in
the human, type I collagen. J Biol Chem. 277:4223–4231.
2002.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Pugazhenthi K, Kapoor M, Clarkson AN, Hall
I and Appleton I: Melatonin accelerates the process of wound repair
in full-thickness incisional wounds. J Pineal Res. 44:387–396.
2008.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Ding Z, Wu X, Wang Y, Ji S, Zhang W, Kang
J, Li J and Fei G: Melatonin prevents LPS-induced
epithelial-mesenchymal transition in human alveolar epithelial
cells via the GSK-3β/Nrf2 pathway. Biomed Pharmacother.
132(110827)2020.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Yildirim Z, Kotuk M, Erdogan H, Iraz M,
Yagmurca M, Kuku I and Fadillioglu E: Preventive effect of
melatonin on bleomycin-induced lung fibrosis in rats. J Pineal Res.
40:27–33. 2006.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Genovese T, Di Paola R, Mazzon E, Muià C,
Caputi AP and Cuzzocrea S: Melatonin limits lung injury in
bleomycin treated mice. J Pineal Res. 39:105–112. 2005.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Karimfar MH, Rostami S, Haghani K,
Bakhtiyari S and Noori-Zadeh A: Melatonin alleviates
bleomycin-induced pulmonary fibrosis in mice. J Biol Regul Homeost
Agents. 29:327–334. 2015.PubMed/NCBI
|
|
130
|
Hosseinzadeh A, Javad-Moosavi SA, Reiter
RJ, Hemati K, Ghaznavi H and Mehrzadi S: Idiopathic pulmonary
fibrosis (IPF) signaling pathways and protective roles of
melatonin. Life Sci. 201:17–29. 2018.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Alvarez-García V, González A,
Alonso-González C, Martínez-Campa C and Cos S: Antiangiogenic
effects of melatonin in endothelial cell cultures. Microvasc Res.
87:25–33. 2013.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Alvarez-García V, González A,
Alonso-González C, Martínez-Campa C and Cos S: Regulation of
vascular endothelial growth factor by melatonin in human breast
cancer cells. J Pineal Res. 54:373–380. 2013.PubMed/NCBI View Article : Google Scholar
|
|
133
|
Song J, Kang SM, Lee WT, Park KA, Lee KM
and Lee JE: The beneficial effect of melatonin in brain endothelial
cells against oxygen-glucose deprivation followed by
reperfusion-induced injury. Oxid Med Cell Longev.
2014(639531)2014.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Crespo I, San-Miguel B, Fernández A, Ortiz
de Urbina J, González-Gallego J and Tuñón MJ: Melatonin limits the
expression of profibrogenic genes and ameliorates the progression
of hepatic fibrosis in mice. Transl Res. 165:346–357.
2015.PubMed/NCBI View Article : Google Scholar
|
|
135
|
Czechowska G, Celinski K, Korolczuk A,
Wojcicka G, Dudka J, Bojarska A and Reiter RJ: Protective effects
of melatonin against thioacetamide-induced liver fibrosis in rats.
J Physiol Pharmacol. 66:567–579. 2015.PubMed/NCBI
|
|
136
|
Yip HK, Chang YC, Wallace CG, Chang LT,
Tsai TH, Chen YL, Chang HW, Leu S, Zhen YY, Tsai CY, et al:
Melatonin treatment improves adipose-derived mesenchymal stem cell
therapy for acute lung ischemia-reperfusion injury. J Pineal Res.
54:207–221. 2013.PubMed/NCBI View Article : Google Scholar
|
|
137
|
Finsnes F, Skjønsberg OH, Lyberg T and
Christensen G: Endothelin-1 production is associated with
eosinophilic rather than neutrophilic airway inflammation. Eur
Respir J. 15:743–750. 2000.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Ji ZZ and Xu YC: Melatonin protects
podocytes from angiotensin II-induced injury in an in vitro
diabetic nephropathy model. Mol Med Rep. 14:920–926.
2016.PubMed/NCBI View Article : Google Scholar
|
|
139
|
Montero P, Milara J, Roger I and Cortijo
J: Role of JAK/STAT in interstitial lung diseases; Molecular and
cellular mechanisms. Int J Mol Sci. 22(6211)2021.PubMed/NCBI View Article : Google Scholar
|
|
140
|
Wang J, Chen L, Chen B, Meliton A, Liu SQ,
Shi Y, Liu T, Deb DK, Solway J and Li YC: Chronic activation of the
renin-angiotensin system induces lung fibrosis. Sci Rep.
5(15561)2015.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Li X, Molina-Molina M, Abdul-Hafez A,
Ramirez J, Serrano-Mollar A, Xaubet A and Uhal BD: Extravascular
sources of lung angiotensin peptide synthesis in idiopathic
pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol.
291:L887–L895. 2006.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Uhal BD, Dang MT, Li X and Abdul-Hafez A:
Angiotensinogen gene transcription in pulmonary fibrosis. Int J
Pept. 2012(875910)2012.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Andersen LP, Gögenur I, Rosenberg J and
Reiter RJ: The safety of melatonin in humans. Clin Drug Investig.
36:169–175. 2016.PubMed/NCBI View Article : Google Scholar
|
|
144
|
Habtemariam S, Daglia M, Sureda A,
Selamoglu Z, Gulhan MF and Nabavi SM: Melatonin and respiratory
diseases: A review. Curr Top Med Chem. 17:467–488. 2017.PubMed/NCBI View Article : Google Scholar
|